
Citation: Sun, Y.; Yang, J.; Zhang, Z.;

Shu, Y. An Optimization-Based

High-Precision Flexible Online

Trajectory Planner for Forklifts.

Actuators 2023, 12, 162.

https://doi.org/10.3390/act12040162

Academic Editors: Luis Payá, Oscar

Reinoso García and Helder Jesus

Araújo

Received: 13 March 2023

Revised: 26 March 2023

Accepted: 31 March 2023

Published: 4 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

An Optimization-Based High-Precision Flexible Online
Trajectory Planner for Forklifts
Yizhen Sun 1,2,* , Junyou Yang 1, Zihan Zhang 1 and Yu Shu 1

1 School of Electrical Engineering, Shenyang University of Technology, Shenyang 110020, China
2 Intelligent Robot Laboratory, Shenyang Open University, Shenyang 110020, China
* Correspondence: sunyizhen@smail.sut.edu.cn

Abstract: There are numerous prospects for automated unmanned forklifts in the fields of intelligent
logistics and intelligent factories. However, existing unmanned forklifts often operate according to
offline path planning first followed by path tracking to move materials. This process does not meet the
needs of flexible production in intelligent logistics. To solve this problem, we proposed an optimized
online motion planner based on the output of the state grid as the original path. Constraints such
as vehicle kinematics; dynamics; turning restriction at the end of the path; spatial safety envelope;
and the position and orientation at the starting point and the ending point were considered during
path optimization, generating a precise and smooth trajectory for industrial forklifts that satisfied
non-holonomic vehicle constraints. In addition, a new rapid algorithm for calculating the spatial
safety envelope was proposed in this article, which can be used for collision avoidance and as
a turning-angle constraint term for path smoothing. Finally, a simulation experiment and real-
world tray-insertion task experiment were carried out. The experiments showed that the proposal
was effective and accurate via online motion planning and the tracking of automated unmanned
forklifts in a complicated environment and that the proposal fully satisfied the needs of industrial
navigation accuracy.

Keywords: unmanned forklift; online planning; path optimization; safety envelope

1. Introduction

In recent years, with the rapid development of modern industry, traditional factories
have gradually merged with intelligent factories. As a result, unmanned forklifts have been
widely implemented for in-plant logistics [1]. An unmanned forklift in a factory is shown
in Figure 1.

Figure 1. Automated unmanned forklift.

Actuators 2023, 12, 162. https://doi.org/10.3390/act12040162 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act12040162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0002-2794-7195
https://doi.org/10.3390/act12040162
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act12040162?type=check_update&version=1

Actuators 2023, 12, 162 2 of 21

At present, the navigational solutions of industrial unmanned forklifts can only accom-
plish the automatic navigation of fixed routes, and all the operational tracks are generated
offline [2]. If the navigation area changes, the navigation route has to be adjusted, and re-
deploying the whole navigation system presents a time-consuming, inflexible, and costly
procedure. This inflexible deployment mode significantly limits the application of the system.

Therefore, current unmanned forklifts all operate on pre-designed fixed routes. When
they arrive at the handling point, they usually employ the “blind fork” method to complete
their task. If these forklifts deviate from the fixed routing, these forklifts are unable to fulfill
their mission. Furthermore, they have also occasionally caused serious accidents [3]. In this
off-line path generation method, even if the deviation of the final posture can be detected
by the sensor, it is challenging for the vehicle controller to correct the deviation within a
relatively short distance. Therefore, it is difficult for current unmanned forklifts to meet
the handling requirements of flexible production required at an industrial scale, which
significantly limits the application of unmanned forklifts in intelligent digital factories.

This study focuses on the precise flexible online trajectory planning of industrial
unmanned forklifts. In order to solve issues regarding the inflexible deployment of the
forklift navigation system and overcome the limitations of flexible online trajectory planning
in modern factories, we proposed and evaluated a precise flexible online trajectory planner
for industrial forklifts. The proposal can be used for online motion planning of car-like
vehicles regardless of the end-pose. In this method, the original path output of the motion
planner based on sampling is used to smooth the path based on optimization, which can
then achieve a smooth and collision-free trajectory online and improve the pose accuracy
at the end of the trajectory.

This study contributed the following innovations: (1) We proposed a new path smooth-
ing approach based on a two-step method that can be used in a complete online navigation
system to plan high-precision driving trajectories for car-like vehicles. Firstly, a feasible
primitive path was found, and then the optimal control function was constructed. The secu-
rity envelope of each point in the primitive path, the kinematics constraints, the dynamics
constraints, and the turning constraint at the end of the path were used as the constraint
conditions of the objective function, and the path smoothing was carried out using an
optimization method. This method not only effectively improved the accuracy of path
planning, but also eliminated the additional curvature and collision safety reviews typically
required after path smoothing, improving the efficiency and safety of path planning. (2) A
new, rapid calculation method of a spatial security envelope was proposed. These safety
envelopes added the attitude and angle constraints of the vehicle while considering the
positional collision avoidance constraints, which limited the search space of the robot to
a collision-free state.Firstly, an off-line calculation method was used to pre-calculate the
spatial safety envelope set of the vehicle according to the forklift model. The envelope set
considered both the area of the polygon envelope and the range of the rotation angle. It
then generated a lookup table (PC: polygon constraint) of the envelope set via the weight
relationships. Secondly, based on the collision-free path ζ̂ (which satisfied the kinematic
constraints) output by the lattice motion planner, each waypoint in the path was gener-
ated in a spatial security envelope, and finally the spatial security envelope around the
whole path was obtained. See Appendix A for details of the summary of the variable
comparison table.

2. Related Work

At present, unmanned forklifts used in factories operate according to predefined
trajectories, which are typically generated by manual definitions or manually by opera-
tors [4]. Although these methods are simple in principle, the trajectories generated by these
methods bear issues that warrant being addressed. These include their high deployment
costs and lack of flexibility in adapting to environmental alterations in factory settings, such
as adding goods to assembly points or modifying distribution routes in warehouses. To

Actuators 2023, 12, 162 3 of 21

resolve such problems, a new trajectory planner is required for the flexible online trajectory
generation of industrial forklifts.

At present, researchers have suggested numerous motion-planning methods. Motion
planning is usually divided into two categories: front-end path search and back-end path
optimization. The front-end path search is responsible for identifying a safe and collision-
free path on the map, and then the back-end path optimization considers the kinematics,
dynamics, and environmental factors of vehicles as constraints; optimizes the waypoints
on the initial path in terms of smoothness and safety; and then generates a smooth path.
Therefore, the motion-planning method combining a front-end path search with a back-end
path optimization has become the standard in motion planning.

The following provides a detailed introduction to the literature on related topics. The
existing front-end path-search methods for industrial unmanned forklifts include graph-
based search methods and sampling-based methods. These methods usually discretize
the continuous state space into a node graph and then search for effective links from
the starting node to the target node in the graph. Path search methods based on graph
search mainly include A* [5,6], Dijkstra [7], and so on. The path-search method based
on sampling is divided into two steps, namely, sampling the state space and the control
space. Typical methods for sampling a state space include the state lattice method [8,9] and
rapidly exploring random-tree sequence [10,11]. Therefore, typical control space sampling
methods have included the hybrid A algorithm [12] and dynamic window method [13].
Specifically, Dang et al. [12] suggested the hybrid A-star algorithm, which combined
front-end searching with a vehicle kinematics model, and considered vehicle kinematics
constraints while searching. Subsequently, this not only improved search efficiency but also
satisfied the vehicle model with an under-actuated structure, such as a forklift truck. It was
used to solve the vehicle planning problem in parking lots, U-turns, and other scenarios.
However, the path searched by this kind of algorithm was not an optimal path in terms of
vehicle kinematics constraints. Therefore, during the search process, the algorithm only
focused on a localized optimal solution, rather than a global optimal solution. Pivtoraiko
and Kelly [14] suggested the concept of the state lattice search, which was used to build
an efficient dynamic motion planner. However, the algorithm state lattice search was very
expensive and difficult to build online. Therefore, the path generated by this method had
the disadvantage of a discontinuous state space, which failed to meet the high-precision
parking demands when used alone.

