Inchworm Motors and Beyond: A Review on Cooperative Electrostatic Actuator Systems
Abstract
:1. Introduction
2. Methodical Approach: Definition of Cooperative Electrostatic Microactuators
- Different actuators—at least one using electrostatic actuation—are integrated to form a cooperative, synergistically operating system, which generates new functionalities, and thus can also fulfill complex tasks that are impossible to achieve by the individual actuators found within the system (e.g., a larger force, a longer stroke, or a complex travel path).
- The scale of functional structures in these actuators is in the order of µm.
- The actuators are placed in a closely spaced arrangement to allow interaction between them and provide synergy of the individual microactuators and integration on a single chip, e.g., monolithic integration.
- Weakly cooperative architectures (Section 3.1):
- systems, where the cooperation is derived by the integration of independent, not coupled actuators through the electronic control system;
- a very limited number of cooperating actuators (2–4), where the cooperation is based on simple mechanical coupling structures of these actuators.
- Medium cooperative architectures (Section 3.2):
- some actuators (2–5) with strong interaction using smart mechanical coupling (e.g., coupling activated by actuation itself) to allow, e.g., complex 3D-trajectories;
- architectures which are already providing by cooperation the base for integration in even more complex cooperative actuation systems.
- Advanced/strongly cooperative architectures (Section 3.3):
- cooperative sub-architectures are integrated and combined into complex systems;
- huge numbers of coupled actuators integrated into a functional system.
3. Design Principles and Architectures of Cooperative Electrostatic Microactuators
3.1. Weakly Cooperative Architectures
3.1.1. Cooperation by Control Logic
3.1.2. Cooperation through Passive Mechanical Coupling Structures
3.1.3. Cascaded Systems
3.2. Medium Cooperative Architectures
3.2.1. XYZ Stages and Multi-DoF Systems
3.2.2. Bistable Cooperative Systems
3.2.3. Cooperation through Activated Joints Allowing Stepping Mode
3.3. Advanced (Strong) Cooperative Architectures
3.3.1. Microtransportation Systems
3.3.2. Inchworm Motors
3.3.3. More Elaborately Cooperative Systems
3.4. Hybrid System Architectures for Cooperative Actuation Systems
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Appendix A
Year | Ref. | Actuators | Walker v. Pusher | Stroke (Step) | Max Disp. | Force | Voltage [V] | Speed | Freq. of Operation | Uni-/Bidirectional | Fabrication Technique | Clutch Mechanism | Propulsion Mechanism | Comment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1993 | [10] | Scratch drive actuator (SDA) | Walker | (10–80) nm | - | - | 40–150 | (10–80) µm/s | 1 kHz | Uni | SM poly-Si | - | Plate bending | |
1995 | [43] | SDA | Walker | - | ~120 µm | 63 µN | ±112 | - | 50 Hz | Uni | SM poly-Si | - | Plate bending | |
2001 | [44] | SDA robot (Scratchuator) | Walker | 30 nm (1) | 8 mm (1) | 85 µN (2) | 200 VAC (2) | - | 1 kHz (2) | Bi | SM poly-Si | - | Plate bending | (1) Robot made of 188 SDAs, (2) array of 4 SDAs |
2002 | [47] | SDA | Walker | 25 nm (2) | 60 µm * | (250 (1), 850 (3)) µN | 200 (1, 3), 290 (2) | 250 µm/s (2) | 10 kHz (2) | Uni | SM poly-Si | - | Plate bending | (1) one SDA, (2) two SDAs, (3) four SDAs, * limited by design |
