A Review on Vibration Control Strategies Using Magnetorheological Materials Actuators: Application Perspective
Abstract
:1. Introduction
2. State-of-the-Art
Control Types | Application on Transportation Systems | Related References | Refs. | |
---|---|---|---|---|
Skyhook | Automotive | MRF | Yi and Song (1999) Ahmadian and Pare. (2000) Choi SB et al. (2000) Choi SB et al. (2003) Ahmadian et al. (2004) Batterbee and Sims. (2004) Choi SB et al. (2005) Shen et al. (2006) Eslaminasab and Golnaraghi (2007) Nguyen QH and Choi SB (2009) Yao et al. (2013) Balamurugan L et al. (2014) Ramalingam et al. (2020) Lee AS et al. (2020) Chen et al. (2021) | [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41,42] |
MR Grease | Shiraishi et al. (2022) | [43] | ||
Railway | MRF | Fotoohi et al. (2006) Oh JS et al. (2016) | [44] [45] | |
MRE | Jin T et al. (2020) | [46] | ||
Building structure | MR Grease | Shiraishi et al. (2022) | [47] | |
PID | Automotive | MRF | Choi SB et al. (2000) Ciocanel et al. (2008) Rashid et al. (2011) Gad et al. (2015) Muthalif et al. (2017) | [48] [49] [50] [51] [52] |
MR Gel | Kim et al. (2016) | [53] | ||
Building structure | MRE | Guo YQ et al. (2020) | [54] | |
LQR/LQG | Automotive | MRF | Zhang CW et al. (2006) Lee DY et al. (2009) Nagarkar et al. (2011) Sibielak et al. (2011) Bégin MA et al. (2018) | [55] [56] [57] [58] [59] |
Railway | Wang DH and Liao WH (2003) | [60] | ||
Aerofoil | Sivrioglu et al. (2020) | [61] | ||
Building structure | Weber F et al. (2003) Nagarajaiah and Narasimhan (2006) Swartz RA et al. (2007) Tan P et al. (2009) Winter BD et al. (2015) Afshari V et al. (2020) | [62] [63] [64] [65] [66] [67] | ||
MRE | Tariq MA et al. (2021) | [68] | ||
Sliding mode control | Automotive | MRF | Lai CY et al. (2002) Chen, Y and Zhao Q (2012) Jeon J et al. (2013) Yusop MAM et al. (2016) Zhang H et al. (2015) Ning et al. (2017) Yoon DS et al. (2021) Zhu M et al. (2022) | [69] [70] [71] [72] [73] [74] [75] [76] |
Railway | Nguyen SD et al. (2015) | [77] | ||
Building structure | Lee TY et al. (2011) Ha QP et al. (2013) | [78] [79] | ||
MRE | Balamonica K et al. (2019) Altabey WA et al. (2021) | [80] [81] | ||
Fuzzy logic control | Automotive | MRF | Devdutt and Aggarwal (2011) Félix-Herrán LC et al. (2014) Nguyen et al. (2015) Tang X et al. (2017) | [82] [83] [84] [85] |
MRE | Qian LJ et al. (2017) | [86] | ||
Military | MRF | Li Z et al. (2018) | [87] | |
Building structure | Amini F et al. (2015) Bathaei et al. (2017) Braz-César MT et al. (2018) Hormozabad et al. (2020) | [88] [89] [90] [91] | ||
MRE | Jung HJ et al. (2011) Yang J et al. (2016) Nguyen XB et al. (2017) Nguyen XB et al. (2018) | [92] [93] [94] [95] | ||
MR Grease | Ma YQ and Qiu HX (2015) | [96] | ||
Adaptive control | Automotive | MRF | Song X et al. (2004) Krauze and Kasprzyk (2014) Phu D et al. (2015) Phu D et al. (2017) Yıldız AS et al. (2021) Basargan H et al. (2022) Truong HT et al. (2022) | [97] [98] [99] [100] [101] [102] [103] |
MR Gel | Kim HK et al. (2017) | [53] | ||
Railway | MRF | Nguyen SD et al. (2015) | [104] | |
Building structure | Sakai et al. (2003) Terasawa et al. (2004) Chen C et al. (2009) Tu JY et al. (2009) Chen C et al. (2010) Karimi HR et al. (2010) Bitaraf M et al. (2012) Chen PC et al. (2015) | [105] [106] [107] [108] [109] [110] [111] [112] | ||
MRE | Chen X et al. (2016) Nguyen XB et al. (2018) Susheelkumar GN et al. (2019) | [113] [114] [115] | ||
Neural network control | Automotive | MRF | Zapateiro M. et al. (2009) Metered et al. (2010) Ubaidillah et al. (2014) Guo et al. (2016) | [116,117] [118,119] [120] [121] |
MRE | Liu C et al. (2020) Nguyen XB et al. (2020) | [122] [123] | ||
Building structure | Yu Y et al. (2015) Fu J et al. (2016) Gu X et al. (2017) Yu Y et al. (2019) Gu X et al. (2019) Brancati R et al. (2020) Perez-Ramírez CA et al. (2020) | [124] [125] [126] [127] [128] [129] [130] | ||
H-infinity control | Automotive | MRF | Choi SB and Sung KG (2008) Prabakar et al. (2009) Fallah MS et al. (2013) Félix-Herrán LC et al. (2012) Yao et al. (2013) Wu J et al. (2019) Félix-Herrán LC et al. (2019) Hosseini et al. (2020) | [131] [132] [133] [134] [37] [135] [136] [137] |
Airfoil | Bolat FC et al. (2018) Sivrioglu S et al. (2018) | [138,139] [140] | ||
Building structure | Zapateiro M. et al. (2009) Gao X et al. (2014) | [141] [142] | ||
Hybrid control | Automotive Aircraft | Ahmadian et al. (2000) Félix-Herrán et al. (2008) Ding et al. (2021) Luong QV et al. (2020) | [28] [143] [144] [145] | |
Building structure | Park KS et al. (2003) Fisco NR and Adeli H (2011) Chen B and Zheng B (2012) Kemerli M et al. (2022) | [146] [147] [148] [149] |
Skyhook | |
PID | |
LQG/LQR | LQR LQG |
Sliding mode control | |
Fuzzy logic | Fuzzifier Rule Base Defuzzification |
Adaptive | |
Neural network | |
H-infinity control | |
Hybrid |
2.1. Automotive
2.2. Military (Tracked) Vehicle
2.3. Railway
2.4. Aircraft/Aerospace
2.5. Ship
2.6. Vibration Isolation for Machinery
2.7. Civil Engineering
2.8. Flexible Structures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlson, J.D.; Jolly, M.R. MR fluid, foam and elastomer devices. Mechatronics 2000, 10, 555–569. [Google Scholar] [CrossRef]
- Shiraishi, T.; Misaki, H. Vibration Control by a Shear Type Semi-active Damper Using Magnetorheological Grease. J. Phys. Conf. Ser. 2016, 744, 012012. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Ju, B.; Fu, J.; Liu, S.; Choi, S.-B. Magnetoresistance characteristics of magnetorheological gel under a magnetic field. Ind. Eng. Chem. Res. 2014, 53, 4704–4710. [Google Scholar] [CrossRef]
- Zhang, W.; Gong, X.; Xuan, S.; Jiang, W. Temperature-dependent mechanical properties and model of magnetorheological elastomers. Ind. Eng. Chem. Res. 2011, 50, 6704–6712. [Google Scholar] [CrossRef]
- Ubaidillah, U.; Lenggana, B.W.; Son, L.; Imaduddin, F.; Widodo, P.J.; Harjana, H.; Doewes, R.I. A New Magnetorheological Fluids Damper for Unmanned Aerial Vehicles. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 73, 35–45. [Google Scholar] [CrossRef]