Back-end path optimization is divided into special curve-smoothing methods and
optimization methods [15]. (1) The special curve-smoothing method employs the waypoint
obtained by the path search [16,17] as input, and then uses a special curve to generate
a feasible smooth path. Commonly used curves have included the Dubins curve [18],
the Bezier curve [19], the B-spline curve, and so on. It was necessary to change the
original path by using the above special curve method directly, which the collision-free
path could not guarantee. Therefore, an extra processing step was required to determine
whether the path in the new representation was still conflict-free. This proved to be
time-consuming and negatively affected the speed of online solutions. (2) The trajectory
planning task was described as an optimal control problem (OCP) based on an optimization
method, and was discretized into a nonlinear-programming (NLP) problem [20]. Functional
optimization method obtained smooth paths by minimizing constraints such as velocity,
acceleration, and jerk. Zhu et al. [21] proposed a trajectory-smoothing method based on
convex optimization, which was used for trajectory smoothing and speed optimization
of mobile robots with similar automobile dynamics. In addition, Choi et al. [22] proposed
a path-planning algorithm for non-holonomic, constrained vehicles operating in a semi-
structured environment. Sprunk et al. [23] considered the smoothness of the path while
ignoring security constraints during optimization; therefore, it was necessary to evaluate
the security after optimization.

Others have used security envelope constraints during path optimization, which
limited the movement range of each waypoint. However, the security envelope was of the

Actuators 2023, 12, 162 4 of 21

same size and lacked flexibility [24]. Furthermore, the authors of [25] used a variable-sized
safety envelope, that is, the size of the safety envelope was dynamically generated according
to the distance between the vehicle model and the obstacle. However, this method did not
consider the rotation angle of the vehicle on the safety envelope, especially for a vehicle
body with an under-driven structure, such as a forklift, for which the angle constraint
was equally important. In summary, the extraction of safety envelopes has proven to be a
time-consuming process. To achieve online path generation, rapid path-safety-envelope
extraction is critical.

This study provided various insights.First, we used the anytime repairing A* (ARA*)
algorithm to search a collision-free feasible path under finite time constraints. This method
ensured that the reference trajectory could be quickly obtained within a finite time period.
The state grid map was reasonably constructed according to the real-time positioning and
orientation of the forklifts. Second, a path-smoothing method was proposed based on
optimizations including the safety envelope, rotation angle constraints, kinematics, and dy-
namics constraints. This method directly added state-space constraints during the smooth-
ing process, which eliminated a second verification step after smoothing. Third, since the
generation of the secure envelope has been problematic due to being time-consuming and
inflexible, we designed a rapid and secure envelope extraction method that considered both
positioning and angle constraints. Lastly, using the B-spline curve method, the optimized
path was guided by time parameters to ensure a safe and smooth trajectory that met the
kinematics and dynamics constraints. In the experiment, the industrial unmanned fork-
lifts using the flexible online trajectory planner proposed in this paper generated smooth,
drivable trajectories for any target pose within a few seconds.

3. Methodology

This paper focused on the development of high-precision flexible online trajectory
planning for industrial unmanned forklifts. A motion planning algorithm was proposed
based on optimization. We used a five-step method, as shown in Figure 2.

Kinematic
constraints

Dynamic
constraints

Motion
primitives

max max,v a

max ,L

Initial/Goal States

Rolling optimization Industrial forklift

Prediction model

Prediction output

MPC trajectory tracking

,v w

Pallet pose
detection

Vehicle scheduling system

Status grid map

Lattice-based
motion planner

Constraint
extraction

Path smoother

Trajectory generator ,

̂

ˆ, ,angle innerC C

0 , Ns s

Constraint
lookup table

Vehicle
model

Precomputed

Figure 2. Navigation system framework. The variables s0 and sN indicate the starting pose and target
pose of the vehicle, respectively; δmax indicates the maximum steering angle; L indicates the distance
between the front and rear axles of the forklift truck, vmax and amax, respectively, as constraints on
velocity and acceleration in the forward direction. The ξ and η denote two collection of points in the
state space and the control space, respectively, Cangle is the angle constraint, and Cinner is the inner
constraint. A pre-computed constraint lookup table was used to extract a set of position and angle
inequality constraints for the vehicle model.

First, we used the lattice-based motion planner to calculate the trajectory path that
would satisfy the forklift kinematics constraint, which was the basis of the path constraint
step. Second, we pre-calculated the safety envelope set of the vehicle offline, according to

Actuators 2023, 12, 162 5 of 21

the forklift model, and used the offline method to calculate the envelope set to improve the
efficiency of the trajectory optimization steps. Next, we extracted the free-space envelope
around the path according to the original path and the calculated space envelope set,
and expressed it in the form of a convex polyhedron constraint of the vehicle state. The
path space envelope generated in this step was used as a security constraint item for the
subsequent path-smoothing step. The path-smoothing based on the optimization method
proposed in this paper was then used to address the path and the corresponding constraints,
and a collision-free continuous path was obtained. Finally, the trajectory generator used
a B-spline interpolation method to generate a safe and smooth trajectory that satisfied
the dynamic and time constraints. A model-based predictive control algorithm was used
to track the generated trajectory with high precision. Since this study focused on safety
envelope extraction and path optimization, the additional details in Figure 2 are briefly
described for the completeness of the algorithm description.

3.1. Establishment of a Kinematic Model of the Forklift Truck

Because of the low speed of forklifts in logistics transportation, the lateral forces of
forklifts are low. Assuming that the forklift would not skid during operation, we only
needed to establish the forklift kinematic model to complete the trajectory planner design.
Assuming that the forklift body was rigid and the deformation of wheels could be ignored,
the forklift motion would not pitch or roll on the plane, and the contact point between the
wheels and the ground would only produce rolling contact without sliding. The kinematic
model of the forklift is shown in Figure 3.

O
/X m

/Y m

o

L
R

v

(,)f fx y

(,)r rx y

rv

Figure 3. Kinematics model diagram of the forklift truck.

In Figure 3, XOY is the world coordinate system; (x f , y f) represents the forklift front-
wheel coordinates; (xr, yr) represents the center rear-wheel coordinates; o represents the
AGV forklift instantaneous rotation center; L represents the AGV front-and-rear wheelbases;
v represents the steering wheel linear speed; w represents the steering wheel angular
speed; vr represents the vehicle’s instantaneous linear speed; wr represents the vehicle’s
instantaneous angular speed; δ and ϕ represent front steering wheel angle and vehicle
heading angle, respectively; and R represents the turning radius of vehicle body. The
turning radius of fork AGV was determined by the following:

R =
L

tan δ
(1)

Actuators 2023, 12, 162 6 of 21

The kinematic relation is expressed as follows:
ẋ = vr cos ϕ
ẏ = vr sin ϕ
vr = v cos δ

ϕ̇ = vr
R = vr

tan δ
L

δ̇ = w

(2)

Assuming that the control space of the forklift c = [v, w], the state space s = [x, y, ϕ, δ]
and ṡ = f (s, c) was the state transition of the forklift equation. The reference position point
(x, y) of the forklift was in the two-dimensional space, as well as the heading angle ϕ, and
the steering angle δ, and then ξ and η were forklift state space and control space A set of N
discrete points, respectively, as follows:

ξ = {si} = {(xi, yi, ϕi, δi)} (3)

η = {ci} = {(vi, ωi)} (4)

Given the initial state of the forklift s0 = (x0, y0, ϕ0, δ0) and the target state
sN = (xN , yN , ϕN , δN), a set of N state points ξ and corresponding control points η needed
to be calculated that could control the forklift’s movements from s0 to sN , without colliding
with any known obstacles.