1995 | [61] | Stepper (inchworm) motor | Pusher | 2 µm | 40 µm | 6.5 µN | 35 | - | - | Bi | SM poly-Si | Electrostatic | Comb-drive pull | |
1995 | [60] | Attachment/detachment motor | Pusher | 1.5 µm | - | few mN | 100 | - | 1.4 kHz | Bi | BM c-Si | Electrostatic | Electrostatic alignment | |
1998 | [45] | Shuffle motor | Walker | 85 nm | 43 µm | 43 µN | Clamp: 40, Drive: 25 | 100 µm/s | 1.16 kHz ** | Bi | SM poly-Si | Electrostatic | Plate bending | ** limited by driving electronics |
2005 | [67] | Shuffle motor with 2 DoF | Walker | (41–63) nm | 60 µm * | 0.64 mN | Clamp: 36, Drive: 45 | ≤3.6 mm/s | ≤80 kHz ** | Bi | SM poly-Si with TI tech. | Electrostatic | Plate bending | 2-DoF (planar motion), * limited by design, ** limited by driving electronics |
2006 | [68] | Contraction beams motor | Walker | 10 nm | 140 µm | 0.49 mN | Clamp: 50, Drive: 60 | ≤0.78 mm/s | ≤80 kHz ** | Bi | SM poly-Si with TI tech. | Electrostatic | Beams bending | ** limited by driving electronics |
1997 | [69] | Stepper (inchworm) motor | Pusher | 2 µm | 15 µm | 3 µN | 40 | 4 µm/s | 1 Hz | Uni | SM poly-Si | Frictional | Comb-drive pull | |
1997 | [70] | Stepper (inchworm) motor | Pusher | (0.5–3) µm | (15 (1), 110 (2),*) µm | >1 µN | 15–40 | - | - | Bi | SM poly-Si | Frictional | Comb-drive pull | (1) design A: suspended slider, (2) design B: free slider, * limited by design |
2002 | [11] | Inchworm motor | Pusher | 2 µm | 80 µm | 260 µN | 33 | 4 mm/s | 1 kHz | Uni | HARSM, SOI | Teeth | Comb-drive pull | |
2013 | [72] | Inchworm motor | Pusher | 2 µm | 124 µm | 1.88 mN | 110 | 4.8 mm/s | 1.2 kHz | Uni | HARSM, SOI | Teeth | Comb-drive pull (inclined arm) | |
2021 | [73] | NED-based inchworm motor | Pusher | ≤11.8 µm * | 997 µm | 1.4 mN | Clamp: 150, Drive: 130 | - | 500 Hz | Bi | HARSM, SOI | Electrostatic | Nanoscopic elect. Drive | * function of driving voltage |
2021 | [98] | Inchworm motor | Pusher | 4 µm | 80 mm | 15 mN | 100 | 5 mm/s | - | Uni | HARSM, SOI | Teeth | Comb-drive pull (inclined arm) |
References
- Xie, H.; Fedder, G.K. Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope. IEEE Sens. J. 2003, 3, 622–631. [Google Scholar] [CrossRef]
- Maenaka, K. MEMS inertial sensors and their applications. In Proceedings of the 5th International Conference on Networked Sensing Systems, (INSS 2008), Kanazawa, Japan, 17–19 June 2008; IEEE: New York, NY, USA, 2008; pp. 71–73, ISBN 978-4-907764-31-9. [Google Scholar]
- Xie, H.; Fedder, G.K. Vertical comb-finger capacitive actuation and sensing for CMOS-MEMS. Sens. Actuators A Phys. 2002, 95, 212–221. [Google Scholar] [CrossRef]
- Howe, R.T. Surface micromachining for microsensors and microactuators. J. Vac. Sci. Technol. B 1988, 6, 1809. [Google Scholar] [CrossRef]
- Breguet, J.-M.; Johansson, S.; Driesen, W.; Simu, U. A review on actuation principls for few cubic millimeter sized mobile micro-robots. In Proceedings of the 10th International Conference on New Actuators, (ACTUATOR 2006), Bremen, Germany, 14–16 June 2006; pp. 374–381. [Google Scholar]
- Judy, M.W. Evolution of integrated inertial MEMS technology. In Proceedings of the Solid-State, Actuators, and Microsystems Workshop Technical Digest, Hilton Head, SC, USA, 6–10 June 2004; Sulouff, R., Kenny, T.W., Eds.; Transducer Research Foundation, Inc.: San Diego, CA, USA, 2004; pp. 27–32. [Google Scholar]
- GSMArena.com. Samsung I8530 Galaxy Beam: Complete Phone Specifications. Available online: https://www.gsmarena.com/samsung_i8530_galaxy_beam-4566.php (accessed on 25 January 2023).