- Mohamad, N.; Ubaidillah; Mazlan, S.; Choi, S.; Abdul Aziz, S.; Sugimoto, M. The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases. Int. J. Mol. Sci. 2019, 20, 1525. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, N.; Mazlan, S.A.; Ubaidillah; Choi, S.-B.; Nordin, M.F.M. The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles. Smart Mater. Struct. 2016, 25, 095043. [Google Scholar] [CrossRef]
- Sahin, H.; Wang, X.; Gordaninejad, F. Temperature Dependence of Magneto-rheological Materials. J. Intell. Mater. Syst. Struct. 2009, 20, 2215–2222. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, X.; Xuan, S.; Zhang, W.; Fan, Y. A high-performance magnetorheological material: Preparation, characterization and magnetic-mechanic coupling properties. Soft Matter 2011, 7, 5246–5254. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, T.; Liao, G.; Lubineau, G. Magneto-dependent stress relaxation of magnetorheological gels. Smart Mater. Struct. 2017, 26, 115005. [Google Scholar] [CrossRef] [Green Version]
- Meharthaj, H.; Sivakumar, S.M.; Arockiarajan, A. Significance of particle size on the improved performance of magnetorheological gels. J. Magn. Magn. Mater. 2019, 490, 165483. [Google Scholar] [CrossRef]
- Ashtiani, M.; Hashemabadi, S.H.; Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 2015, 374, 716–730. [Google Scholar] [CrossRef]
- Li, W.; Sun, L.; Sun, J.; Chen, W.; Ma, F.; Leng, D. Experimental and numerical investigation on damping properties and energy dissipation mechanisms of magnetosensitive rubber. J. Phys. Conf. Ser. 2013, 412, 012030. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Ong, Z.C.; Julai, S.; Ferdaus, M.M.; Ahamed, R. A review of advances in magnetorheological dampers: Their design optimization and applications. J. Zhejiang Univ. Sci. A 2017, 18, 991–1010. [Google Scholar] [CrossRef]
- Rossi, A.; Orsini, F.; Scorza, A.; Botta, F.; Belfiore, N.P.; Sciuto, S.A. A review on parametric dynamic models of magnetorheological dampers and their characterization methods. Actuators 2018, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Khazoom, C.; Caillouette, P.; Girard, A.; Plante, J.-S. A Supernumerary Robotic Leg Powered by Magnetorheological Actuators to Assist Human Locomotion. IEEE Robot. Autom. Lett. 2020, 5, 5143–5150. [Google Scholar] [CrossRef]
- Do, X.P.; Choi, S.B. A state-of-the-art on smart materials actuators over the last decade: Control aspects for diverse applications. Smart Mater. Struct. 2022, 31, 053001. [Google Scholar] [CrossRef]
- Choi, S.-B.; Han, Y.-M. Magnetorheological Fluid Technology: Applications in Vehicle Systems; RSC Publishing: Cambridge, UK, 2012; p. 301. [Google Scholar]
- Karnopp, D. Active and Semi-Active Vibration Isolation; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Karnopp, D.; Crosby, M.J.; Harwood, R.A. Vibration Control Using Semi-Active Force Generators. J. Eng. Ind. 1974, 96, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Opie, S.; Yim, W. Design and control of a real-time variable modulus vibration isolator. J. Intell. Mater. Syst. Struct. 2011, 22, 113–125. [Google Scholar] [CrossRef]
- Bucchi, F.; Forte, P.; Frendo, F. Analysis of the torque characteristic of a magnetorheological clutch using neural networks. J. Intell. Mater. Syst. Struct. 2015, 26, 680–689. [Google Scholar] [CrossRef]
- Ha, S.H.; Seong, M.S.; Choi, S.B. Design and vibration control of military vehicle suspension system using magnetorheological damper and disc spring. Smart Mater. Struct. 2013, 22, 065022. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Han, C.; Shin, S.-U.; Choi, S.-B. Design and evaluation of a semi-active magneto-rheological mount for a wheel loader cabin. Actuators 2017, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Yoon, D.-S.; Kim, G.-W.; Choi, S.-B.; Jeong, J.-Y.; Kim, J.-H.; Kim, S.-J.; Kim, I.-D. Road traveling test for vibration control of a wheel loader cabin installed with magnetorheological mounts. J. Intell. Mater. Syst. Struct. 2021, 32, 1336–1348. [Google Scholar] [CrossRef]
- Choi, S.-B.; Li, W.; Yu, M.; Du, H.; Fu, J.; Do, P.X. State of the art of control schemes for smart systems featuring magneto-rheological materials. Smart Mater. Struct. 2016, 25, 043001. [Google Scholar] [CrossRef] [Green Version]
- Yi, K.; Song, B.S. A new adaptive sky-hook control of vehicle semi-active suspensions. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 1999, 213, 293–303. [Google Scholar] [CrossRef]
- Ahmadian, M.; Pare, C.A. A Quarter-Car Experimental Analysis of Alternative Semiactive Control Methods. J. Intell. Mater. Syst. Struct. 2000, 11, 604–612. [Google Scholar] [CrossRef]
- Choi, S.-B.; Nam, M.-H.; Lee, B.-K. Vibration Control of a MR Seat Damper for Commercial Vehicles. J. Intell. Mater. Syst. Struct. 2000, 11, 936–944. [Google Scholar] [CrossRef]
- Choi, S.B.; Song, H.J.; Lee, H.H.; Lim, S.C.; Kim, J.H.; Choi, H.J. Vibration control of a passénger vehicle featuring magnetorheological engine mounts. Int. J. Veh. Des. 2003, 33, 2–16. [Google Scholar] [CrossRef]
- Ahmadian, M.; Song, X.; Southward, S.C. No-Jerk Skyhook Control Methods for Semiactive Suspensions. J. Vib. Acoust. 2004, 126, 580–584. [Google Scholar] [CrossRef]
- Batterbee, D.C.; Sims, N.D. Skyhook damping with linearized magnetorheological dampers. Smart Struct. Mater. 2004, 5386, 72–82. [Google Scholar] [CrossRef]
- Choi, Y.-T.; Wereley, N.M.; Jeon, Y.-S. Semi-active vibration isolation using magnetorheological isolators. J. Aircr. 2005, 42, 1244–1251. [Google Scholar] [CrossRef]
- Shen, Y.; Golnaraghi, M.F.; Heppler, G.R. Semi-active vibration control schemes for suspension systems using magnetorheological dampers. JVC J. Vib. Control 2006, 12, 3–24. [Google Scholar] [CrossRef]
- Eslaminasab, N.; Golnaraghi, M.F. The Effect of Time Delay of the Semi-Active Dampers on the Performance of On-Off Control Schemes. In Proceedings of the Volume 9: Mechanical Systems and Control, Parts A, B, and C, Seattle, WA, USA, 1 January 2007; ASMEDC: Seattle, WA, USA, 2007; pp. 1911–1918. [Google Scholar]