3.2. State Grid Map

After establishing the kinematic model of the forklift and expanding the obstacles,
the forklift control system had to generate all feasible paths that satisfied the kinematic
constraints of the forklift. At present, the path obtained by motion planning based on the
grid map cannot consistently meet the kinematics requirements of the forklift. Therefore,
our forklift path-planning used a state grid map [26]. As shown in Figure 4, the state grid
map was based on the ordinary grid map, and added the constraints of the kinematic model
of the forklift to ensure that the forklift could travel along the path generated between two
adjacent points. As compared to the ordinary grid map, in the state lattice of the state grid
map, the connection lines of each vertex were generated according to the kinematic model,
and they were all feasible paths [27].

()a ()b

()c ()d

Figure 4. Constructing the lattice for the forklift. (a) A discretization in C-space was defined; (b) feasible
path for 8 neighbor nodes around the origin 8 neighbor nodes around the origin; (c) feasible paths
extended outward to 24 neighbors, only a few direct paths shown; (d) complete lattice.

In our thesis, we construct a 4D state lattice based on the position (x,y), heading (ϕ),
curvature (k) for the kinematics model of the forklift. In order to simplify the construction

Actuators 2023, 12, 162 7 of 21

process, we use a special discretization of state and control space [28]. The orientation of the
forklift is assumed to be uniformly distributed in space [0,2π], and the discrete curvature K
is also uniformly distributed between [−kmax, kmax], where kmax = 1

Rmin
. Figure 4 shows

the accessible graph for the forklifts with three actions. Due to the random position of
the forklifts in autonomous navigation space, the state lattice is required to have spatial
repeatability, motion primitives generated at a certain node can be applied to other nodes
too. The motion primitives in Figure 4 are generated by copying motion primitives from
the starting point to other nodes, so the global paths generated by the control system are
also feasible for the forklift. Through the generation of motion primitives in the state lattice,
the global path planning problem is transformed into the path search and decision problem
in different motion primitives, and then generate the feasible trajectory. Combined with
the commonly used ARA* search algorithm, we can then obtain a path from the start point
to the target that satisfies the kinematic constraints for the forklifts.

3.3. ARA* Path Search

Among the traditional path search algorithms, the A* algorithm is widely used in
industrial fields because it can effectively solve the shortest path within a short time
period. However, the heuristic functional construction of the A* algorithm was relatively
simple, and there were more redundant nodes in the execution process of the algorithm,
which were time-intensive and, thus, expensive to resolve. In order to achieve a rapid
online solution, we employed the ARA* algorithm to search the path on an expanded
raster map. The algorithm first found an optimal non-global feasible path under a given
relaxation condition and then gradually strengthened the constraints in the remaining time,
continuously improving the sub-optimal solution by using the searched node information.
If it had sufficient time, the algorithm would find an optimal global feasible path. The
algorithm reused the previous search results in the process of path optimization. The cost
estimation function of the ARA* algorithm was improved, as compared to the A* algorithm.
The cost estimation function was expressed as follows:

f (s) = g(s) + ε ∗ h(s) (5)

where ε is the expansion factor, s represents the current node, f(s) is the cost from the
starting point to the end point, g(s) is the actual cost from the starting point of the path
to the current node, h(s) is the cost from the current node to the end point cost estimate.
During the execution of the algorithm, the expansion factor ε gradually decreases from
the set initial value. If the algorithm can run for enough time, then finally εmin = 1. If the
runnable time is insufficient, then ε will be as close to 1 as possible, and subsequently the
obtained path is a suboptimal solution.

In this paper, the ARA* algorithm was used to search for a collision-free path ξ̂ in
the state grid that satisfied the kinematics and time constraints for forklift travel, and the
algorithm obtained the optimal solution within the time constraints.

3.4. Offline Pre-Computed Security Envelope Set

The safety envelope was an artificially determined convex polyhedron area that
wrapped around the initial path, and the various poses of the robot in this area had to
satisfy the kinematic model of the vehicle. During the path optimization step, the safety
envelope was used for collision-avoidance constraints, so that the points on the path could
be adjusted within the safety envelope. While calculating the optimal solution for local
path optimization, this ensured that the optimized path avoided collisions. The correct
setting of the safety envelope eliminated the safety hazards caused by the robots colliding
at a smooth point due to trajectory optimization. However, safety envelope extraction has
typically been a difficult and time-consuming process and has not been able to fulfill the
needs of online trajectory generation for forklifts. In this study, a new algorithm for the
rapid computation of path-space security envelopes was proposed. The algorithm divided
the extraction of safety envelope constraints into two steps: an offline pre-computed safety

Actuators 2023, 12, 162 8 of 21

envelope set and an online path-envelope extraction, both of which greatly improved the
efficiency of safety envelope extraction.

The process of the entire security envelope extraction algorithm is shown in Figure 5.
After the path-planning module searched for an initial collision-free path, the pre-computed
envelope set was used to extract constraints for each path point in collision-free path. Next,
the safety envelopes of each position point in the path were superimposed to obtain the
overall safety envelope [29] of the path, which was then used as the optimization safety
obstacle avoidance constraint for the next path. This section introduces the offline security
envelope set calculation. The extraction process of the online path security envelope is
detailed in the following subsections.

Constraints
outer

Constraints
angular

Constraints
position

Constraint

Path

Pre-calculation

Robot model and

its load type

Constraint

look-up table

Path

planning

Path
smoothing

Constraint
Extraction

Figure 5. Block diagram of the safety envelope constraint extraction system: After the path-planning
module had searched for a collision-free path, it extracted the safety envelope constraint of the
path, and the extracted envelope was used as a constraint item for path smoothing. The offline
pre-calculation module included the calculation of the robot safety envelope set and the generation of
the lookup table.

The pre-calculation module employed in this paper generated different robot en-
velopes according to different forklift models and corresponding load models, and also
calculated a pre-set internal position constraint Cinner and angle constraint Cangle that were
stored in the table. The size of the inner constraint Cinner in the safety envelope constraint
set PC was the rectangle formed by the linear combination of the displacement of the
forklift reference point in four directions; forward, backward, left, right, in addition to
angle. The angle constraint Cangle was the linear combination of the left and right offsets
based on the direction of the forklift reference point. We arranged and combined the
internal constraints Cinner and the angle constraints Cangle freely and, then, calculated the
area and angle constraints Cangle of each set of internal constraints Cinner. We used their
product as the weight w of each constraint set and stored them in the security envelope
constraint set PC, in order of weight. Finally, according to the differences of the forklift
envelopes, the outer constraints Couter generated by each pair of constraints were calculated.
As shown in Figure 6, the two graphs display the combination of the two kinds of internal
constraints Cinner (blue rectangle) and angle constraints Cangle (red arrow and green arrow)
in the lookup table, which generated a schematic diagram of the outer constraint Couter
(yellow polygon). The algorithm flow is shown in Algorithm 1.