- Judy, J.W. Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart Mater. Struct. 2001, 10, 1115–1134. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-H.; Yeh, J.A.; Wang, P.-J. Electrical breakdown phenomena for devices with micron separations. J. Micromech. Microeng. 2006, 16, 1366–1373. [Google Scholar] [CrossRef]
- Akiyama, T.; Shono, K. Controlled stepwise motion in polysilicon microstructures. J. Microelectromech. Syst. 1993, 2, 106–110. [Google Scholar] [CrossRef]
- Yeh, R.; Hollar, S.; Pister, K. Single mask, large force, and large displacement electrostatic linear inchworm motors. J. Microelectromech. Syst. 2002, 11, 330–336. [Google Scholar] [CrossRef]
- Sampsell, J.B. Digital micromirror device and its application to projection displays. J. Vac. Sci. Technol. B 1994, 12, 3242. [Google Scholar] [CrossRef]
- Liu, A.Q.; Zhang, X.M.; Murukeshan, V.M.; Zhang, Q.X.; Zou, Q.B.; Uppili, S. Optical Switch Using Draw-Bridge Micromirror for Large Array Crossonnects. In Transducers ′01 Eurosensors XV; Obermeier, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1296–1299. ISBN 978-3-540-42150-4. [Google Scholar]
- de Dobbelaere, P.; Falta, K.; Gloeckner, S.; Patra, S. Digital MEMS for optical switching. IEEE Commun. Mag. 2002, 40, 88–95. [Google Scholar] [CrossRef]
- Plander, I.; Stepanovsky, M. MEMS technology in optical switching. In Proceedings of the 14th IEEE International Scientific Conference on Informatics, Poprad, Slovakia, 14–16 November 2017; IEEE: New York, NY, USA, 2017; pp. 299–305, ISBN 978-1-5386-0888-3. [Google Scholar]
- Jaecklin, V.P.; Linder, C.; de Rooij, N.F.; Moret, J.M.; Bischof, R.; Rudolf, F. Novel polysilicon comb actuators for xy-stages. In Proceedings of the IEEE Micro Electro Mechanical Systems, Travemunde, Germany, 4–7 February 1992; IEEE: New York, NY, USA, 1992; pp. 147–149, ISBN 0-7803-0497-7. [Google Scholar]
- Indermuehle, P.-F.; Linder, C.; Brugger, J.; Jaecklin, V.P.; de Rooij, N.F. Design and fabrication of an overhanging xy-microactuator with integrated tip for scanning surface profiling. Sens. Actuators A Phys. 1994, 43, 346–350. [Google Scholar] [CrossRef] [Green Version]
- Ni, D.; Heisser, R.; Davaji, B.; Ivy, L.; Shepherd, R.; Lal, A. Polymer interdigitated pillar electrostatic (PIPE) actuators. Microsyst. Nanoeng. 2022, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Del Corro, P.G.; Imboden, M.; Pérez, D.J.; Bishop, D.J.; Pastoriza, H. Single ended capacitive self-sensing system for comb drives driven XY nanopositioners. Sens. Actuators A Phys. 2018, 271, 409–417. [Google Scholar] [CrossRef]
- Minami, K.; Kawamura, S.; Esashi, M. Fabrication of distributed electrostatic micro actuator (DEMA). J. Microelectromech. Syst. 1993, 2, 121–127. [Google Scholar] [CrossRef]
- Chiou, J.-C.; Lin, Y.-J.; Kuo, C.-F. Extending the traveling range with a cascade electrostatic comb-drive actuator. J. Micromech. Microeng. 2008, 18, 15018. [Google Scholar] [CrossRef]
- Schmitt, L.; Schmitt, P.; Barowski, J.; Hoffmann, M. Stepwise Electrostatic Actuator System for THz Reflect Arrays. In Proceedings of the International Conference and Exhibition on New Actuator Systems and Applications, (ACTUATOR 2021), Online Event, 17–19 February 2021; VDE VERLAG: Berlin, Germany, 2021; pp. 1–4, ISBN 978-3-8007-5454-0. [Google Scholar]
- Schmitt, L.; Hoffmann, M. Large Stepwise Discrete Microsystem Displacements Based on Electrostatic Bending Plate Actuation. Actuators 2021, 10, 272. [Google Scholar] [CrossRef]
- Conrad, H.; Schenk, H.; Kaiser, B.; Langa, S.; Gaudet, M.; Schimmanz, K.; Stolz, M.; Lenz, M. A small-gap electrostatic micro-actuator for large deflections. Nat. Commun. 2015, 6, 10078. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Wu, M.C.; Choquette, K.D.; Crawford, M.H. Self-assembled microactuated XYZ stages for optical scanning and alignment. In Proceedings of the International Conference on Solid State Sensors and Actuators, (TRANSDUCERS ′97), Chicago, IL, USA, 16–19 June 1997; pp. 319–322, ISBN 0-7803-3829-4. [Google Scholar]