- Nguyen, Q.-H.; Choi, S.-B. Optimal design of MR shock absorber and application to vehicle suspension. Smart Mater. Struct. 2009, 18, 015013. [Google Scholar] [CrossRef]
- Yao, H.J.; Fu, J.; Yu, M.; Peng, Y.X. Semi-active H∞ control of seat suspension with MR damper. J. Phys. Conf. Ser. 2013, 412, 012054. [Google Scholar] [CrossRef] [Green Version]
- Balamurugan, L.; Jancirani, J.; Eltantawie, M.A. Generalized magnetorheological (MR) damper model and its application in semi-active control of vehicle suspension system. Int. J. Automot. Technol. 2014, 15, 419–427. [Google Scholar] [CrossRef]
- Ramalingam, M.; Thirumurugan, M.A.; Kumar, T.A.; Jebaseelan, D.D.; Jebaraj, C. Response characteristics of car seat suspension using intelligent control policies under small and large bump excitations. Int. J. Dyn. Control 2020, 8, 545–557. [Google Scholar] [CrossRef]
- Lee, A.S.; Andrew Gadsden, S.; Al-Shabi, M. Application of Nonlinear Estimation Strategies on a Magnetorheological Suspension System with Skyhook Control. In Proceedings of the 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 9–12 September 2020; IEEE: Vancouver, BC, Canada, 2020; pp. 1–6. [Google Scholar]
- Chen, Q.; Zhang, Y.; Zhu, C.; Wu, J.; Zhuang, Y. A sky-hook sliding mode semiactive control for commercial truck seat suspension. JVC J. Vib. Control 2021, 27, 1201–1211. [Google Scholar] [CrossRef]
- Chen, Z.-W.; Zhu, G. Semi-active control of metro vehicle based on flexible multi-body dynamics. Jiaotong Yunshu Gongcheng Xuebao J. Traffic Transp. Eng. 2021, 21, 298–309. [Google Scholar] [CrossRef]
- Shiraishi, T.; Miida, Y.; Sugiyama, S.; Morishita, S. Typical characteristics of magnetorheological grease and its application to a controllable damper. Nihon Kikai Gakkai Ronbunshu C Hen Trans. Jpn. Soc. Mech. Eng. Part C 2011, 77, 2193–2200. [Google Scholar] [CrossRef] [Green Version]
- Fotoohi, A.; Yousefi-Koma, A.; Yasrebi, N. Active control of train bogies with MR dampers. In Smart Structures and Materials 2006: Industrial and Commercial Applications of Smart Structures Technologies; SPIE: Bangkok, Thailand, 2006; Volume 6171, pp. 169–177. [Google Scholar] [CrossRef]
- Oh, J.-S.; Shin, Y.-J.; Koo, H.-W.; Kim, H.-C.; Park, J.; Choi, S.-B. Vibration control of a semi-active railway vehicle suspension with magneto-rheological dampers. Adv. Mech. Eng. 2016, 8, 1687814016643638. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.; Liu, Z.; Sun, S.; Ren, Z.; Deng, L.; Yang, B.; Christie, M.D.; Li, W. Development and evaluation of a versatile semi-active suspension system for high-speed railway vehicles. Mech. Syst. Signal Process. 2020, 135, 106338. [Google Scholar] [CrossRef]
- Shiraishi, T.; Nagamatsu, S.; Misaki, H. High dynamic range and high dispersion stability of a magnetorheological grease damper for semi-active vibration suppression. J. Intell. Mater. Syst. Struct. 2022, 33, 419–431. [Google Scholar] [CrossRef]
- Choi, S.-B.; Lee, H.; Hong, S.-R.; Cheong, C. Control and response characteristics of a magnetorheological fluid damper for passenger vehicles. In Proceedings of the Smart Structures and Materials 2000: Smart Structures and Integrated Systems, Newport Beach, CA, USA, 6–9 March 2000; SPIE: Bangkok, Thailand, 2000; Volume 3985, pp. 438–443. [Google Scholar]
- Ciocanel, C.; Elahinia, M.H.; Molyet, K.E.; Naganathan, N.G. Design Analysis and Control of a Magnetorheological Fluid Based Torque Transfer Device. Int. J. Fluid Power 2008, 9, 19–24. [Google Scholar] [CrossRef]
- Rashid, M.M.; Rahim, N.A.; Hussain, M.A.; Rahman, M.A. Analysis and experimental study of magnetorheological-based damper for semiactive suspension system using fuzzy hybrids. IEEE Trans. Ind. Appl. 2011, 47, 1051–1059. [Google Scholar] [CrossRef]
- Gad, S.; Metered, H.; Bassuiny, A.; Ghany, A.M.A. Vibration control of semi-active MR seat suspension for commercial vehicles using genetic PID controller. Mech. Mach. Sci. 2015, 23, 721–732. [Google Scholar] [CrossRef]
- Muthalif, A.G.A.; Kasemi, H.B.; Nordin, N.H.D.; Rashid, M.M.; Razali, M.K.M. Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller. Smart Struct. Syst. 2017, 20, 085–097. [Google Scholar]
- Kim, H.K.; Kim, H.S.; Kim, Y.-K. Stiffness control of magnetorheological gels for adaptive tunable vibration absorber. Smart Mater. Struct. 2016, 26, 015016. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Zhang, J.; He, D.Q.; Li, J.B. Magnetorheological Elastomer Precision Platform Control Using OFFO-PID Algorithm. Adv. Mater. Sci. Eng. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.W.; Ou, J.P.; Zhang, J.Q. Parameter optimization and analysis of a vehicle suspension system controlled by magnetorheological fluid dampers. Struct. Control Health Monit. 2006, 13, 885–896. [Google Scholar] [CrossRef]
- Lee, D.Y.; Park, Y.K.; Choi, S.B.; Lee, H.G. Design and vibration control of vehicle engine mount activated by MR fluid and piezoelectric actuator. Second Int. Conf. Smart Mater. Nanotechnol. Eng. 2009, 7493, 74936T. [Google Scholar] [CrossRef]
- Nagarkar, M.P.; Vikhe, G.J.; Borole, K.R.; Nandedkar, V.M. Active control of quarter-car suspension system using linear quadratic regulator. Int. J. Automot. Mech. Eng. 2011, 3, 364–372. [Google Scholar] [CrossRef]
- Sibielak, M.; Raczka, W.; Konieczny, J. Modified Clipped-LQR Method for Semi-Active Vibration Reduction Systems with Hysteresis. Solid State Phenom. 2011, 177, 10–22. [Google Scholar] [CrossRef]
- Begin, M.-A.; Chouinard, P.; Lebel, L.-P.; Masson, P.; Pasco, Y.; Plante, J.-S.; Berry, A. Experimental Assessment of a Controlled Slippage Magnetorheological Actuator for Active Seat Suspensions. IEEEASME Trans. Mechatron. 2018, 23, 1800–1810. [Google Scholar] [CrossRef]
- Wang, D.-H.; Liao, W.-H. Ride quality improvement ability of semi-active, active, and passive suspension systems for railway vehicles. Smart Struct. Mater. 2003, 5056, 201. [Google Scholar]
- Sivrioglu, S.; Bolat, F.C. Switching linear quadratic Gaussian control of a flexible blade structure containing magnetorheological fluid. Trans. Inst. Meas. Control 2020, 42, 618–627. [Google Scholar] [CrossRef]
