Automatic Estimation of Excavator’s Actual Productivity in Trenching and Grading Operations Using Building Information Modeling (BIM) †
Abstract
:1. Introduction
1.1. Hydraulic Excavator
1.2. Grading Operation
1.3. Trenching Operation
1.4. Objectives
2. Literature Review
3. Methodology
3.1. Elevation Terrain Mapping
3.1.1. Transformation
3.1.2. Kinematics of Excavators
3.2. Building Information Modeling (BIM)
3.3. Productivity Estimation
3.3.1. Grading Operation
3.3.2. Trenching Operation
4. Results
4.1. Data Collection Procedure
4.2. Grading Operation
4.3. Trenching Operation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HDMM | Heavy-duty mobile machine |
LiDAR | Light detection And ranging |
BIM | Building information modeling |
LMMS | Laser mobile mapping system |
IMU | Inertial measurement unit |
TLS | Terrestrial laser scanning |
ALS | Aerial laser scanning |
RADAR | Radio detection and ranging |
GNSS | Global Navigation Satellite System |
EKF | Extended Kalman filter |
ROI | Region Of interest |
SAE | Society of Automotive Engineers |
FOV | Field of view |
ROS | Robot Operating System |
3D | Three-dimensional |
References
- Geimer, M. Mobile Working Machines; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Machado, T.; Fassbender, D.; Taheri, A.; Eriksson, D.; Gupta, H.; Molaei, A.; Forte, P.; Rai, P.K.; Ghabcheloo, R.; Mäkinen, S.; et al. Autonomous Heavy-Duty Mobile Machinery: A Multidisciplinary Collaborative Challenge. In Proceedings of the 2021 IEEE International Conference on Technology and Entrepreneurship (ICTE), Kaunas, Lithuania, 24–27 August 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Kassem, M.; Mahamedi, E.; Rogage, K.; Duffy, K.; Huntingdon, J. Measuring and benchmarking the productivity of excavators in infrastructure projects: A deep neural network approach. Autom. Constr. 2021, 124, 103532. [Google Scholar] [CrossRef]
- Molaei, A.; Geimer, M.; Kolu, A. An Approach for Estimation of Swing Angle and Digging Depth during Excavation Operation. In Proceedings of the 39th International Symposium on Automation and Robotics in Construction (ISARC), International Association for Automation and Robotics in Construction (IAARC), Bogota, Columbia, 13–15 July 2022; pp. 622–629. [Google Scholar] [CrossRef]
- Building SMART Finland, Infra-Toimialaryhmä. Yleiset Inframallivaatimukset YIV; Building SMART Finland: Helsinki, Finland, 2021. [Google Scholar]
- Chen, C.; Zhu, Z.; Hammad, A. Critical Review and Road Map of Automated Methods for Earthmoving Equipment Productivity Monitoring. J. Comput. Civ. Eng. 2022, 36, 03122001. [Google Scholar] [CrossRef]
- Rasul, A.; Seo, J.; Khajepour, A. Development of Integrative Methodologies for Effective Excavation Progress Monitoring. Sensors 2021, 21, 364. [Google Scholar] [CrossRef] [PubMed]
- Mundane Sagar, R.; Khare Pranay, R. Comparative Study of Factors Affecting Productivity and Cycle Time of Different Excavators and Their Bucket Size. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 6518–6520. [Google Scholar] [CrossRef]
- Klanfar, M.; Herceg, V.; Kuhinek, D.; Sekulić, K. Construction and testing of the measurement system for excavator productivity. Rud.-Geol.-Naft. Zb. (Min.-Geol.-Pet. Bull.) 2019, 34, 51–58. [Google Scholar] [CrossRef]
- Caterpillar Inc. Available online: https://www.cat.com/en_US/products/new/technology/assist/assist/153921756853575 (accessed on 1 August 2022).
- Schaufelberger, J.E.; Migliaccio, G.C. Construction Equipment Management; Routledge: London, England, 2019. [Google Scholar] [CrossRef]
- Du, Y.; Dorneich, M.C.; Steward, B. Virtual operator modeling method for excavator trenching. Autom. Constr. 2016, 70, 14–25. [Google Scholar] [CrossRef]
- Caterpillar Performance Handbook, 48th ed.; CatⓇ Publication by Caterpillar Inc.: Peoria, IL, USA, 2018.