Actuators 2023, 12, 162 9 of 21

Robot model coverage

Robot model Constraint inner

Constraint angle left boundary

Constraint angle right boundaryConstraint outer

1leftB
1rightB1angleC

1outerC
2outerC

2leftB 2angleC

2rightB

1innerC
2innerC

Constraint angle

Figure 6. Offline pre-computed spatial security envelope set: Figure left and right show two examples
of security envelopes, respectively. Among them, Cangle is the angle constraint, Ble f t, Bright is the
boundary of the angle constraint, Cinner is the inner constraint, Couter is an external constraint.
Different combinations of inner and angle constraints resulted in different outer constraints.

Algorithm 1 Lookup table PC calculation.

Input: Lookup table: PC
x Distance deviation: n1,n2,n3,n4,n5,n6,n7
y Distance deviation: m1,m2,m3,m4,m5,m6,m7
Angle deviation: a1, a2, a3, a4, a5, a6, a7
Item: i = j = k = 1

1: Set constraint center (x, y)
2: while trajectory.get() do
3: for i ≤ 7 do
4: Set rectangle angle deviation is a1
5: Generate Cangle of element in PC
6: for i ≤ 7 do
7: Set rectangle length is (x− ni, x + nj)
8: for k ≤ 7 do
9: Set rectangle width is (y− nk, y + nk)

10: Generate Cinner of element in PC
11: Generate Couter according to Cangle and Cinner
12: Calculate w of Couter
13: k ++
14: end for
15: j ++
16: end for
17: i ++
18: end for
19: Sort the elements in PC according to w
20: Output PC
21: endwhile
22: end while

Actuators 2023, 12, 162 10 of 21

3.5. Online Computed Path Security Envelope

Based on the pre-computed safety envelope constraint set PC obtained in the previous
section, when the starting and ending points of the forklift navigation were provided,
the motion planner searched for a kinematically feasible collision-free path. The path-
envelope-generation module generated the safety envelope of the path according to the
grid-map information, the original path, and the safety envelope constraint set PC. The
safety envelope of a path was the collision-free free space region around the path, expressed
in the form of a convex polyhedron constraint for the vehicle state, divided into an inner
constraint Cinner and an angle constraint Cangle. Among them, the left boundary Ble f t and
the right boundary Bright of the angle constraint Cangle limited the directions that the forklift,
and the internal constraint Cinner defined the safe movement range of the forklift reference
point during optimization. The constraint generation algorithm proposed in this paper
defined a constraint combination formed by a space constrained by different positions and
directions at each waypoint and then superimposed angles on the four vertices of the inner
constraint Cinner. Through the forklift model constraint, the area covered by Cangle in all
directions obtained the outer constraint Couter of this point.

The definition of the internal constraint Cinner is shown in the Equation (6). Ci
inner

represents the vector between two points, where i = 0, 1,n, n is the total number of
path points. P is the coordinates of the i-th path point, P2, P2, P3, P4 are the four vertices of
the Cinner rectangle.

(Ci
inner(P2, P1)) • (Ci

inner(P, P1)) ≥ 0
(Ci

inner(P4, P1)) • (Ci
inner(P, P1)) ≥ 0

(Ci
inner(P4, P3)) • (Ci

inner(P, P3)) ≥ 0
(Ci

inner(P2, P3)) • (Ci
inner(P, P3)) ≥ 0

(6)

The definition of the angle constraint Cangle is shown in Equation (7), and ϕ(i) is the
angle of the path point.

Ci
angle(Ble f t) < ϕ(i) < Ci

angle(Bright) (7)

The definition of the external constraint Couter is as follows (8):

Couter = Ci
angle ∪ Ci

inner (8)

The above constraints defined all possible sets of safety envelopes for each waypoint
in the original path of the vehicle, without considering obstacles. Next, we introduced the
solution of the maximum safe envelope for each waypoint, considering obstacles. For each
waypoint, our constraint generation algorithm generated a local map L−MAP at the point,
which saved the largest external constraint PC[0] and set the grid Grid covered by the local
map L−MAP in PC[0] to Occ and saved these Grid in array O0. If we relocated the local
map L−MAP to each waypoint P and if O0 covered the obstacle grid on the world map,
it would continue to traverse the next element in the security envelope constraint set PC
according to the weight w. We followed this method until the Oi of the first uncovered
obstacle corresponding to PC[i] in the safety envelope constraint set PC was found, that
is, the outer constraint Couter of this waypoint, which is shown in the following figure.
Conversely, the maximum external constraint PC[0] was the constraint of the path point P.
The algorithm block diagram of the waypoint-finding constraints is shown in Figure 7. The
triangle area is the obstacle, the black area is the part covered by the external constraints
of the robot, the red dotted line is the local map, the green line represents the largest
external constraints in the PC, and the yellow line is the found external constraints. The
safety envelope of the entire feasible path was obtained by superimposing the external
constraints Couter of all path points. The secure envelope of the path is shown in Figure 8.
The algorithm flow is shown in Algorithm 2.

Actuators 2023, 12, 162 11 of 21

Local map
Constraint with largest weight

Constraint found

Obstacle grid covered by
Constraint outer

Obstacle

Find

Constraint

 Path

 P P
[0]PC []PC i

iO0O

 L MAP−

Figure 7. Example of safe online path envelope constraint extraction: Left: Generated a local map
with maximum outer constraints at this point. Right: The constraints of the current point obtained by
the constraint search. Among them, L−MAP is the local map, PC is the lookup table, the numbers
in square brackets represent the corresponding elements in the array, PC[0] is the largest external
constraint in the lookup table, O0 is the grid covered by PC[0] on L−MAP, PC[i] is the found outer
envelope, and Oi is PC[i] Grid overlaid on L−MAP.

Algorithm 2 Find constraint in path point P.

Input: Lookup table:PC
Item: i = 0

1: Generate local grid map with PC[i]
2: Set Grid = Occupied in PC[i]
3: Transfer Grid in local map to P
4: Get obstacle grid array Oi covered by PC[i]
5: while PC[i] 6= PC.end() do
6: for o in Oi do do
7: if o.isobstacle() then
8: break
9: end if

10: if o = Oi.end() then
11: Output PC[i]
12: end if
13: else
14: Continue
15: end else
16: if PC[i].output() then
17: break
18: end if
19: if PC[i] = PC.end() then
20: Error reporting
21: break
22: end if
23: i ++
24: end while
25: end for
26: end while

Actuators 2023, 12, 162 12 of 21

0 3 6 9 12 15
0

3

6

9

12

15

start

goal

/X m

Goal pose
Start pose
Path

Commercial planner with non-smoothed path

0 3 6 9 12 15
0

3

6

9

12

15

start

goal

/X m

Goal pose
Start pose
Path

Start and goal poses with non-smoothed path Position and angular constraints

0 3 6 9 12 15
0

3

6

9

12

15

start

goal

/X m

Original path
Constraints angular
Constraints angular
Constraints position
Constraints outer

0 3 6 9 12 15
0

3

6

9

12

15

start

goal

/X m

Original path
Constraints angular
Constraints angular
Constraints position
Smoothed path

Active constraints

Figure 8. Path-smoothing step. Left: Given the start pose and target pose, a commercial motion
planner computed the path. Middle left: Given a starting pose and a target pose, the motion
planner calculated the path ξ̂. Middle right: Spatial constraint extraction. Position constraints (green
box), angular constraints (orange and green arrows) and their spatial combination (yellow line)
were computed for each (x̂i, ŷi) ∈ ξ̂. For clarity, the figure represents only a subset of state points
(x̂i, ŷi) ∈ ξ̂. Right: Motion constraints drawn on a smooth path.