- Weber, F.; Feltrin, G. Theoretical comparison of different controlled damping devices for cable vibration mitigation. Smart Struct. Mater. 2003, 5056, 412. [Google Scholar] [CrossRef]
- Nagarajaiah, S.; Narasimhan, S. Smart base-isolated benchmark building. Part II: Phase I sample controllers for linear isolation systems. Struct. Control Health Monit. 2006, 13, 589–604. [Google Scholar] [CrossRef]
- Swartz, R.A.; Lynch, J.P. Partial Decentralized Wireless Control Through Distributed Computing for Seismically Excited Civil Structures: Theory and Validation. In Proceedings of the 2007 American Control Conference, New York, NY, USA, 9–13 July 2007; IEEE: New York, NY, USA, 2007; pp. 2684–2689. [Google Scholar]
- Tan, P.; Agrawal, A.K. Benchmark structural control problem for a seismically excited highway bridge-Part II: Phase I Sample control designs. Struct. Control Health Monit. 2009, 16, 530–548. [Google Scholar] [CrossRef]
- Winter, B.D.; Velazquez, A.; Swartz, R.A. Low-force magneto-rheological damper design for small-scale structural control experimentation. Sens. Smart Struct. Technol. Civ. Mech. Aerosp. Syst. 2015 2015, 9435, 943511. [Google Scholar] [CrossRef]
- Afshari, V.; Niri, M.F.; Kalamian, N. Robust fault detection and isolation in semi-actively controlled building structures using a set of unknown input observers. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 26–28 May 2020; IEEE: Tabriz, Iran, 2020; pp. 1–6. [Google Scholar]
- Tariq, M.A.; Usman, M.; Farooq, S.H.; Ullah, I.; Hanif, A. Investigation of the structural response of the mre-based mdof isolated structure under historic near- and far-fault earthquake loadings. Appl. Sci. 2021, 11, 2876. [Google Scholar] [CrossRef]
- Lai, C.Y.; Liao, W.H. Vibration control of a suspension system via a magnetorheological fluid damper. JVC J. Vib. Control 2002, 8, 527–547. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Q. Sliding mode variable structure control for semi-active seat suspension in vehicles. Harbin Gongcheng Daxue Xuebao J. Harbin Eng. Univ. 2012, 33, 775–781. [Google Scholar] [CrossRef]
- Jeon, J.; Han, Y.-M.; Lee, D.-Y.; Choi, S.-B. Vibration control of the engine body of a vehicle utilizing the magnetorheological roll mount and the piezostack right-hand mount. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2013, 227, 1562–1577. [Google Scholar] [CrossRef]
- Yusop, M.A.M.; Ariff, M.H.M.; Zamzuri, H.; Mazlan, S.A. Longitudinal slip control using Magnetorheological brake via Second Order Sliding Mode Controller. In Proceedings of the 5th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2015, Penang, Malaysia, 25–27 November 2016; pp. 563–568. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, E.; Zhang, N.; Min, F.; Subash, R.; Su, C. Semi-active sliding mode control of vehicle suspension with magneto-rheological damper. Chin. J. Mech. Eng. Engl. Ed. 2015, 28, 63–75. [Google Scholar] [CrossRef]
- Ning, D.; Sun, S.; Wei, L.; Zhang, B.; Du, H.; Li, W. Vibration reduction of seat suspension using observer based terminal sliding mode control with acceleration data fusion. Mechatronics 2017, 44, 71–83. [Google Scholar] [CrossRef]
- Yoon, D.-S.; Kim, G.-W.; Choi, S.-B. Response time of magnetorheological dampers to current inputs in a semi-active suspension system: Modeling, control and sensitivity analysis. Mech. Syst. Signal Process. 2021, 146, 106999. [Google Scholar] [CrossRef]
- Zhu, M.; Lv, G.; Zhang, C.; Jiang, J.; Wang, H. Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension. IEEE Access 2022, 10, 51128–51141. [Google Scholar] [CrossRef]
- Nguyen, S.D.; Nguyen, Q.H. Design of active suspension controller for train cars based on sliding mode control, uncertainty observer and neuro-fuzzy system. J. Vib. Control 2015, 23, 1334–1353. [Google Scholar] [CrossRef]
- Lee, T.Y.; Chen, P.C. Experimental and Analytical Study of Sliding Mode Control for Isolated Bridges with MR Dampers. J. Earthq. Eng. 2011, 15, 564–581. [Google Scholar] [CrossRef]
- Ha, Q.P.; Nguyen, M.T.; Li, J.; Kwok, N.M. Smart structures with current-driven MR dampers: Modeling and second-order sliding mode control. IEEEASME Trans. Mechatron. 2013, 18, 1702–1712. [Google Scholar] [CrossRef]
- Balamonica, K.; Kumar, K.S.; Gopalakrishnan, N. Semi-Active Control of Structures Using Magnetorheological Elastomer-Based Seismic Isolators and Sliding Mode Control; Springer: Singapore, 2019; Volume 12, ISBN 9789811303654. [Google Scholar]
- Altabey, W.A.; Noori, M.; Li, Z.; Zhao, Y.; Aval, S.B.B.; Farsangi, E.N.; Ghiasi, R.; Silik, A. A novel MRE adaptive seismic isolator using curvelet transform identification. Appl. Sci. Switz. 2021, 11, 11409. [Google Scholar] [CrossRef]
- Devdutt; Aggarwal, M.L. Fuzzy control of passenger ride performance using MR shock absorber suspension in quarter car model. Int. J. Dyn. Control 2014, 3, 463–469. [Google Scholar] [CrossRef]
- Felix-Herran, L.C.; Soto, R.; Rodriguez-Ortiz, J.D.J.; Ramirez-Mendoza, R.A. Fuzzy control for a semi-active vehicle suspension with a magnetorheological damper. In Proceedings of the 2009 European Control Conference, ECC 2009, Budapest, Hungary, 23–26 August 2009; pp. 4398–4403. [Google Scholar] [CrossRef]
- Nguyen, S.D.; Nguyen, Q.H.; Choi, S.-B. A hybrid clustering based fuzzy structure for vibration control—Part 2: An application to semi-active vehicle seat-suspension system. Mech. Syst. Signal Process. 2015, 56, 288–301. [Google Scholar] [CrossRef]
- Tang, X.; Du, H.; Sun, S.; Ning, D.; Xing, Z.; Li, W. Takagi-Sugeno Fuzzy Control for Semi-Active Vehicle Suspension with a Magnetorheological Damper and Experimental Validation. IEEEASME Trans. Mechatron. 2017, 22, 291–300. [Google Scholar] [CrossRef]
- Qian, L.J.; Xin, F.L.; Bai, X.X.; Wereley, N.M. State observation–based control algorithm for dynamic vibration absorbing systems featuring magnetorheological elastomers: Principle and analysis. J. Intell. Mater. Syst. Struct. 2017, 28, 2539–2556. [Google Scholar] [CrossRef]
