Non-Crack-Growth Acoustic Emission Observed in Controlled-Stress-Intensity-Factor High-Cycle-Fatigue Tests
Abstract
:1. Introduction
2. Experimental Set-Up
2.1. Specimen Preparation
2.2. Sensor Instrumentation for AE Recording
2.2.1. PWAS Transducers
2.2.2. S9225 AE Sensor
2.3. AE Experimental Setup
2.4. Electro-Mechanical Impedance Spectroscopy (EMIS) Sensor Integrity Check
3. AE Experiment Results and Discussion
3.1. SIF Controlled vs. Load-Controlled Experiment
3.2. SIF Controlled Experiment AE Capture
Pearson Correlation Clustering (PCC) of AE Signals
4. Summary and Conclusions
4.1. Summary
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Ozevin, D.; Hardman, W.; Timmons, A. Acoustic Emission Signatures of Fatigue Damage in Idealized Bevel Gear Spline for Localized Sensing. Metals 2017, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.M.; Talebzadeh, M. Acoustic emission monitoring of fatigue crack propagation. J. Constr. Steel Res. 2003, 59, 695–712. [Google Scholar] [CrossRef]
- Morton, T.M.; Harrington, R.M.; Bjeletich, J.G.; Palo, L.; Alto, P. Acoustic emissions of fatigue crack growth. Eng. Fract. Mech. 1973, 5, 691–697. [Google Scholar] [CrossRef]
- Deschanel, S.; Rhouma, W.B.; Weiss, J. Acoustic emission multiplets as early warnings of fatigue failure in metallic materials. Sci. Rep. 2017, 7, 13680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, T.M.; Talebzadeh, M. Fatigue life prediction based on crack propagation and acoustic emission count rates. J. Constr. Steel Res. 2003, 59, 679–694. [Google Scholar] [CrossRef]
- Keshtgar, A.; Modarres, M. Acoustic Emission-Based Fatigue Crack Growth Prediction. In Proceedings of the 2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, USA, 28–31 January 2013; pp. 1–5. [Google Scholar]
- Shen, Y.; Wang, J.; Xu, W. Nonlinear features of guided wave scattering from rivet hole nucleated fatigue cracks considering the rough contact surface condition. Smart Mater. Struct. 2018, 27, 105044. [Google Scholar] [CrossRef]
- Bhuiyan, M.Y.; Giurgiutiu, V. The signatures of acoustic emission waveforms from fatigue crack advancing in thin metallic plates. Smart Mater. Struct. 2018, 27, 15019. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, Y.; Bao, J.; Poddar, B. Toward identifying crack-length-related resonances in acoustic emission waveforms for structural health monitoring applications. Struct. Health Monit. 2018, 17, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.Y.; Giurgiutiu, V. Experimental and Computational Analysis of Acoustic Emission Waveforms for SHM Applications. In Proceedings of the 11th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 12–14 September 2017; pp. 1–7. [Google Scholar]
- Hamstad, M.A.; McColskey, J.D. Detectability of slow crack growth in bridge seels by acoustic emission. Mater. Eval. 1998, 1165, 57–1174. [Google Scholar]
- Wisner, B.; Mazur, K.; Perumal, V.; Baxevanakis, K.P.; An, L.; Feng, G.; Kontsos, A. Acoustic emission signal processing framework to identify fracture in aluminum alloys. Eng. Fract. Mech. 2018, 210, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Carpinteri, A.; Lacidogna, G.; Niccolini, G.; Puzzi, S. Critical defect size distributions in concrete structures detected by the acoustic emission technique. Meccanica 2008, 43, 349–363. [Google Scholar] [CrossRef]
- Farhidzadeh, A.; Salamone, S. Introducing Sifted b-Value Analysis and a New Crack Classification for Monitoring Reinforced Concrete Shear Walls by Acoustic Emission. In Proceedings of the 54th Meeting of Acoustic Emission Working Group Meeting (AEWG), Princeton, NJ, USA, 20–23 May 2012; Volume 1, pp. 55–57. [Google Scholar]
- Ohno, K.; Ohtsu, M. Crack classification in concrete based on acoustic emission. Constr. Build. Mater. 2010, 24, 2339–2346. [Google Scholar] [CrossRef]
- Farhidzadeh, A.; Salamone, S.; Dehghan-Niri, E.; Luna, B.; Whittaker, A. Damage Assessment of Reinforced Concrete Shear Walls by Acoustic Emission. Struct. Mater. Technol. 2012, 2014, 74–81. [Google Scholar]
