Mechanical Property Degradation of Entangled Metallic Wire Materials under Vibration Environment: Experiments and Prediction Models
Abstract
:1. Introduction
2. Material and Specimens
3. Experimental Methods
3.1. Vibration Experiment of the Isolation Structure
3.2. Quasi-Static Compression Test
4. Results and Discussion
4.1. Vibration Characteristics of Isolation Structure
4.2. Geometries and Dimensions
4.3. Quasi-Static Mechanical Properties
4.3.1. Secant Modulus
4.3.2. Loss Factor
4.4. Discussion of the Parameter Variations
5. Prediction Models of Property Degradation
5.1. Dimension Prediction Model
5.2. Modulus Prediction Model
5.3. Damping Prediction Model
6. Conclusions
- (1)
- The resonant frequency and transmission rate of the isolation structure showed a clear decrease as the number of compression cycles increased. The mechanical property degradation of EMWM resulted in a deviation from the intended performance of vibration isolators.
- (2)
- The dimension in the compressed direction of the EMWM experienced a noticeable decrease and stabilized when the cycle number reached a certain threshold, approximately 106. No wire fractures or significant wear were observed on the surface of or inside the specimens. The reduction in this dimension may be attributed to changes in the contact status and slight slipping between the internal wires.
- (3)
- The secant modulus exhibited a significant increase, while the loss factor decreased as the number of compression cycles increased. Once the cycle number reached a threshold value of approximately 106, these parameters stabilized at relatively constant values. The values of these properties were influenced by the relative density and stress amplitude.
- (4)
- Prediction models for property degradation, including dimensions, modulus, and damping, were developed based on fitting the experimental data. These models can accurately predict the variation in the mechanical properties of EMWM specimens in a vibration environment. If a combination of relative density and cyclic compression stress amplitude is given, the variation in mechanical properties with the number of cycles can be calculated by the prediction models.
- (5)
- Prediction models for property degradation, including dimensions, modulus, and damping, were developed based on fitting the experimental data. These models can accurately predict the variation in the mechanical properties of EMWM specimens in a vibration environment. They provide valuable insights for designing vibration isolators with EMWM and determining their operational lifespan.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, H.; Yan, Y.; Xia, H.; Yu, L.; Lv, B. The Prediction and Correction Method of Aircraft Static Aeroelastic Effects: A Review of Recent Progress. Actuators 2022, 11, 309. [Google Scholar] [CrossRef]
- Preumont, A. Active Damping, Vibration Isolation, and Shape Control of Space Structures: A Tutorial. Actuators 2023, 12, 122. [Google Scholar] [CrossRef]
- Fu, J.; Liu, G.; Fan, C.; Liu, Z.; Luo, H. Design and Experimental Study on Vibration Reduction of an UAV Lidar Using Rubber Material. Actuators 2022, 11, 345. [Google Scholar] [CrossRef]
- Ju, S.-H.; Yuantien, C.-C.; Hsieh, W.-K. Study of Lead Rubber Bearings for Vibration Reduction in High-Tech Factories. Appl. Sci. 2020, 10, 1502. [Google Scholar] [CrossRef]