- Li, Z.; Gong, Y.; Wang, J. Optimal control with fuzzy compensation for a magnetorheological fluid damper employed in a gun recoil system. J. Intell. Mater. Syst. Struct. 2018, 30, 677–688. [Google Scholar] [CrossRef]
- Amini, F.; Mohajeri, S.A.; Javanbakht, M. Semi-active control of isolated and damaged structures using online damage detection. Smart Mater. Struct. 2015, 24, 105002. [Google Scholar] [CrossRef]
- Bathaei, A.; Ramezani, M.; Ghorbani-Tanha, A.K. Type-1 and Type-2 Fuzzy Logic Control Algorithms for Semi-Active Seismic Vibration Control of the College Urban Bridge Using MR Dampers. Civ. Eng. Infrastruct. J. 2017, 50, 333–351. [Google Scholar] [CrossRef]
- Braz-César, M.T.; Folhento, P.L.P.; Barros, R.C. Fuzzy controller optimization using a genetic algorithm for non-collocated semi-active MR based control of a three-DOF framed struture. In Proceedings of the 13th APCA International Conference on Control and Soft Computing, CONTROLO 2018—Proceedings, Ponta Delgada, Portugal, 4–6 June 2018; pp. 364–367. [Google Scholar] [CrossRef] [Green Version]
- Hormozabad, S.J.; Ghorbani-Tanha, A.K. Semi-active fuzzy control of Lali Cable-Stayed Bridge using MR dampers under seismic excitation. Front. Struct. Civ. Eng. 2020, 14, 706–721. [Google Scholar] [CrossRef]
- Jung, H.J.; Eem, S.H.; Jang, D.D.; Koo, J.H. Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers. J. Intell. Mater. Syst. Struct. 2011, 22, 1439–1450. [Google Scholar] [CrossRef]
- Yang, J.; Sun, S.; Tian, T.; Li, W.; Du, H.; Alici, G.; Nakano, M. Development of a novel multi-layer MRE isolator for suppression of building vibrations under seismic events. Mech. Syst. Signal Process. 2016, 70, 811–820. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, X.B.; Komatsuzaki, T.; Iwata, Y.; Asanuma, H. Fuzzy Semiactive Vibration Control of Structures Using Magnetorheological Elastomer. Shock Vib. 2017, 2017, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, X.B.; Komatsuzaki, T.; Iwata, Y.; Asanuma, H. Modeling and semi-active fuzzy control of magnetorheological elastomer-based isolator for seismic response reduction. Mech. Syst. Signal Process. 2018, 101, 449–466. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.-Q.; Qiu, H.-X. Fuzzy neural network control to suppress seismic responses of continuous girder railway bridges using new magneto rheological grease damper. Zhendong Yu Chongji J. Vib. Shock 2015, 34, 66–73. [Google Scholar] [CrossRef]
- Song, X.; Ahmadian, M. Study of Semiactive Adaptive Control Algorithms with Magneto-Rheological Seat Suspension. SAE Tech. Pap. 2004, 1, 1–14. [Google Scholar] [CrossRef]
- Krauze, P.; Kasprzyk, J. Vibration control in quarter-car model with magnetorheological dampers using FxLMS algorithm with preview. In Proceedings of the 2014 European Control Conference (ECC), Strasbourg, France, 24–27 June 2014; IEEE: Strasbourg, France, 2014; pp. 1005–1010. [Google Scholar]
- Phu, D.X.; Shin, D.K.; Choi, S.B. Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper. Smart Mater. Struct. 2015, 24, 85012. [Google Scholar] [CrossRef]
- Phu, D.X.; Huy, T.D.; Choi, S.B. Robust Adaptive Controls of a Vehicle Seat Suspension System. Adapt. Robust Control Syst. 2017. [Google Scholar] [CrossRef] [Green Version]
- Yıldız, A.S.; Sivrioğlu, S. Constrained adaptive backstepping control of a semi-active suspension considering suspension travel limits. Asian J. Control 2021, 23, 1380–1393. [Google Scholar] [CrossRef]
- Basargan, H.; Mihály, A.; Gáspár, P.; Sename, O. An LPV-Based Online Reconfigurable Adaptive Semi-Active Suspension Control with MR Damper. Energies 2022, 15, 3648. [Google Scholar] [CrossRef]
- Truong, H.T.; Nguyen, X.B.; Bui, C.M. Singularity-Free Adaptive Controller for Uncertain Hysteresis Suspension Using Magnetorheological Elastomer-Based Absorber. Shock Vib. 2022, 2022, 1–17. [Google Scholar] [CrossRef]
- Nguyen, S.D.; Jung, D.; Choi, S.-B. A Robust Vibration Control of a Magnetorheological Damper Based Railway Suspension Using a Novel Adaptive Type 2 Fuzzy Sliding Mode Controller. Shock Vib. 2017, 2017, e7306109. [Google Scholar] [CrossRef] [Green Version]
- Sakai, C.; Ohmori, H.; Sano, A. Modeling of MR Damper with Hysteresis for Adaptive Vibration Control. In Proceedings of the 42nd IEEE International Conference on Decision and Control, Maui, HI, USA, 9 December 2003; Volume 4, pp. 3840–3845. [Google Scholar]
- Terasawa, T.; Sakai, C.; Ohmori, H.; Sano, A. Adaptive identification of MR damper for vibration control. In Proceedings of the 2004 43rd IEEE Conference on Decision and Control (CDC), Paradise Island, Bahamas, 14 December 2004; Volume 3, pp. 2297–2303. [Google Scholar]
- Chen, C.; Ricles, J.M. Experimental Evaluation of an Adaptive Actuator Control Scheme for Real-Time Tests of Large-Scale Magneto-Rheological Damper Under Variable Current Inputs. In Proceedings of the Volume 1: Active Materials, Mechanics and Behavior, Modeling, Simulation and Control, Oxnard, CA, USA, 1 January 2009; ASMEDC: Oxnard, CA, USA, 2009; pp. 457–462. [Google Scholar]
- Tu, J.Y.; Lin, P.Y.; Stoten, D.P.; Li, G. Testing of dynamically substructured, base-isolated systems using adaptive control techniques. Earthq. Eng. Struct. Dyn. 2009, 39, 661–681. [Google Scholar] [CrossRef]
- Chen, C.; Ricles, J.M.; Sause, R.; Christenson, R. Experimental evaluation of an adaptive inverse compensation technique for real-time simulation of a large-scale magneto-rheological fluid damper. Smart Mater. Struct. 2010, 19, 025017. [Google Scholar] [CrossRef]
- Karimi, H.R.; Zapateiro, M.; Luo, N. Application of adaptive wavelet networks for vibration control of base isolated structures. Int. J. Wavelets Multiresolution Inf. Process. 2010, 8, 773–791. [Google Scholar] [CrossRef] [Green Version]
- Bitaraf, M.; Hurlebaus, S.; Barroso, L.R. Active and Semi-active Adaptive Control for Undamaged and Damaged Building Structures Under Seismic Load: Active and semi-active adaptive control for building. Comput.-Aided Civ. Infrastruct. Eng. 2012, 27, 48–64. [Google Scholar] [CrossRef]