- Marandola, M. How Much Does It Cost to Dig a Trench? 2022. Available online: https://www.angi.com/articles/trenching-cost.htm (accessed on 15 December 2022).
- ElQasaby, A.R.; Alqahtani, F.K.; Alheyf, M. State of the Art of BIM Integration with Sensing Technologies in Construction Progress Monitoring. Sensors 2022, 22, 3497. [Google Scholar] [CrossRef]
- Yi, W.; Chan, A.P.C. Critical Review of Labor Productivity Research in Construction Journals. J. Manag. Eng. 2014, 30, 214–225. [Google Scholar] [CrossRef]
- Zavadskas, E.; Vilutienė, T.; Turskis, Z.; Šaparauskas, J. Multi-criteria analysis of Projects’ performance in construction. Arch. Civ. Mech. Eng. 2014, 14, 114–121. [Google Scholar] [CrossRef]
- Azhar, S. Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadersh. Manag. Eng. 2011, 11, 241–252. [Google Scholar] [CrossRef]
- Hichri, N.; Stefani, C.; de Luca, L.; Veron, P.; Hamon, G. From point cloud to BIM: A survey of existing approaches. In Proceedings of the XXIV International CIPA Symposium, Strasbourg, France, 2–6 September 2013. [Google Scholar]
- Turkan, Y.; Bosche, F.; Haas, C.T.; Haas, R. Automated progress tracking using 4D schedule and 3D sensing technologies. Autom. Constr. 2012, 22, 414–421. [Google Scholar] [CrossRef]
- Mirzaei, K.; Arashpour, M.; Asadi, E.; Masoumi, H.; Bai, Y.; Behnood, A. 3D point cloud data processing with machine learning for construction and infrastructure applications: A comprehensive review. Adv. Eng. Inform. 2022, 51, 101501. [Google Scholar] [CrossRef]
- Wu, Y.; Kim, H.; Kim, C.; Han, S.H. Object Recognition in Construction-Site Images Using 3D CAD-Based Filtering. J. Comput. Civ. Eng. 2010, 24, 56–64. [Google Scholar] [CrossRef]
- Gledson, B.; Greenwood, D. Surveying the extent and use of 4D BIM in the UK. J. Inf. Technol. Constr. (ITcon) 2016, 21, 57–71. [Google Scholar]
- Hakkarainen, M.; Woodward, C.; Rainio, K. Software architecture for mobile mixed reality and 4D BIM interaction. In Proceedings of the Proceedings 25th CIB W78 Conference, Northumbria, UK, 18–20 September 2009; pp. 1–8. [Google Scholar]
- Sulankivi, K.; Zhang, S.; Teizer, J.; Eastman, C.M.; Kiviniemi, M.; Romo, I.; Granholm, L. Utilization of BIM-based automated safety checking in construction planning. In Proceedings of the 19th International CIB World Building Congress, Brisbane Australia, 5–9 May 2013; pp. 5–9. [Google Scholar]
- Cheok, G.S.; Lipman, R.R.; Witzgall, C.; Bernal, J.; Stone, W.C. Field Demonstration of Laser Scanning for Excavation Measurement. In Proceedings of the 17th International Symposium on Automation and Robotics in Construction (ISARC), International Association for Automation and Robotics in Construction (IAARC), Taipei, Taiwan, 18–20 September 2000; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Morris, J. Volume Measurement Using a Laser Scanner; Technical Report, CITR; The University of Auckland: Auckland, New Zealand, 2005. [Google Scholar]
- Kolter, J.Z.; Kim, Y.; Ng, A.Y. Stereo vision and terrain modeling for quadruped robots. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1557–1564. [Google Scholar] [CrossRef]
- Yamamoto, H.; Moteki, M.; Shao, H.; Ootuki, K.; Yanagisawa, Y.; Sakaida, Y.; Nozue, A.; Yamaguchi, T.; Yuta, S. Development of the autonomous hydraulic excavator prototype using 3-D information for motion planning and control. Trans. Soc. Instrum. Control. Eng. 2012, 48, 488–497. [Google Scholar] [CrossRef]
- Wang, J.; González-Jorge, H.; Lindenbergh, R.; Arias-Sánchez, P.; Menenti, M. Automatic estimation of excavation volume from laser mobile mapping data for mountain road widening. Remote. Sens. 2013, 5, 4629–4651. [Google Scholar] [CrossRef]
- Honda, H.; Minami, A.; Takahashi, Y.; Tajima, S.; Ohtsuki, T.; Shiiba, Y. Visualization of the Progress Management of Earthwork Volume at Construction Jobsite. In Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC), International Association for Automation and Robotics in Construction (IAARC), Kitakyushu, Japan, 26–30 October 2020; pp. 1286–1290. [Google Scholar] [CrossRef]
- Yao, A.W. Volume Calculation Based on LiDAR Data. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2021. [Google Scholar]
- Kleiner, A.; Dornhege, C. Real-time localization and elevation mapping within urban search and rescue scenarios. J. Field Robot. 2007, 24, 723–745. [Google Scholar] [CrossRef]
- Kolu, A.; Lauri, M.; Hyvönen, M.; Ghabcheloo, R.; Huhtala, K. A mapping method tolerant to calibration and localization errors based on tilting 2D laser scanner. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 2348–2353. [Google Scholar] [CrossRef]
- Spherical Coordinates System (Spherical Polar Coordinates) Newtonian Mechanics. Available online: https://physicscatalyst.com/graduation/spherical-coordinates-system/ (accessed on 21 October 2022).