3.6. Path Smoothing

This section introduces the implementation steps of the path-smoothing method based
on optimization, which used the original path searched and considered constraints such as
the starting point, target point, kinematics, dynamics, turning limit at the end of the path,
and the path safety envelope of the robot, to generate a high-precision smooth path. The
detailed process of imposing constraints was as follows. Given the starting point and target
point (s0, sN), respectively, of the forklift by the task-scheduling system, the motion planner
generated a collision-free kinematic path, and the path consisted of a series of state points.
However, sampling-based non-holonomic motion-planning methods have generated paths
that resulted in discretization errors and discontinuities within the paths themselves or
between the stopping point and the goal state. This did not fulfill the requirements of
end-pose accuracy required for industrial applications. Because the original path of the
ARA* search was from a discretized starting state s0 to a discretized target state sN , s0 and
sN represented the state points closest to s0 and sN in the state grid map, respectively.

To solve this problem, we modified the starting and target states of the forklift to
precisely correspond to the current vehicle state s̄0 and the actual target state s̄N . Additional
constraints were imposed during the path optimization function, as shown in Equation (9).
Equation (9) effectively addressed the inaccuracy of the initial and final states caused by
the discretization in state-grid-based motion planners.

s̄0 − s0 = 0
s̄N − sN = 0

(9)

In order to ensure that the planned path satisfied the kinematic and dynamic con-
straints of the forklift, additional constraints were imposed, as shown in Equation (10):

δmin ≤ δ ≤ δmax
−vmax ≤ vs. ≤ vmax
−ωmax ≤ ω ≤ ωmax
−amax ≤ a ≤ amax

(10)

In an industrial forklift with an under-actuated kinematic structure, it is relatively
difficult to adjust the lateral deviation while driving. In order to improve parking accuracy,
a docking point with a constant attitude is typically added before the parking point to
ensure that the vehicle continues in a straight line at the end of the path. The method of
adding docking points at the end of the path improved the parking accuracy; however,
it also increased the difficulty of operation and reduced efficiency. In order to solve the

Actuators 2023, 12, 162 13 of 21

problems of planning efficiency and parking accuracy at the same time, we imposed
steering-angle constraints on the state points at the end of the trajectory, as shown in
Equation (11):

δi = 0, i = N − 1, N (11)

It was assumed that the distances between the state points of the path were approxi-
mately equal, and the time ∆T between the consecutive state points was set to any fixed
positive value. Therefore, the time T through the entire path was set to a constant value
N∆T.The optimal control function of the forklift is shown in Equation (12), and the con-
straint term of the optimization function is shown in Equation (13), where α is a weighting
factor of adjusting the minimum travel distance and minimum rotation of the forklift;
Ci

angle(Ble f t) is the left boundary of the angle constraint of the i path point; Ci
angle(Bright) is

the right boundary of the angle constraint of the i path point; b, A0, A1 are intermediate
variables, such as in Equation (6), Ci

inner is the inner constraint of the i path point, P is the
coordinates of the waypoint, P2, P2, P3, P4 are the vertices of the rectangle:

min
ζ,η

N
∑

i=0
v2

i + α
N
∑

i=0
ω2

i (12)

s.t.
si+1 = f̂ (si, ui), i = 0, ..., N − 1
s̄0 − s0 = 0
s̄N − sN = 0
δmin ≤ δ ≤ δmax, i = 0, ..., N
Ci

angle(Ble f t) < ϕ(i) < Ci
angle(Bright)

(Ci
inner(P2, P1)) • (Ci

inner(P, P1)) ≥ 0
(Ci

inner(P4, P1)) • (Ci
inner(P, P1)) ≥ 0

(Ci
inner(P4, P3)) • (Ci

inner(P, P3)) ≥ 0
(Ci

inner(P2, P3)) • (Ci
inner(P, P3)) ≥ 0

(13)

Our optimization variables were the forklift’s front wheel’s travel speed v and angular
velocity w, and the goal was to minimize the total travel distance and the amount of rotation
imposed on the front wheel angle of the forklift. The objective function in Equation (12)
minimized the combination of the total distance traveled by the forklift and the total
steering wheel rotation.

The optimal control Equation (12) and the constraint item (13) were optimized and
calculated as the optimal path-state point si. The optimized state point si was the obtained
smooth path point.

After feeding si into a trajectory generator, we used the trajectory generator from
Section 3.7 to generate a set of values for each state in the path, given the constraints of the
initial and final velocities, steering velocity, steering acceleration, velocity, and acceleration,
to allocate the maximum speed.

3.7. Trajectory Generation and Track

After the planner generates a series of discrete state points at fixed intervals, the
trajectory generator output a trajectory with a fixed ∆T of 50 ms as the input to the
controller [30,31]. As previously mentioned, there are two types of trajectory generation
methods typically used in the literature: trajectory generation based on a polynomial
function and trajectory generation based on a B-spline curve.

The trajectory generation based on a polynomial function generated the operating tra-
jectory of the forklift by calculating the polynomial coefficients that satisfied the constraints
and drew on the polynomial function. However, in order to ensure the safety of the forklift,
this method required multiple iterations, which was considerably time-consuming.

Actuators 2023, 12, 162 14 of 21

The curvature of the B-spline curve was continuous at the nodes of adjacent curve
segments, and if the local constraints of the trajectory were not satisfied, the trajectory
could be corrected by adjusting the corresponding control points without affecting other
trajectory segments [32]. Among them, the cubic B-spline curve exhibits the characteristics
of second-order continuity at the nodes, which could optimize the curve and meet the
requirements of the acceleration and speed continuity of a moving unmanned forklift.
Therefore, the trajectory generator employed in this paper was the cubic B-spline curve.

In this paper, the model predictive control (MPC) method was used to realize trajectory
tracking [33–36]. Given a set of state inputs, the controller then used an objective function
based on the tracked trajectory to optimize the control output. Since the controller is not
the focus of this article, we have not provided the relevant theoretical exposition.

4. Experimental Evaluation

In order to fully evaluate the comprehensive performance of the algorithm proposed
in this study, an experimental verification of the algorithm was carried out in simulated
and real environments. The navigation algorithm was operated on a personal computer
with an Ubuntu 16.04 operating system, an i5-6200u CPU, 8 GB of RAM, and 512 GB
storage space. The entire navigation system was implemented within the Robot Operating
System (ROS). In the simulation experiment, a forklift model that satisfied the car-like
kinematics was created, and a gazebo simulation environment was built. The experiment
was equipped with a high-precision locator, the translational positioning accuracy was
within 1cm, the rotation angle positioning accuracy was 0.001 radians, and the on-board
navigation control system could access the encoder and positioning data. In the real-world
environment, the modified industrial unmanned forklift was equipped with three on-board
lasers, two of which were safety lasers located on the ground for safe parking in emergency
situations. The second navigation laser was an RS-LIDAR-16, a 3D laser rangefinder with
a viewing angle of 360 degrees and 16 lines. The communication between the navigation
computer and the motor driver through CAN bus was used to collect odometer data and
control vehicle motion, and an Ethernet interface was used to transmit LiDAR distance
data. Therefore, the navigation computer received encoder and positioning data and sent
steering and driving commands, as shown in Figure 9.