- Chen, P.-C.; Chang, C.-M.; Spencer, B.F.; Tsai, K.-C. Adaptive model-based tracking control for real-time hybrid simulation. Bull. Earthq. Eng. 2015, 13, 1633–1653. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Li, Y.; Gu, X. Lyapunov-based semi-active control of adaptive base isolation system employing magnetorheological elastomer base isolators. Earthq. Struct. 2016, 11, 1077–1099. [Google Scholar] [CrossRef]
- Nguyen, X.B.; Komatsuzaki, T.; Iwata, Y.; Asanuma, H. Robust adaptive controller for semi-active control of uncertain structures using a magnetorheological elastomer-based isolator. J. Sound Vib. 2018, 434, 192–212. [Google Scholar] [CrossRef]
- Susheelkumar, G.N.; Murigendrappa, S.M.; Gangadharan, K.V. Theoretical and experimental investigation of model-free adaptive fuzzy sliding mode control for MRE based adaptive tuned vibration absorber. Smart Mater. Struct. 2019, 28, 45017. [Google Scholar] [CrossRef]
- Zapateiro, M.; Luo, N.; Karimi, H.R.; Vehí, J. Vibration control of a class of semiactive suspension system using neural network and backstepping techniques. Mech. Syst. Signal Process. 2009, 23, 1946–1953. [Google Scholar] [CrossRef]
- Zapateiro, M.; Luo, N.S.; Harimi, H.R. Neural Network—Backstepping Control for Vibration Reduction in a Magnetorheological Suspension System. Solid State Phenom. 2009, 147–149, 839–844. [Google Scholar] [CrossRef]
- Metered, H.; Bonello, P.; Oyadiji, S.O. The experimental identification of magnetorheological dampers and evaluation of their controllers. Mech. Syst. Signal Process. 2010, 24, 976–994. [Google Scholar] [CrossRef]
- Metered, H.; Bonello, P.; Oyadiji, S.O. An investigation into the use of neural networks for the semi-active control of a magnetorheologically damped vehicle suspension. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2010, 224, 829–848. [Google Scholar] [CrossRef]
- Ubaidillah; Priyandoko, G.; Nizam, M.; Yahya, I. Modeling of Magnetorheological Damper Using Back Propagation Neural Network. Adv. Mater. Res. 2014, 896, 396–400. [Google Scholar] [CrossRef]
- Guo, D.L.; Hu, H.Y.; Yi, J.Q. Neural Network Control for a Semi-Active Vehicle Suspension with a Magnetorheological Damper. J. Vib. Control 2004, 10, 461–471. [Google Scholar] [CrossRef]
- Liu, C.; Hemmatian, M.; Sedaghati, R.; Wen, G. Development and Control of Magnetorheological Elastomer-Based Semi-active Seat Suspension Isolator Using Adaptive Neural Network. Front. Mater. 2020, 7, 171. [Google Scholar] [CrossRef]
- Nguyen, X.B.; Komatsuzaki, T.; Truong, H.T. Novel semiactive suspension using a magnetorheological elastomer (MRE)-based absorber and adaptive neural network controller for systems with input constraints. Mech. Sci. 2020, 11, 465–479. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Li, J. Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm. J. Intell. Mater. Syst. Struct. 2015, 26, 1789–1798. [Google Scholar] [CrossRef]
- Fu, J.; Liao, G.; Yu, M.; Li, P.; Lai, J. NARX neural network modeling and robustness analysis of magnetorheological elastomer isolator. Smart Mater. Struct. 2016, 25, 125019. [Google Scholar] [CrossRef]
- Gu, X.; Yu, Y.; Li, J.; Li, Y. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model. J. Sound Vib. 2017, 406, 346–362. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, C.; Gu, X.; Li, J. A novel deep learning-based method for damage identification of smart building structures. Struct. Health Monit. 2019, 18, 143–163. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Yu, Y.; Li, Y.; Li, J.; Askari, M.; Samali, B. Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control. Mech. Syst. Signal Process. 2019, 119, 380–398. [Google Scholar] [CrossRef]
- Brancati, R.; Di Massa, G.; Pagano, S.; Petrillo, A.; Santini, S. A combined neural network and model predictive control approach for ball transfer unit–magnetorheological elastomer–based vibration isolation of lightweight structures. JVC J. Vib. Control 2020, 26, 1668–1682. [Google Scholar] [CrossRef]
- Perez-Ramirez, C.A.; Dominguez-Gonzalez, A.; Toledano-Ayala, M.; Pablo Amezquita-Sanchez, J.; Valtierra-Rodriguez, M. Model reference Neural Network-based methodology for vibration control in a five-story steel structure. In Proceedings of the 2020 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 11–13 November 2020; IEEE: Mexico City, Mexico, 2020; pp. 1–6. [Google Scholar]
- Choi, S.B.; Sung, K.G. Vibration control of magnetorheological damper system subjected to parameter variations. Int. J. Veh. Des. 2008, 46, 94–110. [Google Scholar] [CrossRef]
- Prabakar, R.S.; Sujatha, C.; Narayanan, S. Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper. J. Sound Vib. 2009, 326, 400–420. [Google Scholar] [CrossRef]
- Fallah, M.S.; Bhat, R.B.; Xie, W.F. Optimized control of semiactive suspension systems using H∞ robust control theory and current signal estimation. IEEEASME Trans. Mechatron. 2012, 17, 767–778. [Google Scholar] [CrossRef]
- Félix-Herrán, L.C.; Mehdi, D.; Rodrguez-Ortiz, J.D.J.; Soto, R.; Ramrez-Mendoza, R. H∞ control of a suspension with a magnetorheological damper. Int. J. Control 2012, 85, 1026–1038. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, H.; Liu, Z.; Gu, M. A load-dependent PWA-H∞ controller for semi-active suspensions to exploit the performance of MR dampers. Mech. Syst. Signal Process. 2019, 127, 441–462. [Google Scholar] [CrossRef]
- Félix-Herrán, L.C.; Mehdi, D.; de Jesús Rodríguez-Ortiz, J.; Benitez, V.H.; Ramirez-Mendoza, R.A.; Soto, R. Disturbance Rejection in a One-Half Semiactive Vehicle Suspension by means of a Fuzzy-H∞ Controller. Shock. Vib. 2019, 2019, 4532635. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.S.; Marzbanrad, J. Robust H∞ Controller in a MRF Engine Mount for Improving the Vehicle Ride Comfort. Int. J. Acoust. Vib. 2020, 25, 219–225. [Google Scholar] [CrossRef]