- Hailu, Z.; He, S.; Ben Mrad, R. Hybrid micro electrostatic actuator. Microsyst. Technol. 2016, 22, 319–327. [Google Scholar] [CrossRef]
- Ando, Y. Development of three-dimensional electrostatic stages for scanning probe microscope. Sens. Actuators A Phys. 2004, 114, 285–291. [Google Scholar] [CrossRef]
- Liu, X.; Kim, K.; Sun, Y. A MEMS Stage for 3-Axis Nanopositioning. In Proceedings of the IEEE International Conference on Automation Science and Engineering, (CASE 2007), Scottsdale, AZ, USA, 22–25 September 2007; IEEE: New York, NY, USA, 2007; pp. 1087–1092, ISBN 978-1-4244-1153-5. [Google Scholar]
- Chang, H.-C.; Tsai, J.M.-L.; Tsai, H.-C.; Fang, W. Design, fabrication, and testing of a 3-DOF HARM micromanipulator on (111) silicon substrate. Sens. Actuators A Phys. 2006, 125, 438–445. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Q. Design and Analysis of a Decoupled XY MEMS Microgripper with Integrated Dual-Axis Actuation and Force Sensing. IFAC-PapersOnLine 2017, 50, 808–813. [Google Scholar] [CrossRef]
- Muthuswamy, J.; Okandan, M.; Jain, T.; Gilletti, A. Electrostatic microactuators for precise positioning of neural microelectrodes. IEEE Trans. Biomed. Eng. 2005, 52, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.C.; Lim, M.G.; Howe, R.T. Electrostatic Comb Drive Levitation And Control Method. J. Microelectromech. Syst. 1992, 1, 170–178. [Google Scholar] [CrossRef]
- He, S.; Ben Mrad, R.; Chong, J. Repulsive-force out-of-plane large stroke translation micro electrostatic actuator. J. Micromech. Microeng. 2011, 21, 75002. [Google Scholar] [CrossRef]
- Schaler, E.W.; Jiang, L.; Fearing, R.S. Multi-layer, Thin-film Repulsive-force Electrostatic Actuators for a 2-DoF Micro-mirror. In Actuator 18: International Conference and Exhibition on New Actuators and Drive Systems, Bremen, Germany, 25–27 June 2018: Interactive Conference Proceedings; Borgmann, H., Ed.; VDE VERLAG: Berlin, Germany, 2018; pp. 299–303. ISBN 978-3-8007-4675-0. [Google Scholar]
- Schaler, E.W.; Zohdi, T.I.; Fearing, R.S. Thin-film repulsive-force electrostatic actuators. Sens. Actuators A Phys. 2018, 270, 252–261. [Google Scholar] [CrossRef]
- Gorthi, S.; Mohanty, A.; Chatterjee, A. Cantilever beam electrostatic MEMS actuators beyond pull-in. J. Micromech. Microeng. 2006, 16, 1800–1810. [Google Scholar] [CrossRef] [Green Version]
- Medina, L.; Gilat, R.; Krylov, S. Bistability criterion for electrostatically actuated initially curved micro plates. Int. J. Eng. Sci. 2018, 130, 75–92. [Google Scholar] [CrossRef]
- Kumar, S.; Bhushan, A. Interaction of transverse pressure and in-plane internal stresses on bi-stability of electrostatically rectangular microplates. Eng. Res. Express 2022, 4, 45042. [Google Scholar] [CrossRef]
- Das, M.; Bhushan, A. Investigation of an electrostatically actuated imperfect circular microplate under transverse pressure for pressure sensor applications. Eng. Res. Express 2021, 3, 045023. [Google Scholar] [CrossRef]
- Wagner, B.; Quenzer, H.J.; Hoerschelmann, S.; Lisec, T.; Juerss, M. Bistable microvalve with pneumatically coupled membranes. In Proceedings of the 9th IEEE Annual International Workshop on Micro Electro Mechanical Systems, San Diego, CA, USA, 11–15 February 1996; IEEE: New York, NY, USA, 1996; pp. 384–388, ISBN 0-7803-2985-6. [Google Scholar]
- Freudenreich, M.; Mescheder, U.; Somogyi, G. Simulation and realization of a novel micromechanical bi-stable switch. Sens. Actuators A Phys. 2004, 114, 451–459. [Google Scholar] [CrossRef]
- Kwon, H.N.; Hwang, I.-H.; Lee, J.-H. A pulse-operating electrostatic microactuator for bi-stable latching. J. Micromech. Microeng. 2005, 15, 1511–1516. [Google Scholar] [CrossRef]