3D Laser

Warning
Light

Safety
Obstacle

Avoidance
Laser

Pallet

Navigation
computer

Emergency
stop

button Pallet
detection

sensor

Lifting fork

()a ()c ()d()b

3D Laser

odometry
Lifting
fork

Pallet detection
sensor

2D laser

Figure 9. Experimental model. (a) Simulation forklift forward view. (b) Simulation forklift rear view.
(c) Forklift forward view. (d) Forklift rear view.

The overall goal of our experimental evaluation was to demonstrate the real-time
performance, reliability, and accuracy of online-generated trajectories. We divided the ex-
perimental evaluation into four parts. (1) Path-smoothing evaluation, which considered the
importance and realization of path smoothing; (2) random-target experimental evaluation
to further test the robustness of our system on arbitrary target poses and longer distances;

Actuators 2023, 12, 162 15 of 21

(3) obstacle extension evaluation to analyze the operation of the system in more challenging
scenarios; and (4) the evaluation of real pallet fork-and-pick tasks.

For a non-holonomic vehicle, it was difficult to control the direction and the position
perpendicular to the motion direction, which was convenient for analyzing the data. We
decomposed the errors into forward errors, lateral errors, and heading errors, as shown
in Figure 10. For each type of error, we showed the results in terms of mean, standard
deviation, and maximum value obtained during the test operation.

4.1. Path-Smoothness Evaluation

In this experiment, the importance and implementation of path smoothing were
evaluated. Our focus centered around the accuracy of the online trajectory planning and
tracking reaching the accuracy of offline trajectory planning and tracking while fulfilling
the requirements of industrial applications. We extracted 10 sets of target poses from hand-
defined paths (shown on the left of Figure 8) and used them as targets for a lattice-based
motion planner. The output of the motion planner was passed to a path smoother, which
was then tracked by the MPC controller. Note that when the path was not processed by the
smoother, in order to ensure the parking accuracy, the target state was set as the last point
of the trajectory, thus allowing the MPC controller to correct the motion direction caused
by the rough path.

The experimental results are shown in Table 1 as a comparison of the results obtained
by the motion planner, with and without path smoothing. The error description is shown in
Figure 10, which depicts the forward, lateral, and heading errors between the target position
and the final parking point. These results confirmed that our system could produce smooth
trajectories with excellent end-pose accuracy, with improvements in forward, side, and
orientation errors, as compared to no smoothing. Our method could completely replace
navigation systems that generate paths manually, without loss of accuracy. (In typical
factory settings, the positional accuracy required by the forklift to pick up the pallet was
0.03 m, and the direction accuracy was 0.017 rad [37]). The experimental results further
showed that it was necessary to use path smoothing in order to obtain high accuracy of the
final parking attitude.

Table 1. Forward and side translation and orientation errors.

Forward Error Side Error Heading Error

Method Mean (m) Std (m) Max (m) Mean (m) Std (m) Max (m) Mean (rad) Std (rad) Max (rad)

Planned path without smoothing 0.0288 0.0311 0.0934 0.061 0.021 0.1214 0.0712 0.0613 0.1885
Planned path with smoothing 0.0014 0.0017 0.0055 0.0045 0.0042 0.0167 0.0023 0.0015 0.0098

Ratio increase 95.14% 94.53% 94.11% 92.62% 80.10% 86.24% 96.77% 97.55% 94.80%

Goal pose

Side error

Forward error
Actual Pose

Reference line
Angle error

Figure 10. Error decomposition diagram, including side, forward, and heading errors, used to
evaluate the planner.

Actuators 2023, 12, 162 16 of 21

4.2. Randomized Target Experimental Evaluation

To further test the robustness of our system for arbitrary target poses and longer
distances, we used two test scenes, as shown in Figure 11, each with two blocks marked by
dashed lines area. A total of 20 target groups were randomly generated between two areas.
The vehicle was tested in two scenarios, from one area to another, reciprocating between
multiple poses, and a total of 40 paths were tested.

The experimental results obtained are given as follows. The forward, lateral, and
heading errors are shown in Table 2 while the motion-planning time, path-constraint-
extraction time, and path-optimization time are shown in Table 3. Table 2 compares
the improvement ratio of various indicators before and after path smoothing, with the
average improvement value being 92.42%. Figure 12 is a visual description of Table 3.
The experimental results indicated that the proposed path-smoothing method had high
robustness and great improvements in parking errors, even when the maximum position
accuracy error was less than 3cm. In addition, the total time demand of path planning
was shortened, which fulfilled the real-time and precision requirements of online path
generation for forklifts.

Table 2. Random goals errors.

Forward Error Side Error Heading Error

Method Mean (m) Std (m) Max (m) Mean (m) Std (m) Max (m) Mean (rad) Std (rad) Max (rad)

20 random goals short 0.0021 0.0013 0.0052 0.0093 0.0057 0.0265 0.0019 0.0018 0.0072
20 random goals long 0.0019 0.0023 0.0064 0.009 0.0064 0.0231 0.0022 0.0017 0.0091

Table 3. Computational time for motion planning and path smoothing (short/long).

Method Mean (s) Std (s) Max (s)

Motion planning 0.395/2.002 0.413/1.734 1.502/5.433
Constraint extraction 0.134/0.356 0.032/0.054 0.231/0.487

Path smoothing 0.492/5.752 0.273/3.312 1.523/12.651

0
0

/X m

Navigation to 20 Random Goals

Driven path
Goal states

0 3 6 9 12 15
0

15

/X m

3

6

9

12

Navigation to 20 Random Goals

Driven path
Goal states

2

4

4

6

6

8

8

2

Figure 11. Random target selection. Left/Right: Path driven when navigating to 40 randomly chosen
targets (short/long).

Actuators 2023, 12, 162 17 of 21

mean std max

forward error

mean std max

side error

mean std max

heading error

Figure 12. Error visualization description.

4.3. Barrier Extension Assessment

In order to test the operation of our method in more challenging scenarios, we con-
ducted experimental evaluations in narrower and longer scenarios with additional obsta-
cles, as shown in Figure 13. In the figure, the shaded part is the additional obstacle, as
expected, due to the more complex space of these two test scenes; the deviation of the
smoothed path from the original path is smaller, and the number of space constraints is
higher. The experimental results showed that the planning method proposed in this paper
was also effective in more challenging scenarios.

Active constraints

0 3 6 9 12 15
0

3

6

9

12

15

/X m

Original path
Constraints angular
Constraints angular
Constraints position
Smoothed path

0 3 6 9 12 15
0

3

6

9

12

15

start

goal

/X m

Active constraints

Original path
Constraints angular
Constraints angular
Constraints position
Smoothed path
Added new obstacles

Figure 13. Obstacle expansion. Left: The same start and target poses were added to the map Figure 8
with additional obstacles. Right: Narrow and long test environment.

4.4. Real Pallet Fork Experiment

In order to verify the reliability and robustness of our proposed algorithm for per-
forming real tasks, we carried out a flexible fork-and-pick experiment on a pallet in a
600-square-meter experimental test site. The selected tray specifications were as follows:
grid plastic tray, 1.2 m long, 1.2 m wide, and 0.155 m high. We used a high-precision pallet
recognition-and-positioning system: The recognition frequency was 1 HZ, the recognition
position accuracy was 0.008 m, and the attitude accuracy was ±1.5 degrees.