- Chandrasekhar, K.; Rongong, J.; Cross, E. Mechanical behaviour of tangled metal wire devices. Mech. Syst. Signal Process. 2019, 118, 13–29. [Google Scholar] [CrossRef]
- Zhang, B.; Lang, Z.Q.; Billings, S.A.; Tomlinson, G.R.; Rongong, J.A. System identification methods for metal rubber devices. Mech. Syst. Signal Process. 2013, 39, 207–226. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Q.; Wang, Y.; Hong, J.; Scarpa, F. Topology and mechanics of metal rubber via X-ray tomography. Mater. Des. 2019, 181, 108067. [Google Scholar] [CrossRef]
- Masse, J.P.; Barbier, C.; Salvo, L.; Brechet, Y.; Bouaziz, O.; Bouvard, D. Mechanical and structural characterization of nonsintered and sintered steel wools by x-ray tomography: Description of the techniques and validation on virtual materials. J. Mater. Res. Camb. Univ. Press 2013, 28, 2852–2860. [Google Scholar] [CrossRef]
- Shlyapin, S.D.; Serov, M.M.; Gusev, D.E.; Fedorova, L.V. Fabrication, Structure, and Properties of Porous Materials Made of Titanium Fibers and Wire. Russ. J. Non-Ferr. Met. 2018, 58, 670–677. [Google Scholar] [CrossRef]
- Gadot, B.; Riu Martinez, O.; Rolland du Roscoat, S.; Bouvard, D.; Rodney, D.; Orgéas, L. Entangled single-wire NiTi material: A porous metal with tunable superelastic and shape memory properties. Acta Mater. 2015, 96, 311–323. [Google Scholar] [CrossRef]
- Rodney, D.; Gadot, B.; Martinez, O.R.; du Roscoat, S.R.; Orgeas, L. Reversible dilatancy in entangled single-wire materials. Nat. Mater. 2016, 15, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ao, H.; Jiang, H. Macro–Microstatic Stiffness Prediction Model of Metal Rubber. Adv. Theory Simul. 2021, 4, 2100008. [Google Scholar] [CrossRef]
- Cao, X.; Wei, C.; Liang, J.; Wang, L. Design and dynamic analysis of metal rubber isolators between satellite and carrier rocket system. Mech. Sci. 2019, 10, 71–78. [Google Scholar] [CrossRef]
- Tang, N.; Rongong, J.A. Feasibility study on the use of tangled metal wire particles as the adjustable elements in tuned mass dampers. J. Sound Vib. 2019, 457, 1–14. [Google Scholar] [CrossRef]
- Zou, Y.; Xiong, C.; Yin, J.; Cui, K.; Zhu, X.; Deng, H.; Song, S.; Poisson, F. Experimental and Constitutive Model Study on Dynamic Mechanical Behavior of Metal Rubber under High-Speed Impact Loading. Shock. Vib. 2021, 2021, 8845375. [Google Scholar] [CrossRef]
- Wu, Y.-W.; Tang, Y.; Li, S.-Z.; Cheng, H.; Chen, X.-C.; Bai, H.-B. Experimental study on the mechanical properties and impact behaviors of entangled metallic wire material under repeated low-velocity impacts. Mech. Adv. Mater. Struct. 2022, 30, 2506–2516. [Google Scholar] [CrossRef]
- Liu, G.; Song, W.; Li, P. Compressive mechanical properties of metal fiber sintered sheets at different strain rates. Compos. Struct. 2020, 233, 111703. [Google Scholar] [CrossRef]
- Guan, D.; Jing, L.; Gong, J.; Shen, H.; Zong, Y. Prediction of sound absorption property of metal rubber using general regression neural network. Noise Control Eng. J. 2018, 66, 424–431. [Google Scholar] [CrossRef]
- Safin, A.I.; Igolkin, A.A.; Prokof’ev, A.B. A mathematical model of acoustic properties of gas turbine engine sound absorbing elements made from elastic porous metal rubber. Russ. Aeronaut. 2015, 57, 430–434. [Google Scholar] [CrossRef]
- He, G.; Liu, P.; Tan, Q. Porous titanium materials with entangled wire structure for load-bearing biomedical applications. J. Mech. Behav. Biomed. Mater. 2012, 5, 16–31. [Google Scholar] [CrossRef]