- Akiyama, T.; Fujita, H. A quantitative analysis of Scratch Drive Actuator using buckling motion. In Proceedings of the IEEE Micro Electro Mechanical Systems, (MEMS 1995), Amsterdam, The Netherlands, 29 January–2 February 1995; IEEE: Piscataway, NJ, USA; pp. 310–315, ISBN 0-7803-2503-6. [Google Scholar]
- Linderman, R.J.; Bright, V.M. Nanometer precision positioning robots utilizing optimized scratch drive actuators. Sens. Actuators A Phys. 2001, 91, 292–300. [Google Scholar] [CrossRef]
- Tas, N.; Wissink, J.; Sander, L.; Lammerink, T.; Elwenspoek, M. Modeling, design and testing of the electrostatic shuffle motor. Sens. Actuators A Phys. 1998, 70, 171–178. [Google Scholar] [CrossRef]
- Akiyama, T.; Collard, D.; Fujita, H. Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS. J. Microelectromech. Syst. 1997, 6, 10–17. [Google Scholar] [CrossRef]
- Li, L.; Brown, J.G.; Uttamchandani, D. Study of scratch drive actuator force characteristics. J. Micromech. Microeng. 2002, 12, 736–741. [Google Scholar] [CrossRef]
- Honarmandi, P.; Zu, J.W.; Behdinan, K. Analytical study and design characteristics of scratch drive actuators. Sens. Actuators A Phys. 2010, 160, 116–124. [Google Scholar] [CrossRef]
- Chen, S. Improved model of rectangular scratch drive actuator. J. Micro/Nanolith. MEMS MOEMS 2011, 10, 13016. [Google Scholar] [CrossRef] [Green Version]
- Abtahi, M.; Vossoughi, G.; Meghdari, A. Dynamic Modeling of Scratch Drive Actuators. J. Microelectromech. Syst. 2015, 24, 1370–1383. [Google Scholar] [CrossRef]
- Kanamori, Y.; Aoki, Y.; Sasaki, M.; Hosoya, H.; Wada, A.; Hane, K. Fiber-optical switch using cam-micromotor driven by scratch drive actuators. J. Micromech. Microeng. 2005, 15, 118–123. [Google Scholar] [CrossRef]
- Kanamori, Y.; Yahagi, H.; Hane, K. A microtranslation table with scratch-drive actuators fabricated from silicon-on-insulator wafer. Sens. Actuators A Phys. 2006, 125, 451–457. [Google Scholar] [CrossRef]
- Donald, B.R.; Levey, C.G.; McGray, C.D.; Paprotny, I.; Rus, D. An Untethered, Electrostatic, Globally Controllable MEMS Micro-Robot. J. Microelectromech. Syst. 2006, 15, 1–15. [Google Scholar] [CrossRef]
- Tas, N.; Wissink, J.; Sander, L.; Lammerink, T.; Elwenspoek, M. The shuffle motor: A high force, high precision linear electrostatic stepper motor. In Proceedings of the International Conference on Solid State Sensors and Actuators, (TRANSDUCERS ′97), Chicago, IL, USA, 16–19 June 1997; pp. 777–780, ISBN 0-7803-3829-4. [Google Scholar]
- Lee, A.P.; Pisano, A.P. Polysilicon angular microvibromotors. J. Microelectromech. Syst. 1992, 1, 70–76. [Google Scholar] [CrossRef]
- Daneman, M.J.; Tien, N.C.; Solgaard, O.; Pisano, A.P.; Lau, K.Y.; Muller, R.S. Linear microvibromotor for positioning optical components. J. Microelectromech. Syst. 1996, 5, 159–165. [Google Scholar] [CrossRef]
- Pham, P.H.; Dao, D.V.; Amaya, S.; Kitada, R.; Sugiyama, S. Novel Micro Transportation Systems Based on Ratchetmechanism and Electrostatic Actuators. In Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, (TRANSDUCERS ′07 & EUROSENSORS XXI), Lyon, France, 10–14 June 2007; IEEE: New York, NY, USA, 2007; pp. 451–454, ISBN 1-4244-0841-5. [Google Scholar]
- Dao, D.V.; Pham, P.H.; Sugiyama, S. Multimodule Micro Transportation System Based on Electrostatic Comb-Drive Actuator and Ratchet Mechanism. J. Microelectromech. Syst. 2011, 20, 140–149. [Google Scholar] [CrossRef]
- Galante, T.P.; Frank, J.E.; Bernard, J.; Chen, W.; Lesieutre, G.A.; Koopmann, G.H. Design, modeling, and performance of a high-force piezoelectric inchworm motor. In Proceedings of the 5th Annual International Symposium on Smart Structures and Materials, San Diego, CA, USA, 1 March 1998; Regelbrugge, M.E., Ed.; SPIE: Washington, DC, USA, 1998; pp. 756–767. [Google Scholar]
- Lee, S.-K.; Esashi, M. Design of the electrostatic linear microactuator based on the inchworm motion. Mechatronics 1995, 5, 963–972. [Google Scholar] [CrossRef]