The starting point Ps was defined in the experimental site, the photographing point Pa
was fixed, the real pallet position point Pr was recognized, and the fork adjustment point
Pd was automatically generated, as shown in Figure 14. In each fork-and-pick experiment,
the pallet placement position was set within a certain position and attitude deviation
relative to the photo point (position deviation ≤ 0.2 m, attitude deviation ≤ 0.5 rad), and
the forklift navigated from any position Ps on the site to the photo point Pa. Actions, such
as image captures, the flexible adjustment of poses, and the tray insertion, were completed
successively. After 10 random pallet fork experiments, including the empty space near the

Actuators 2023, 12, 162 18 of 21

pallet placement position (as shown in Figure 15) and the more difficult challenge of a tray
placed near the wall (as shown in Figure 16), the task success rate was 100%.

Pa
Pr

Pd

Ps

Obstacle

Pallet actual pose

Pallet standard pose

Navigate to the photo point path

Adjust the path of the fork pose
Fork path

Figure 14. Schematic diagram of the fork experiment process.

()a ()b ()c ()d

Figure 15. Empty space near the pallet placement position. (a) Pallet. (b) Photo spot. (c) Correction
point. (d) Pallet fork.

()a ()b ()c ()d

Figure 16. Difficult scene present near the pallet placement position. (a) Pallet. (b) Photo point.
(c) Correction point. (d) Pallet fork.

5. Conclusions and Future Works

Current forklift trajectory planning systems that use offline generation have been
unable to provide flexible, smooth route planning. We therefore proposed and designed a
new flexible online trajectory planner for industrial forklifts in this study. There are two
main advantages offered by our proposed method:

(1) It operates online. From the front-end original path search to the back-end path
optimization, time constraints were considered. The online search employed the ARA*

Actuators 2023, 12, 162 19 of 21

method to ensure search-time constraints. The time-consuming space safety envelope was
divided into two steps involving the offline calculation of the envelope set and the online
generation of the path safety envelope. The safety envelope constraint with position and
attitude angles was directly added to the back-end path optimization, which effectively
eliminated the second verification step of trajectory after the path had been smoothed.
Additional curvature constraints were incorporated into the path optimization process,
thus no secondary curvature evaluations were required on the final path. These steps
ensured the overall time efficiency of the online trajectory generation.

(2) It demonstrates high precision. The trajectory planner designed in this paper was
conducted online, which improved the accuracy, smoothness, and security of planning.
The front-end path search used a sampled-state lattice-based path-search method. The
original path search satisfied the kinematic constraints of the vehicle; however, problems
such as discretization errors and curvature discontinuities occurred on the path itself or
between the parking point and the target state. This did not fulfill the end-pose accuracy
requirements for industrial applications. The back-end optimization method smoothed
the path. The state constraints of the starting and the target points were added to the path
optimization, which ensure the pose accuracy of the optimized path at the starting and the
target points. Before the fork point, by imposing corner constraints to ensure smoothness
of the end path, the parking attitude accuracy of the target point was effectively improved.
These steps ensured high precision of the trajectory generated by the navigation system.

In our future research, we plan to improve the execution of the navigation task as well
as reduce execution time. At present, the pursuit of refined controls in digital factories for
the transportation of goods is directly connected with production and assembly. In order to
improve overall production and handling efficiency, the factory’s task scheduling system
not only sends handling instructions to the forklift, but also issues the time required to com-
plete the navigation task. Therefore, the execution of navigation tasks with time constraints
is critical to achieving improved production efficiency, assembly, and transportation in
future intelligent factories.

Author Contributions: Conceptualization, Y.S. (Yizhen Sun); Methodology, Y.S. (Yizhen Sun) and
J.Y.; Software, Y.S. (Yizhen Sun); project administration, J.Y.; data curation, Z.Z.; resources, Z.Z.;
visualization, Y.S. (Yu Shu); writing—original draft, Y.S. (Yu Shu) and Z.Z.; writing—review and
editing, Y.S. (Yizhen Sun); funding acquisition, J.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Central Government Guides Local Science and Technology
Development Funds (Grant No. 2021JH6/10500216), the Natural Science Foundation of Shenyang
City (Grant No. 22-315-6-02), and the Liaoning Province Modern Distance Education Institution
(2022XH-12).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
published article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Summary of variable comparison table.

Variable Interpretation Variable

forklift front wheel coordinates (x f , y f)
rear wheel center coordinates (xr, yr)

AGV forklift instantaneous rotation center o
AGV front and rear wheel wheelbase L

steering wheel linear speed v
steering wheel angular speed w

Actuators 2023, 12, 162 20 of 21

Table A1. Cont.

vehicle instantaneous linear speed vr
vehicle instantaneous angular speed wr

front steering wheel angle δ
vehicle heading angle ϕ

control space c
state space s

state transition ṡ
forklift reference position point (x, y)

state space set ξ
control space set η

internal position constraint Cinner
angle constraint Cangle

safety envelope constraint set PC
weight of each constraint set ω

outer constraints Couter
left boundary of the angle constraint Ble f t

right boundary of the angle constraint Bright
total number of path points n

coordinates of the i-th waypoint P
four vertices of the rectangle P2, P2, P3, P4

local map L−MAP
grid Grid

grid covered by the local map Occ
array save grids covered by the local map O

starting point of the forklift s0
target point of the forklift sN
discretized starting state s̄0
discretized target state s̄N

time between consecutive state points ∆T
time through the entire path N∆T

weighting factor of adjusting the minimum α

References
1. Milanowicz, M.; Budziszewski, P.; Kdzior, K. Numerical analysis of passive safety systems in forklift trucks. Saf. Sci. 2018, 101, 98–107.

[CrossRef]
2. Fazlollahtabar, H.; Saidi-Mehrabad, M. Methodologies to Optimize Automated Guided Vehicle Scheduling and Routing Problems:

A Review Study. J. Intell. Robot. Syst. 2015, 77, 525–545. [CrossRef]
3. Cservenák, K. Further Development of an AGV Control System; Springer: Cham, Switzerland, 2018.
4. Balatti, P.; Fusaro, F.; Villa, N.; Lamon, E.; Ajoudani, A. A collaborative robotic approach to autonomous pallet jack transportation

and positioning. IEEE Access 2020, 8, 142191–142204. [CrossRef]
5. Liu, C.; Mao, Q.; Chu, X.; Xie, S. An improved A-star algorithm considering water current, traffic separation and berthing for

vessel path planning. Appl. Sci. 2019, 9, 1057. [CrossRef]
6. Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A survey of path planning algorithms for mobile robots. Vehicles 2021, 3, 448–468.

[CrossRef]
7. Zheng, W.; Shi, J.; Wang, A.; Fu, P.; Jiang, H. A Routing-Based Repair Method for Digital Microfluidic Biochips Based on an

Improved Dijkstra and Improved Particle Swarm Optimization Algorithm. Micromachines 2020, 11, 1052. [CrossRef]
8. Bergman, K.; Ljungqvist, O.; Axehill, D. Improved optimization of motion primitives for motion planning in state lattices.