- Wang, Q.; Qiao, Y.; Cheng, M.; Jiang, G.; He, G.; Chen, Y.; Zhang, X.; Liu, X. Tantalum implanted entangled porous titanium promotes surface osseointegration and bone ingrowth. Sci. Rep. 2016, 6, 26248. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.G.; Lee, K.W.; Hur, H.K.; Kang, K.J. Mechanical behavior of a wire-woven metal under compression. Compos. Struct. 2013, 95, 264–277. [Google Scholar] [CrossRef]
- Lee, M.-G.; Ko, G.-D.; Song, J.; Kang, K.-J. Compressive characteristics of a wire-woven cellular metal. Mater. Sci. Eng. A 2012, 539, 185–193. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, H.; Wang, Y.; Jiang, T.; Jiang, H. Predicting Nonlinear and Anisotropic Mechanics of Metal Rubber Using a Combination of Constitutive Modeling, Machine Learning, and Finite Element Analysis. Materials 2021, 14, 5200. [Google Scholar] [CrossRef]
- Hu, J.; Du, Q.; Gao, J.; Kang, J.; Guo, B. Compressive mechanical behavior of multiple wire metal rubber. Mater. Des. 2018, 140, 231–240. [Google Scholar] [CrossRef]
- Liu, P.; He, G.; Wu, L. Structure deformation and failure of sintered steel wire mesh under torsion loading. Mater. Des. 2009, 30, 2264–2268. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Q.; Zhang, D.; Zhu, H.; Lu, H.; Hong, J. Failure criterion and durability characteristics of metal rubber under static compression load. J. Beijing Univ. Aeronaut. Astronaut. 2016, 42, 227–235. (In Chinese) [Google Scholar] [CrossRef]
- Ertas, B.H. Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers. J. Eng. Gas Turbines Power 2008, 131, 022503. [Google Scholar] [CrossRef]
- Ertas, B.; Luo, H.; Hallman, D. Dynamic Characteristics of Shape Memory Alloy Metal Mesh Dampers. In Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, USA, 4–7 May 2009. [Google Scholar] [CrossRef]
- San Andre’s, L.; Chirathadam, T.A.; Kim, T.-H. Measurement of Structural Stiffness and Damping Coefficients in a Metal Mesh Foil Bearing. In Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, FL, USA, 8–12 June 2009; pp. 763–771. [Google Scholar] [CrossRef]
- Kashani, M.M.; Ahmadi, E.; Gonzalez-Buelga, A.; Zhang, D.; Scarpa, F. Layered composite entangled wire materials blocks as pre-tensioned vertebral rocking columns. Compos. Struct. 2019, 214, 153–163. [Google Scholar] [CrossRef]
- Kwon, S.-C.; Jo, M.-S.; Oh, H.-U. Experimental Validation of Fly-Wheel Passive Launch and On-Orbit Vibration Isolation System by Using a Superelastic SMA Mesh Washer Isolator. Int. J. Aerosp. Eng. 2017, 2017, 5496053. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, W.; Wu, Y.; Bai, H. Study of the Dynamic Model and Vibration Performance of Pot-Shaped Metal Rubber. Materials 2022, 15, 5878. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Shen, L.; Huang, Z.; Bai, H.; Shen, D.; Shao, Y. Study on Multi-Point Random Contact Characteristics of Metal Rubber Spiral Mesh Structure. IEEE Access 2019, 7, 132694–132710. [Google Scholar] [CrossRef]
- Ren, Z.; Shen, L.; Bai, H.; Pan, L.; Zhong, S. Constitutive model of disordered grid interpenetrating structure of flexible microporous metal rubber. Mech. Syst. Signal Process. 2021, 154, 107567. [Google Scholar] [CrossRef]
Pair Number | Wire Diameter (mm) | Helix Diameter (mm) | Pitch (mm) | Relative Density | Forming Pressure (MPa) | Inner Diameter (mm) | Outer Diameter (mm) | Height (mm) | Mass (g) |