- Yeh, R.; Kruglick, E.; Pister, K. Microelectromechanical Components For Articulated Microrobots. In Proceedings of the International Conference on Solid State Sensors and Actuators, (TRANSDUCERS ′95), Stockholm, Sweden, 25–29 June 1995; IEEE: New York, NY, USA, 1995; pp. 346–349. [Google Scholar]
- Tas, N.R.; Legtenberg, R.; Berenschot, J.W.; Elwenspoek, M.C.; Fluitman, J.H.J. The Electrostatic Shuffle Motor. In Proceedings of the Micromechanics Europe ′95 Workshop, Copenhagen, Denmark, 3–5 September 1995; pp. 128–131. [Google Scholar]
- Yeh, R.; Kruglick, E.; Pister, K. Surface-micromachined components for articulated microrobots. J. Microelectromech. Syst. 1996, 5, 10–17. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Yang, X. Numerical analysis on snapping induced by electromechanical interaction of shuffling actuator with nonlinear plate. Comput. Struct. 2003, 81, 255–264. [Google Scholar] [CrossRef]
- deBoer, M.P.; Luck, D.L.; Ashurst, W.R.; Maboudian, R.; Corwin, A.D.; Walraven, J.A.; Redmond, J.M. High-Performance Surface-Micromachined Inchworm Actuator. J. Microelectromech. Syst. 2004, 13, 63–74. [Google Scholar] [CrossRef]
- Patrascu, M.; Stramigioli, S. Physical Modelling Of The μWalker, A MEMS Linear Stepper Actuator. IFAC Proc. Vol. 2006, 39, 743–748. [Google Scholar] [CrossRef]
- Sarajlic, E.; Berenschot, E.; Fujita, H.; Krijnen, G.; Elwenspoek, M. Bidirectional electrostatic linear shuffle motor with two degrees of freedom. In Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems, (MEMS 2005), Miami Beach, FL, USA, 30 January–3 February 2005; IEEE: New York, NY, USA, 2005; pp. 391–394, ISBN 0-7803-8732-5. [Google Scholar]
- Sarajlic, E.; Berenschot, E.; Tas, N.; Fujita, H.; Krijnen, G.; Elwenspoek, M. Fabrication and Characterization of an Electrostatic Contraction Beams Micromotor. In Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, (MEMS 2006), Istanbul, Turkey, 22–26 January 2006; IEEE: New York, NY, USA, 2006; pp. 814–817, ISBN 0-7803-9475-5. [Google Scholar]
- Tas, N.R.; Sonnenberg, A.H.; Sander, A.; Elwenspoek, M.C. Surface micromachined linear electrostatic stepper motor. In Proceedings of the 10th IEEE Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, 26–30 January 1997; IEEE: New York, NY, USA, 1997; pp. 215–220, ISBN 0-7803-3744-1. [Google Scholar]
- Baltzer, M.; Kraus, T.; Obermeier, E. A linear stepping actuator in surface micromachining technology for low voltages and large displacements. In Proceedings of the International Conference on Solid State Sensors and Actuators, (TRANSDUCERS ′97), Chicago, IL, USA, 16–19 June 1997; pp. 781–784, ISBN 0-7803-3829-4. [Google Scholar]
- Tas, N.R.; Sonnenberg, T.; Molenaar, R.; Elwenspoek, M. Design, fabrication and testing of laterally driven electrostatic motors employing walking motion and mechanical leverage. J. Micromech. Microeng. 2003, 13, N6–N15. [Google Scholar] [CrossRef]
- Penskiy, I.; Bergbreiter, S. Optimized electrostatic inchworm motors using a flexible driving arm. J. Micromech. Microeng. 2013, 23, 15018. [Google Scholar] [CrossRef]
- Narimani, K.; Shashank, S.; Langa, S.; Gomez, R.P.; Ruffert, C.; Scholles, M.; Schenk, H. Highly Modular Microsystem Inchworm Motor Based on a Nanoscopic Electrostatic Drive. In Proceedings of the MikroSystemTechnik Congress 2021, (MST 2021), Stuttgart-Ludwigsburg, Germany, 8–10 November 2021; VDE VERLAG: Berlin, Germany; pp. 1–4, ISBN 978-3-8007-5656-8. [Google Scholar]
- Albukhari, A.; Mescheder, U. Investigation of the Dynamics of a 2-DoF Actuation Unit Cell for a Cooperative Electrostatic Actuation System. Actuators 2021, 10, 276. [Google Scholar] [CrossRef]
- Kloub, H. Design Concepts of Multistage Multistable Cooperative Electrostatic Actuation System with Scalable Stroke and Large Force Capability. In Proceedings of the International Conference and Exhibition on New Actuator Systems and Applications, (ACTUATOR 2021), Online Event, 17–19 February 2021; VDE VERLAG: Berlin, Germany; pp. 1–4, ISBN 978-3-8007-5454-0. [Google Scholar]