- Kümmerle, J.; Kühner, T.; Lauer, M. Automatic calibration of multiple cameras and depth sensors with a spherical target. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Rohm, W.; Klingbeil, L.; Tchórzewski, J. Experimental 2D extended Kalman filter sensor fusion for low-cost GNSS/IMU/Odometers precise positioning system. Measurement 2022, 193, 110963. [Google Scholar] [CrossRef]
- Tam Lam, N.; Howard, I.; Cui, L. A Review of Trajectory Planning for Autonomous Excavator in Construction and Mining Sites. In Proceedings of the 10th Australasian Congress on Applied Mechanics, Online, 1–3 December 2021; Engineers Australia: Barton, ACT, Australia, 2021; pp. 368–382. [Google Scholar]
- Xu, J.; Yoon, H.S. A review on mechanical and hydraulic system modeling of excavator manipulator system. J. Constr. Eng. 2016, 2016, 9409370. [Google Scholar] [CrossRef]
- InfraRYL (General Quality Requirements for Infrastructure Construction). Available online: https://www.rakennustieto.fi/palvelut/tietoa-rakentamiseen/ryl/infraryl (accessed on 21 October 2022).
- Heikkiläa, R.; Kolli, T.; Rauhala, T. Benefits of Open Infra BIM—Finland Experience. In Proceedings of the 39th International Symposium on Automation and Robotics in Construction (ISARC), International Association for Automation and Robotics in Construction (IAARC), Bogota, Columbia, 12–15 July 2022; pp. 253–260. [Google Scholar] [CrossRef]
- Novatron Ltd. Available online: https://novatron.fi/en/ (accessed on 1 February 2022).
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Ng, A. Ros: An open-source robot operating system. In Proceedings of the icra Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3; no. 3.2. [Google Scholar]
- MORE-ITN Project. 2020. Available online: https://www.more-itn.eu/ (accessed on 1 August 2022).
Link | ||||
---|---|---|---|---|
1 | 0 | 90 | ||
2 | 0 | 0 | ||
3 | 0 | 0 | ||
4 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molaei, A.; Kolu, A.; Haaraniemi, N.; Geimer, M. Automatic Estimation of Excavator’s Actual Productivity in Trenching and Grading Operations Using Building Information Modeling (BIM). Actuators 2023, 12, 423. https://doi.org/10.3390/act12110423
Molaei A, Kolu A, Haaraniemi N, Geimer M. Automatic Estimation of Excavator’s Actual Productivity in Trenching and Grading Operations Using Building Information Modeling (BIM). Actuators. 2023; 12(11):423. https://doi.org/10.3390/act12110423
Chicago/Turabian StyleMolaei, Amirmasoud, Antti Kolu, Niko Haaraniemi, and Marcus Geimer. 2023. "Automatic Estimation of Excavator’s Actual Productivity in Trenching and Grading Operations Using Building Information Modeling (BIM)" Actuators 12, no. 11: 423. https://doi.org/10.3390/act12110423
APA StyleMolaei, A., Kolu, A., Haaraniemi, N., & Geimer, M. (2023). Automatic Estimation of Excavator’s Actual Productivity in Trenching and Grading Operations Using Building Information Modeling (BIM). Actuators, 12(11), 423. https://doi.org/10.3390/act12110423