- Poddar, B.; Giurgiutiu, V. Experimental Validation of Analytical Model for Lamb Wave Interaction with Geometric Discontinuity. In Proceedings of the SPIE 9437, Structural Health Monitoring and Inspection of Advanced Materials, Aerospace, and Civil Infrastructure 2015, San Diego, CA, USA, 8–12 March 2015; p. 94371Y. [Google Scholar]
- Shen, Y.; Giurgiutiu, V. Effective non-reflective boundary for Lamb waves: Theory, finite element implementation, and applications. Wave Motion 2015, 58, 22–41. [Google Scholar] [CrossRef] [Green Version]
- Ohtsu, M.Y.; Ono, K. A generalized theory of acoustic emission and Green’s functions in a half Space. J. Acoust. Emiss. 1984, 1984, 27–35. [Google Scholar]
- Ohtsu, M.; Ono, K. The generalized theory and source representations of acoustic emission. J. Acoust. Emiss. 1986, 1986, 124–133. [Google Scholar]
- Hamstad, M.A.; O’Gallagher, A.; Gary, J. Modeling of buried monopole and dipole sources of acoustic emission with a finite element technique. J. Acoust. Emiss. 1999, 17, 97–110. [Google Scholar]
- Prosser, W.H.; Hamstad, M.A.; Gary, J.; O’gallagher, A. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms. J. Nondestruct. Eval. 1999, 18, 83–90. [Google Scholar] [CrossRef]
- Sause, M.G.R.; Hamstad, M.A.; Horn, S. Finite element modeling of lamb wave propagation in anisotropic hybrid materials. Compos. Part B Eng. 2013, 53, 249–257. [Google Scholar] [CrossRef]
- Sause, M.G.R.; Richler, S. Finite element modeling of cracks as acoustic emission sources. J. Nondestruct. Eval. 2015, 34, 4. [Google Scholar] [CrossRef] [Green Version]
- Wisner, B.; Kontsos, A. Investigation of particle fracture during fatigue of aluminum 2024. Int. J. Fatigue 2018, 111, 33–43. [Google Scholar] [CrossRef]
- Wirtz, S.F.; Beganovic, N.; Söffker, D. Investigation of damage detectability in composites using frequency-based classification of acoustic emission measurements. Struct. Health Monit. 2019, 18, 1207–1218. [Google Scholar] [CrossRef]
- Hamdi, S.E.; Le Duff, A.; Simon, L.; Plantier, G.; Sourice, A.; Feuilloy, M. Acoustic emission pattern recognition approach based on Hilbert-Huang transform for structural health monitoring in polymer-composite materials. Appl. Acoust. 2013, 74, 746–757. [Google Scholar] [CrossRef]
- Crivelli, D.; Guagliano, M.; Eaton, M.; Pearson, M.; Al-Jumaili, S.; Holford, K.; Pullin, R. Localisation and identification of fatigue matrix cracking and delamination in a carbon fibre panel by acoustic emission. Compos. Part B Eng. 2015, 74, 1–12. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, R.; Marques, A.T. Health monitoring of FRP using acoustic emission and artificial neural networks. Comput. Struct. 2008, 86, 367–373. [Google Scholar] [CrossRef]
- Suzuki, H.; Kinjo, T.; Hayashi, Y.; Takemoto, M.; Ono, K. Wavelet transform of acoustic emission signals. J. Acoust. Emiss. 1996, 14, 69–84. [Google Scholar]
- Martínez-Jequier, J.; Gallego, A.; Suárez, E.; Javier, F.; Valea, Á. Real-time damage mechanisms assessment in CFRP samples via acoustic emission Lamb wave modal analysis. Compos. Part B Eng. 2015, 68, 317–326. [Google Scholar] [CrossRef]
- Marec, A.; Thomas, J.; El Guerjouma, R. Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data. Mech. Syst. Signal Process. 2008, 22, 1441–1464. [Google Scholar] [CrossRef]
- Ni, Q.Q.; Iwamoto, M. Wavelet transform of acoustic emission signals in failure of model composites. Eng. Fract. Mech. 2002, 69, 717–728. [Google Scholar] [CrossRef]
- Physical Acoustics Corporation, R15a—150 kHz General Purpose AE Sensor. 2021. Available online: https://www.physicalacoustics.com/by-product/sensors/R15a-150-kHz-General-Purpose-AE-Sensor (accessed on 20 December 2022).
- Physical Acoustics Corporation, S9225—300-1800 kHz Lightweight Miniature AE Sensor with Integral Coaxial Cable. 2021. Available online: https://www.physicalacoustics.com/by-product/sensors/S9225-300-1800-kHz-Lightweight-Miniature-AE-Sensor-with-Integral-Coaxial-Cable (accessed on 20 December 2022).