- Hollar, S.; Bergbreiter, S.; Pister, K. Bidirectional inchworm motors and two-DOF robot leg operation. In Proceedings of the 12th International Conference on Solid State Sensors, Actuators and Microsystems: Digest of Technical Papers, (TRANSDUCERS ′03), Boston, MA, USA, 8–12 June 2003; IEEE: New York, NY, USA, 2003; pp. 262–267, ISBN 0-7803-7731-1. [Google Scholar]
- Greenspun, J.; Pister, K. First leaps of an electrostatic inchworm motor-driven jumping microrobot. In Proceedings of the Solid-State, Actuators, and Microsystems Workshop: Technical Digest, Hilton Head, SC, USA, 3–7 June 2018; Lamers, T., Rais-Zadeh, M., Eds.; Transducer Research Foundation, Inc.: San Diego, CA, USA, 2018; pp. 159–162, ISBN 978-1-940470-03-0. [Google Scholar] [CrossRef]
- Kilberg, B.; Contreras, D.S.; Greenspun, J.; Gomez, H.; Liu, E.; Pister, K. MEMS airfoil with integrated inchworm motor and force sensor. In Proceedings of the Solid-State, Actuators, and Microsystems Workshop: Technical Digest, Hilton Head, SC, USA, 3–7 June 2018; Lamers, T., Rais-Zadeh, M., Eds.; Transducer Research Foundation, Inc.: San Diego, CA, USA, 2018; pp. 306–309, ISBN 978-1-940470-03-0. [Google Scholar] [CrossRef]
- Schindler, C.B.; Greenspun, J.T.; Gomez, H.C.; Pister, K.S.J. A Jumping Silicon Microrobot with Electrostatic Inchworm Motors and Energy Storing Substrate Springs. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; IEEE: New York, NY, USA, 2019; pp. 88–91, ISBN 978-1-5386-8104-6. [Google Scholar]
- Rauf, A.M.; Kilberg, B.G.; Schindler, C.B.; Park, S.A.; Pister, K.S.J. Towards Aerodynamic Control of Miniature Rockets with MEMS Control Surfaces. In Proceedings of the 33rd IEEE International Conference on Micro Electro Mechanical Systems, (MEMS 2020), Vancouver, BC, Canada, 18–22 January 2020; IEEE: New York, NY, USA, 2020; pp. 523–526, ISBN 978-1-7281-3581-6. [Google Scholar]
- Schindler, C.B.; Gomez, H.C.; Acker-James, D.; Teal, D.; Li, W.; Pister, K.S.J. 15 Millinewton Force, 1 Millimeter Displacement, Low-Power MEMS Gripper. In Proceedings of the 33rd IEEE International Conference on Micro Electro Mechanical Systems, (MEMS 2020), Vancouver, BC, Canada, 18–22 January 2020; IEEE: New York, NY, USA, 2020; pp. 485–488, ISBN 978-1-7281-3581-6. [Google Scholar]
- Contreras, D.S. Walking Silicon: Actuators and Legs for Small-Scale Terrestrial Robots. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1 May 2019. [Google Scholar]
- Contreras, D.S.; Drew, D.S.; Pister, K.S.J. First steps of a millimeter-scale walking silicon robot. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems, (TRANSDUCERS ′17), Kaohsiung, Taiwan, 18–22 June 2017; Fang, W., Ed.; IEEE: Piscataway, NJ, USA, 2017; pp. 910–913, ISBN 978-1-5386-2732-7. [Google Scholar]
- Robert, P.; Saias, D.; Billard, C.; Boret, S.; Sillon, N.; Maeder-Pachurka, C.; Charvet, P.L.; Bouche, G.; Ancey, P.; Berruyer, P. Integrated RF-MEMS switch based on a combination of thermal and electrostatic actuation. In Proceedings of the 12th International Conference on Solid State Sensors, Actuators and Microsystems: Digest of Technical Papers, (TRANSDUCERS ’03), Boston, MA, USA, 8–12 June 2003; IEEE: New York, NY, USA, 2003; pp. 1714–1717, ISBN 0-7803-7731-1. [Google Scholar]
- Alwan, A.; Aluru, N.R. Analysis of Hybrid Electrothermomechanical Microactuators With Integrated Electrothermal and Electrostatic Actuation. J. Microelectromech. Syst. 2009, 18, 1126–1136. [Google Scholar] [CrossRef] [Green Version]
- Chae, U.; Yu, H.-Y.; Lee, C.; Cho, I.-J. A Hybrid RF MEMS Switch Actuated by the Combination of Bidirectional Thermal Actuations and Electrostatic Holding. IEEE Trans. Microw. Theory Tech. 2020, 68, 3461–3470. [Google Scholar] [CrossRef]
- Bourbon, G.; Minotti, P.; Langlet, P.; Masuzawa, T.; Fujita, H. Three-dimensional active microcatheter combining shape memory alloy actuators and direct-drive tubular electrostatic micromotors. In Proceedings of the Micromachining and Microfabrication Conference, (Micromachined Devices and Components IV), Santa Clara, CA, USA, 20 September 1998; French, P.J., Chau, K.H., Eds.; SPIE: Washington, DC, USA, 1998; pp. 147–158. [Google Scholar]