---|---|---|---|---|---|---|---|---|---|
A1 | 0.10 | 1.1 | 1.1 | 0.10 | 11.57 | 17.97 | 37.04 | 15.11 | 9.73 |
A2 | 0.10 | 1.1 | 1.1 | 0.10 | 11.57 | 17.86 | 37.01 | 15.15 | 9.71 |
A3 | 0.10 | 1.1 | 1.1 | 0.10 | 11.57 | 17.93 | 37.05 | 15.20 | 9.71 |
B1 | 0.10 | 1.1 | 1.1 | 0.20 | 29.85 | 17.99 | 37.08 | 15.14 | 19.47 |
B2 | 0.10 | 1.1 | 1.1 | 0.20 | 29.85 | 18.00 | 37.08 | 15.05 | 19.47 |
B3 | 0.10 | 1.1 | 1.1 | 0.20 | 29.85 | 17.89 | 37.05 | 15.10 | 19.46 |
C1 | 0.10 | 1.1 | 1.1 | 0.25 | 48.74 | 17.92 | 37.06 | 15.13 | 24.30 |
C2 | 0.10 | 1.1 | 1.1 | 0.25 | 48.74 | 17.84 | 37.02 | 15.05 | 24.34 |
C3 | 0.10 | 1.1 | 1.1 | 0.25 | 48.74 | 17.92 | 37.02 | 15.25 | 24.31 |
D1 | 0.10 | 1.1 | 1.1 | 0.25 | 48.74 | 17.92 | 37.01 | 15.14 | 24.31 |
D2 | 0.10 | 1.1 | 1.1 | 0.25 | 48.74 | 17.99 | 37.00 | 15.14 | 24.34 |
D3 | 0.10 | 1.1 | 1.1 | 0.25 | 48.74 | 17.87 | 37.04 | 15.22 | 24.30 |
E1 | 0.10 | 1.1 | 1.1 | 0.25 | 48.74 | 18.00 | 37.05 | 15.04 | 24.32 |
E2 | 0.10 | 1.1 | 1.1 | 0.25 | 48.74 | 17.94 | 37.05 | 15.12 | 24.31 |
E3 | 0.10 | 1.1 | 1.1 | 0.25 | 48.74 | 17.91 | 37.02 | 15.25 | 24.31 |
Number | Relative Density | Stress Amplitude (MPa) | Slope |
---|---|---|---|
1 | 0.10 | 0.3 | 0.2450 |
2 | 0.20 | 0.3 | 0.0934 |
3 | 0.25 | 0.3 | 0.0849 |
4 | 0.25 | 0.7 | 0.1144 |
5 | 0.25 | 1.0 | 0.1411 |
Number | Relative Density | Stress Amplitude (MPa) | Threshold Value |
---|---|---|---|
1 | 0.10 | 0.3 | 0.2080 |
2 | 0.20 | 0.3 | 0.0971 |
3 | 0.25 | 0.3 | 0.0836 |
4 | 0.25 | 0.7 | 0.1058 |
5 | 0.25 | 1.0 | 0.1289 |
Number | Relative Density | Stress Amplitude (MPa) | Slope |
---|---|---|---|
1 | 0.10 | 0.3 | 3.8560 |
2 | 0.20 | 0.3 | 1.1385 |
3 | 0.25 | 0.3 | 0.4676 |
4 | 0.25 | 0.7 | 0.7842 |
5 | 0.25 | 1.0 | 1.2325 |
Number | Relative Density | Stress Amplitude (MPa) | Threshold Value |
---|---|---|---|
1 | 0.10 | 0.3 | 2.8639 |
2 | 0.20 | 0.3 | 1.2417 |
3 | 0.25 | 0.3 | 0.4860 |
4 | 0.25 | 0.7 | 0.6374 |
5 | 0.25 | 1.0 | 1.1874 |
Number | Relative Density | Stress Amplitude (MPa) | Coefficient | Coefficient |
---|---|---|---|---|
1 | 0.10 | 0.3 | 0.4258 | −1.2213 |
2 | 0.20 | 0.3 | 0.3085 | −0.4680 |
3 | 0.25 | 0.3 | 0.3563 | −1.0453 |
4 | 0.25 | 0.7 | 0.2847 | −0.6333 |
5 | 0.25 | 1.0 | 0.2740 | −1.0896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Liang, T.; Wang, Y.; Wang, Z.; Hong, J. Mechanical Property Degradation of Entangled Metallic Wire Materials under Vibration Environment: Experiments and Prediction Models. Actuators 2023, 12, 418. https://doi.org/10.3390/act12110418
Ma Y, Liang T, Wang Y, Wang Z, Hong J. Mechanical Property Degradation of Entangled Metallic Wire Materials under Vibration Environment: Experiments and Prediction Models. Actuators. 2023; 12(11):418. https://doi.org/10.3390/act12110418
Chicago/Turabian StyleMa, Yanhong, Tianyu Liang, Yongfeng Wang, Zhizhou Wang, and Jie Hong. 2023. "Mechanical Property Degradation of Entangled Metallic Wire Materials under Vibration Environment: Experiments and Prediction Models" Actuators 12, no. 11: 418. https://doi.org/10.3390/act12110418
APA StyleMa, Y., Liang, T., Wang, Y., Wang, Z., & Hong, J. (2023). Mechanical Property Degradation of Entangled Metallic Wire Materials under Vibration Environment: Experiments and Prediction Models. Actuators, 12(11), 418. https://doi.org/10.3390/act12110418