In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 2307–2314.
9. Sánchez-Ibáñez, J.R.; Pérez-del Pulgar, C.J.; García-Cerezo, A. Path planning for autonomous mobile robots: A review. Sensors

2021, 21, 7898. [CrossRef]
10. Kang, J.G.; Lim, D.W.; Choi, Y.S.; Jang, W.J.; Jung, J.W. Improved RRT-connect algorithm based on triangular inequality for robot

path planning. Sensors 2021, 21, 333. [CrossRef]
11. Wang, H.; Li, G.; Hou, J.; Chen, L.; Hu, N. A path planning method for underground intelligent vehicles based on an improved

RRT* algorithm. Electronics 2022, 11, 294. [CrossRef]
12. Dang, C.V.; Ahn, H.; Lee, D.S.; Lee, S.C. Improved Analytic Expansions in Hybrid A-Star Path Planning for Non-Holonomic

Robots. Appl. Sci. 2022, 12, 5999. [CrossRef]
13. Wu, B.; Chi, X.; Zhao, C.; Zhang, W.; Lu, Y.; Jiang, D. Dynamic Path Planning for Forklift AGV Based on Smoothing A* and

Improved DWA Hybrid Algorithm. Sensors 2022, 22, 7079. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ssci.2017.07.006
http://dx.doi.org/10.1007/s10846-013-0003-8
http://dx.doi.org/10.1109/ACCESS.2020.3013382
http://dx.doi.org/10.3390/app9061057
http://dx.doi.org/10.3390/vehicles3030027
http://dx.doi.org/10.3390/mi11121052
http://dx.doi.org/10.3390/s21237898
http://dx.doi.org/10.3390/s21020333
http://dx.doi.org/10.3390/electronics11030294
http://dx.doi.org/10.3390/app12125999
http://dx.doi.org/10.3390/s22187079
http://www.ncbi.nlm.nih.gov/pubmed/36146427

Actuators 2023, 12, 162 21 of 21

14. Pivtoraiko, M.; Kelly, A. Kinodynamic motion planning with state lattice motion primitives. In Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2172–2179.

15. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C. Path smoothing techniques in robot navigation: State-of-the-
art, current and future challenges. Sensors 2018, 18, 3170. [CrossRef]

16. Noreen, I.; Khan, A.; Habib, Z. Optimal Path Planning using RRT* based Approaches: A Survey and Future Directions. Int. J.
Adv. Comput. Sci. Appl. 2016, 7, 97–107. [CrossRef]

17. Arslan, O.; Berntorp, K.; Tsiotras, P. Sampling-based Algorithms for Optimal Motion Planning Using Closed-loop Prediction.
In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017.

18. Živojević, D.; Velagić, J. Path planning for mobile robot using Dubins-curve based RRT algorithm with differential constraints.
In Proceedings of the 2019 International Symposium ELMAR, Zadar, Croatia, 23–25 September 2019; pp. 139–142.

19. Gao, F.; Wu, W.; Gao, W.; Shen, S. Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors
in cluttered environments. J. Field Robot. 2019, 36, 710–733. [CrossRef]

20. Li, X.; Sun, Z.; Cao, D.; He, Z.; Zhu, Q. Real-time trajectory planning for autonomous urban driving: Framework, algorithms, and
verifications. IEEE/ASME Trans. Mechatronics 2015, 21, 740–753. [CrossRef]

21. Zhu, Z.; Schmerling, E.; Pavone, M. A convex optimization approach to smooth trajectories for motion planning with car-like robots.
In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 835–842.

22. Choi, J.W.; Huhtala, K. Constrained path optimization with Bézier curve primitives. In Proceedings of the 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 246–251.

23. Sprunk, C.; Lau, B.; Pfaff, P.; Burgard, W. Online generation of kinodynamic trajectories for non-circular omnidirectional robots.
In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai, China, 9–13 May 2011.

24. Sprunk, C.; Lau, B.; Pfaff, P.; Burgard, W. An accurate and efficient navigation system for omnidirectional robots in industrial
environments. Auton. Robot. 2017, 41, 473–493. [CrossRef]

25. Gao, F.; Wu, W.; Lin, Y.; Shen, S. Online safe trajectory generation for quadrotors using fast marching method and bernstein basis
polynomial. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 344–351.

26. Sands, T. Flattening the curve of flexible space robotics. Appl. Sci. 2022, 12, 2992. [CrossRef]
27. Pivtoraiko, M.; Kelly, A. Generating near minimal spanning control sets for constrained motion planning in discrete state spaces.

In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6
August 2005; pp. 3231–3237.

28. LaValle, S.M. Planning Algorithms; Cambridge University: Cambridge, UK, 2006.
29. Jing, C.; Liu, T.; Shen, S. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments.

In Proceedings of the IEEE International Conference on Robotics & Automation, Stockholm, Sweden, 16–21 May 2016.
30. Sandberg, A.; Sands, T. Autonomous trajectory generation algorithms for spacecraft slew maneuvers. Aerospace 2022, 9, 135.

[CrossRef]
31. Raigoza, K.; Sands, T. Autonomous trajectory generation comparison for de-orbiting with multiple collision avoidance. Sensors 2022,

22, 7066. [CrossRef] [PubMed]
32. Stoican, F.; Prodan, I.; Popescu, D.; Ichim, L. Constrained trajectory generation for uav systems using a b-spline parametrization.

In Proceedings of the 2017 25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, 3–6 July 2017;
pp. 613–618.

33. Xu, Y.; Tang, W.; Chen, B.; Qiu, L.; Yang, R. A model predictive control with preview-follower theory algorithm for trajectory
tracking control in autonomous vehicles. Symmetry 2021, 13, 381. [CrossRef]

34. Xie, F. Model Predictive Control of Nonholonomic Mobile Robots; Oklahoma State University: Stillwater, OK, USA, 2007; pp. 3494–3499.
35. Liu, K.; Zhang, Q.; Han, D.; Ma, A.; Xia, Y. Distributed model predictive control for nonholonomic multivehicle formation

tracking. Int. J. Robust Nonlinear Control. 2021, 31, 8961–8973. [CrossRef]
36. Nascimento, T.P.; Dórea, C.; Gonalves, L.M.G. Nonlinear model predictive control for trajectory tracking of nonholonomic mobile

robots: A modified approach. Int. J. Adv. Robot. Syst. 2018, 15, 172988141876046. [CrossRef]
37. Krug, R.; Stoyanov, T.; Tincani, V.; Andreasson, H.; Mosberger, R.; Fantoni, G.; Lilienthal, A.J. The next step in robot commissioning:

Autonomous picking and palletizing. IEEE Robot. Autom. Lett. 2016, 1, 546–553. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s18093170
http://dx.doi.org/10.14569/IJACSA.2016.071114
http://dx.doi.org/10.1002/rob.21842
http://dx.doi.org/10.1109/TMECH.2015.2493980
http://dx.doi.org/10.1007/s10514-016-9557-1
http://dx.doi.org/10.3390/app12062992
http://dx.doi.org/10.3390/aerospace9030135
http://dx.doi.org/10.3390/s22187066
http://www.ncbi.nlm.nih.gov/pubmed/36146415
http://dx.doi.org/10.3390/sym13030381
http://dx.doi.org/10.1002/rnc.5734
http://dx.doi.org/10.1177/1729881418760461
http://dx.doi.org/10.1109/LRA.2016.2519944

	Introduction
	Related Work
	Methodology
	Establishment of a Kinematic Model of the Forklift Truck
	State Grid Map
	ARA* Path Search
	Offline Pre-Computed Security Envelope Set
	Online Computed Path Security Envelope
	Path Smoothing
	Trajectory Generation and Track

	Experimental Evaluation
	Path-Smoothness Evaluation
	Randomized Target Experimental Evaluation
	Barrier Extension Assessment
	Real Pallet Fork Experiment

	Conclusions and Future Works
	Appendix A
	References