- Bolat, F.; Sivrioglu, S. Active Control of a Small-Scale Wind Turbine Blade Containing Magnetorheological Fluid. Micromachines 2018, 9, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolat, F.C.; Sivrioglu, S. Active vibration suppression of elastic blade structure: Using a novel magnetorheological layer patch. J. Intell. Mater. Syst. Struct. 2018, 29, 3792–3803. [Google Scholar] [CrossRef]
- Sivrioglu, S.; Bolat, F.C. Active Robust Control of Elastic Blade Element Containing Magnetorheological Fluid. IOP Conf. Ser. Mater. Sci. Eng. 2018, 326, 012017. [Google Scholar] [CrossRef]
- Zapateiro, M.; Karimi, H.R.; Luo, N.; Phillips, B.M.; Spencer, B.F. A mixed H2/H∞-based semiactive control for vibration mitigation in flexible structures. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 15 December 2009; IEEE: Shanghai, China, 2009; pp. 2186–2191. [Google Scholar]
- Gao, X.; Castaneda, N.; Dyke, S.J. Experimental Validation of a Generalized Procedure for MDOF Real-Time Hybrid Simulation. J. Eng. Mech. 2014, 140, 04013006. [Google Scholar] [CrossRef]
- Félix-Herrán, L.C.; de Jesús Rodríguez-Ortiz, J.; Soto, R.; Ramírez-Mendoza, R. Modeling and Control for a Semi-active Suspension with a Magnetorheological Damper Including the Actuator Dynamics. In Proceedings of the 2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA ‘08), Cuernavaca, Mexico, 3 October 2008; Volume 2008, pp. 338–343. [Google Scholar] [CrossRef]
- Ding, R.; Wang, R.; Meng, X.; Liu, W.; Chen, L. Intelligent switching control of hybrid electromagnetic active suspension based on road identification. Mech. Syst. Signal Process. 2021, 152, 107355. [Google Scholar] [CrossRef]
- Luong, Q.V.; Jang, D.-S.; Hwang, J.-H. Robust adaptive control for an aircraft landing gear equipped with a magnetorheological damper. Appl. Sci. Switz. 2020, 10, 1459. [Google Scholar] [CrossRef] [Green Version]
- Park, K.-S.; Jung, H.-J.; Spencer, B.F.; Lee, I.-W. Hybrid control systems for seismic protection of a phase II benchmark cable-stayed bridge. J. Struct. Control 2003, 10, 231–247. [Google Scholar] [CrossRef]
- Fisco, N.R.; Adeli, H. Smart structures: Part I—Active and semi-active control. Sci. Iran. 2011, 18, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zheng, J. Intelligent hybrid control of smart-material structure system by using magnetorheological fluids and isolators. Adv. Sci. Lett. 2012, 5, 836–839. [Google Scholar] [CrossRef]
- Kemerli, M.; Şahin, Ö.; Yazıcı, İ.; Çağlar, N.; Engin, T. Comparison of discrete-time sliding mode control algorithms for seismic control of buildings with magnetorheological fluid dampers. JVC J. Vib. Control 2022. [Google Scholar] [CrossRef]
- Wirawan, J.W.; Ubaidillah, U.; Lenggana, B.W.; Purnomo, E.D.; Widyarso, W.; Mazlan, S.A. Design and Performance Analysis of Magnetorheological Valve for Upside-Down Damper. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 63, 164–173. [Google Scholar]
- Dutta, S.; Choi, S.-B. Control of a shimmy vibration in vehicle steering system using a magneto-rheological damper. J. Vib. Control 2018, 24, 797–807. [Google Scholar] [CrossRef]
- Phu Do, X.; Hung Nguyen, Q.; Choi, S.-B. New hybrid optimal controller applied to a vibration control system subjected to severe disturbances. Mech. Syst. Signal Process. 2019, 124, 408–423. [Google Scholar] [CrossRef]
- Phu, D.X.; Quoc Hung, N.; Choi, S.-B. A novel adaptive controller featuring inversely fuzzified values with application to vibration control of magneto-rheological seat suspension system. J. Vib. Control 2018, 24, 5000–5018. [Google Scholar] [CrossRef]
- Oh, J.-S.; Lee, T.-H.; Choi, S.-B. Design and Analysis of a New Magnetorheological Damper for Generation of Tunable Shock-Wave Profiles. Shock Vib. 2018, 2018, e8963491. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-C.; Oh, J.-S.; Choi, S.-B. The field-dependent shock profiles of a magnetorhelogical damper due to high impact: An experimental investigation. Smart Mater. Struct. 2014, 24, 025008. [Google Scholar] [CrossRef]
- Zając, K.; Kowal, J.; Konieczny, J. Skyhook Control Law Extension for Suspension with Nonlinear Spring Characteristics. Energies 2022, 15, 754. [Google Scholar] [CrossRef]
- Hiemenz, G.J.; Hu, W.; Wereley, N.M. Semi-Active Magnetorheological Helicopter Crew Seat Suspension for Vibration Isolation. J. Aircr. 2008, 45, 945–953. [Google Scholar] [CrossRef]
- Wang, D.H.; Liao, W.H. Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part I: System integration and modelling. Veh. Syst. Dyn. 2009, 47, 1305–1325. [Google Scholar] [CrossRef]
- Sun, S.; Deng, H.; Li, W.; Du, H.; Ni, Y.Q.; Zhang, J.; Yang, J. Improving the critical speeds of high-speed trains using magnetorheological technology. Smart Mater. Struct. 2013, 22, 115012. [Google Scholar] [CrossRef] [Green Version]
- Lau, Y.K.; Liao, W.H. Design and Analysis of Magnetorheological Dampers for Train Suspension. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2005, 219, 261–276. [Google Scholar] [CrossRef]
- Ha, S.H.; Choi, S.-B.; Lee, K.-S.; Cho, M.-W. Ride Quality Evaluation of Railway Vehicle Suspension System Featured by Magnetorheological Fluid Damper. Adv. Sci. Lett. 2012, 12, 209–213. [Google Scholar] [CrossRef]
- Wei, X.; Zhu, M.; Jia, L. A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers. Veh. Syst. Dyn. 2016, 54, 982–1003. [Google Scholar] [CrossRef]
- Milwitzky, B.; Cook, F.E. Analysis of Landing-Gear Behavior; World Scientific: Singapore, 2002. [Google Scholar]
- Sadraey, M. Landing gear design. In Aircraft Design: A System Engineering Approach; Wiley: New York, NY, USA, 2012; pp. 479–544. [Google Scholar]
- Skorupka, Z.; Harla, R. Investigations on Landing Gear Shock Absorber Active Force Control. In Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences, ICAS2020_0513, Shanghai, China, 6–10 September 2021. [Google Scholar]
- Holnicki-Szulc, J.; Pawłowski, P.; Mikułowski, M.; Graczykowski, C. Adaptive Impact Absorption and Applications to Landing Devices; Springer: Berlin/Heidelberg, Germany, 2008; pp. 609–613. [Google Scholar]
- Mikułowski, G.M.; Holnicki-Szulc, J. Adaptive landing gear concept—Feedback control validation. Smart Mater. Struct. 2007, 16, 2146. [Google Scholar] [CrossRef]