- Perez, I.M.; Cui, H.; Udd, E. Acoustic Emission Detection Using Fiber Bragg Gratings. In Proceedings of the SPIE 4328, Smart Structures and Materials 2001: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, Newport Beach, CA, USA, 4–8 March 2001. [Google Scholar]
- Mabry, N.; Banks, C.; Toutanji, H.; Seif, M. Acoustic Emission Felicity Ratio Measurements in Carbon Composites Laminates Using Fiber Bragg Grating Sensors. In Proceedings of the SPIE 7982, Smart Sensor Phenomena, Technology, Networks, and Systems, San Diego, CA, USA, 6–10 March 2011; p. 79820Y. [Google Scholar]
- Wu, Q.; Okabe, Y. Novel Acoustic Emission Sensor System Based on Two Cascaded Phase-Shifted Fiber Bragg Gratings. In Proceedings of the SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, Beijing, China, 14–19 December 2012; p. 84214H. [Google Scholar]
- Wei, P.; Han, X.; Xia, D.; Liu, T.; Lang, H. Novel fiber-optic ring acoustic emission sensor. Sensors 2018, 18, 215. [Google Scholar] [CrossRef] [Green Version]
- Joseph, R.; Bhuiyan, M.Y.; Giurgiutiu, V. Acoustic emission from vibration of cracked sheet-metal samples. Eng. Fract. Mech. 2019, 217, 106544. [Google Scholar] [CrossRef]
- Rabiei, M.; Modarres, M. Quantitative methods for structural health management using in situ acoustic emission monitoring. Int. J. Fatigue 2013, 49, 81–89. [Google Scholar] [CrossRef]
- Yu, J.; Ziehl, P.; Zrate, B.; Caicedo, J. Prediction of fatigue crack growth in steel bridge components using acoustic emission. J. Constr. Steel Res. 2011, 67, 1254–1260. [Google Scholar] [CrossRef]
- Adams, D. Health Monitoring of Structural Materials and Components: Methods with Applications; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Simmons, J.A.; Turner, C.D.; Wadley, H.N.G. Vector calibration of ultrasonic and acoustic emission transducers. J. Acoust. Soc. Am. 1987, 82, 1122–1130. [Google Scholar] [CrossRef]
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors; Elsevier Academic Press: Amsterdam, The Netherlands, 2014; p. 1032. ISBN 9780124186910. [Google Scholar]
- McNeill, S.R.; Peters, W.H.; Sutton, M.A. Estimation of stress intensity factor by digital image correlation. Eng. Fract. Mech. 1987, 28, 101–112. [Google Scholar] [CrossRef]
- Stephens, R.I. Metal Fatigue in Engineering; John Wiley and Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Chandran, K.S.R. Insight on physical meaning of finite-width-correction factors in stress intensity factor (K) solutions of fracture mechanics. Eng. Fract. Mech. 2017, 186, 399–409. [Google Scholar] [CrossRef]
- Paris, P.C.; Gomez, M.P.; Anderson, W.E. A rational analytic theory of fatigue. Trend Eng. 1961, 13, 9–14. [Google Scholar]
- Joseph, R. Acoustic Emission and Guided Wave Modeling and Experiments for Structural Health Monitoring and Non-Destructive Evaluation. Ph.D. Thesis, University of South Carolina, Columbia, SC, USA, 2020. [Google Scholar]
- Gutkin, R.; Green, C.J.; Vangrattanachai, S.; Pinho, S.T.; Robinson, P.; Curtis, P.T. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses. Mech. Syst. Signal Process. 2011, 25, 1393–1407. [Google Scholar] [CrossRef]
- Liu, P.F.; Chu, J.K.; Liu, Y.L.; Zheng, J.Y. A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Mater. Des. 2012, 37, 228–235. [Google Scholar] [CrossRef]
- Godin, N.; Huguet, S.; Gaertner, R. Integration of the Kohonen’s self-organising map and k-means algorithm for the segmentation of the AE data collected during tensile tests on cross-ply composites. NDT E Int. 2005, 38, 299–309. [Google Scholar] [CrossRef]
- Mays, L.W.; Tung, Y.-K. Uncertainty and Reliability Analysis of Hydrosystems. In Hydrosystems Engineering and Management; McGraw-Hill: New York, NY, USA, 1992. [Google Scholar]
Time of Arrival (TOA), µs (Relative) | Sequence of Arrival | |
---|---|---|
PWAS 1 | 32 | 1 |
S9225 1 | 34 | 2 |
PWAS 2 | 36 | 3 |
S9225 2 | 37 | 4 |
Time of Arrival (TOA), µs (Relative) | Sequence of Arrival | |
---|---|---|
PWAS 1 | 76 | 1 |
S9225 1 | 78 | 2 |
PWAS 2 | 82 | 3 |
S9225 2 | 83 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, R.; Giurgiutiu, V. Non-Crack-Growth Acoustic Emission Observed in Controlled-Stress-Intensity-Factor High-Cycle-Fatigue Tests. Actuators 2023, 12, 93. https://doi.org/10.3390/act12030093
Joseph R, Giurgiutiu V. Non-Crack-Growth Acoustic Emission Observed in Controlled-Stress-Intensity-Factor High-Cycle-Fatigue Tests. Actuators. 2023; 12(3):93. https://doi.org/10.3390/act12030093
Chicago/Turabian StyleJoseph, Roshan, and Victor Giurgiutiu. 2023. "Non-Crack-Growth Acoustic Emission Observed in Controlled-Stress-Intensity-Factor High-Cycle-Fatigue Tests" Actuators 12, no. 3: 93. https://doi.org/10.3390/act12030093
APA StyleJoseph, R., & Giurgiutiu, V. (2023). Non-Crack-Growth Acoustic Emission Observed in Controlled-Stress-Intensity-Factor High-Cycle-Fatigue Tests. Actuators, 12(3), 93. https://doi.org/10.3390/act12030093