- Han, C.; Kim, B.-G.; Choi, S.-B. Design of a New Magnetorheological Damper Based on Passive Oleo-Pneumatic Landing Gear. J. Aircr. 2018, 55, 2510–2520. [Google Scholar] [CrossRef]
- Luong, Q.V.; Jang, D.-S.; Hwang, J.-H. Semi-Active Control for a Helicopter with Multiple Landing Gears Equipped with Magnetorheological Dampers. Appl. Sci. 2021, 11, 3667. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Phu, D.X.; Park, J.H.; Choi, S.B.; Kang, O.H. Development of high damping magneto-rheological mount for ship engines. Appl. Mech. Mater. 2013, 336–338, 953–959. [Google Scholar] [CrossRef]
- Phu, D.X.; Quoc, N.V.; Park, J.H.; Choi, S.B. Design of a novel adaptive fuzzy sliding mode controller and application for vibration control of magnetorheological mount. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 2285–2302. [Google Scholar] [CrossRef]
- Lu, K.; Liu, L.; Yang, Z.; Gong, X.; Rao, Z.; Xie, Z. Semi-active dynamic absorber of a ship propulsion shafting based on MREs. Zhendong Yu Chongji J. Vib. Shock 2017, 36, 36–42. [Google Scholar] [CrossRef]
- Yang, Z.; Qin, C.; Rao, Z.; Ta, N.; Gong, X. Design and analyses of axial semi-active dynamic vibration absorbers based on magnetorheological elastomers. J. Intell. Mater. Syst. Struct. 2014, 25, 2199–2207. [Google Scholar] [CrossRef]
- Zhong, J.-P.; Cheng, Y.-S. MR damper based semi-active vibration fuzzy control on the mast of warships. Chuan Bo Li Xue J. Ship Mech. 2008, 12, 657–662. [Google Scholar]
- Li, Y.; Li, J.; Tian, T.; Li, W. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control. Smart Mater. Struct. 2013, 22, 095020. [Google Scholar] [CrossRef]
- Sun, Y.; Ke, S.; Wang, G.; Liu, Z. Control Strategy Simulation Analysis of a New Micro-cultivator MR Elastomer Vibration Isolation System. Gongcheng Kexue Yu Jishu Adv. Eng. Sci. 2020, 52, 218–225. [Google Scholar] [CrossRef]
- Masa’id, A.; Lenggana, B.W.; Ubaidillah; Imaduddin, F.; Muslih, Y.; Harjana; Priyandoko, G.; Ardion, F.S. Effect of Damping and Stiffness Constants on the Vibration Properties of Seismic Building: Simulation Approach. Lect. Notes Mech. Eng. 2022, 1, 327–331. [Google Scholar] [CrossRef]
- Li, L.; Liang, H. Semiactive Control of Structural Nonlinear Vibration Considering the MR Damper Model. J. Aerosp. Eng. 2018, 31, 04018095. [Google Scholar] [CrossRef]
- Ohtori, Y.; Christenson, R.E.; Spencer, B.F.; Dyke, S.J. Benchmark Control Problems for Seismically Excited Nonlinear Buildings. J. Eng. Mech. 2004, 130, 366–385. [Google Scholar] [CrossRef] [Green Version]
- Abdeddaim, M.; Ounis, A.; Shrimali, M.K.; Datta, T.K. Retrofitting of a weaker building by coupling it to an adjacent stronger building using MR dampers. Struct. Eng. Mech. 2017, 62, 197–208. [Google Scholar] [CrossRef]
- Al-Fahdawi, O.A.S.; Barroso, L.R.; Soares, R.W. Utilizing the Adaptive Control in Mitigating the Seismic Response of Adjacent Buildings Connected with MR Dampers. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 912–917. [Google Scholar]
- Fali, L.; Djermane, M.; Zizouni, K.; Sadek, Y. Adaptive sliding mode vibrations control for civil engineering earthquake excited structures. Int. J. Dyn. Control 2019, 7, 955–965. [Google Scholar] [CrossRef]
- Weber, F.; Distl, H. Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers: Amplitude and frequency independent cable damping. Struct. Control Health Monit. 2015, 22, 237–254. [Google Scholar] [CrossRef]
- Heo, G.; Joonryong, J. Semi-active vibration control in cable-stayed bridges under the condition of random wind load. Smart Mater. Struct. 2014, 23, 075027. [Google Scholar] [CrossRef]
- Duan, Y.F.; Ni, Y.Q.; Ko, J.M. State-Derivative Feedback Control of Cable Vibration Using Semiactive Magnetorheological Dampers. Comput.-Aided Civ. Infrastruct. Eng. 2005, 20, 431–449. [Google Scholar] [CrossRef]
- Xu, Y.-W.; Xu, Z.-D.; Guo, Y.-Q.; Zhou, M.; Zhao, Y.-L.; Yang, Y.; Dai, J.; Zhang, J.; Zhu, C.; Ji, B.-H.; et al. A programmable pseudo negative stiffness control device and its role in stay cable vibration control. Mech. Syst. Signal Process. 2022, 173, 109054. [Google Scholar] [CrossRef]
- Weber, F. Semi-active vibration absorber based on real-time controlled MR damper. Mech. Syst. Signal Process. 2014, 46, 272–288. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Li, W.H. Adaptive tuned dynamic vibration absorbers working with MR elastomers. Smart Struct. Syst. 2009, 5, 517–529. [Google Scholar] [CrossRef]
- Choi, S.-B.; Hong, S.-R.; Sung, K.-G.; Sohn, J.-W. Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount. Int. J. Mech. Sci. 2008, 50, 559–568. [Google Scholar] [CrossRef]
- Hong, S.-R.; Choi, S.-B. Vibration Control of a Structural System Using Magneto-Rheological Fluid Mount. J. Intell. Mater. Syst. Struct. 2005, 16, 931–936. [Google Scholar] [CrossRef]
- Xu, Z.; Gong, X.; Liao, G.; Chen, X. An Active-damping-compensated Magnetorheological Elastomer Adaptive Tuned Vibration Absorber. J. Intell. Mater. Syst. Struct. 2010, 21, 1039–1047. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masa’id, A.; Lenggana, B.W.; Ubaidillah, U.; Susilo, D.D.; Choi, S.-B. A Review on Vibration Control Strategies Using Magnetorheological Materials Actuators: Application Perspective. Actuators 2023, 12, 113. https://doi.org/10.3390/act12030113
Masa’id A, Lenggana BW, Ubaidillah U, Susilo DD, Choi S-B. A Review on Vibration Control Strategies Using Magnetorheological Materials Actuators: Application Perspective. Actuators. 2023; 12(3):113. https://doi.org/10.3390/act12030113
Chicago/Turabian StyleMasa’id, Aji, Bhre Wangsa Lenggana, U. Ubaidillah, Didik Djoko Susilo, and Seung-Bok Choi. 2023. "A Review on Vibration Control Strategies Using Magnetorheological Materials Actuators: Application Perspective" Actuators 12, no. 3: 113. https://doi.org/10.3390/act12030113
APA StyleMasa’id, A., Lenggana, B. W., Ubaidillah, U., Susilo, D. D., & Choi, S. -B. (2023). A Review on Vibration Control Strategies Using Magnetorheological Materials Actuators: Application Perspective. Actuators, 12(3), 113. https://doi.org/10.3390/act12030113