- Potkay, J.A.; Wise, K.D. A Hybrid Thermopneumatic and Electrostatic Microvalve with Integrated Position Sensing. Micromachines 2012, 3, 379–395. [Google Scholar] [CrossRef] [Green Version]
- Ikehashi, T.; Ohguro, T.; Ogawa, E.; Yamazaki, H.; Kojima, K.; Matsuo, M.; Ishimaru, K.; Ishiuchi, H. A Robust RF MEMS Variable Capacitor with Piezoelectric and Electrostatic Actuation. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; IEEE: New York, NY, USA, 2006; pp. 39–42, ISBN 0-7803-9541-7. [Google Scholar]
- Toda, R.; Yang, E.-H. Fabrication and Characterization of Vertical Inchworm Microactuator. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 13–10 November 2004; ASME: New York, NY, USA, 2004. [Google Scholar]
- Toda, R.; Yang, E.-H. A normally latched, large-stroke, inchworm microactuator. J. Micromech. Microeng. 2007, 17, 1715–1720. [Google Scholar] [CrossRef] [Green Version]
- Poletkin, K.; Lu, Z.; Wallrabe, U.; Badilita, V. A New Hybrid Micromachined Contactless Suspension With Linear and Angular Positioning and Adjustable Dynamics. J. Microelectromech. Syst. 2015, 24, 1248–1250. [Google Scholar] [CrossRef]
- Poletkin, K.; Korvink, J. Modeling a Pull-In Instability in Micro-Machined Hybrid Contactless Suspension. Actuators 2018, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Poletkin, K. On the Static Pull-In of Tilting Actuation in Electromagnetically Levitating Hybrid Micro-Actuator: Theory and Experiment. Actuators 2021, 10, 256. [Google Scholar] [CrossRef]
- Sari, I.; Kraft, M. A MEMS linear accelerator for levitated micro-objects. Sens. Actuators A Phys. 2015, 222, 15–23. [Google Scholar] [CrossRef]
- Corporate Research & Development Center, Toshiba. Low-Cost and Reliable Package for RF-MEMS Tunable Capacitor. Available online: https://www.global.toshiba/ww/technology/corporate/rdc/rd/fields/10-e13.html (accessed on 26 January 2023).
- Laermer, F.; Franssila, S.; Sainiemi, L.; Kolari, K. Deep Reactive Ion Etching. In Handbook of Silicon Based MEMS Materials and Technologies; Elsevier: Amsterdam, The Netherlands, 2015; pp. 444–469. ISBN 9780323299657. [Google Scholar]
- Teal, D.; Gomez, H.C.; Schindler, C.B.; Pister, K.S.J. Robust Electrostatic Inchworm Motors for Macroscopic Manipulation and Movement. In Proceedings of the 21st International Conference on Solid-State Sensors, Actuators and Microsystems, (TRANSDUCERS ’21), Online Event, 20–25 June 2021; IEEE: New York, NY, USA, 2021; pp. 635–638. [Google Scholar]
- van Merlijn Spengen, W. MEMS reliability from a failure mechanisms perspective. Microelectron. Reliab. 2003, 43, 1049–1060. [Google Scholar] [CrossRef]
- Subhash, G.; Corwin, A.D.; de Boer, M.P. Operational Wear and Friction in MEMS Devices. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Microelectromechanical Systems, Anaheim, CA, USA, 13–19 November 2004; ASMEDC: Washington, DC, USA, 2004; pp. 207–209, ISBN 0-7918-4714-4. [Google Scholar]
- Fang, W.; Li, S.-S.; Li, M.-H. Leveraging semiconductor ecosystems to MEMS. In Proceedings of the 36th IEEE International Conference on Micro Electro Mechanical Systems, (MEMS 2023), Munich, Germany, 15–19 January 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albukhari, A.; Mescheder, U. Inchworm Motors and Beyond: A Review on Cooperative Electrostatic Actuator Systems. Actuators 2023, 12, 163. https://doi.org/10.3390/act12040163
Albukhari A, Mescheder U. Inchworm Motors and Beyond: A Review on Cooperative Electrostatic Actuator Systems. Actuators. 2023; 12(4):163. https://doi.org/10.3390/act12040163
Chicago/Turabian StyleAlbukhari, Almothana, and Ulrich Mescheder. 2023. "Inchworm Motors and Beyond: A Review on Cooperative Electrostatic Actuator Systems" Actuators 12, no. 4: 163. https://doi.org/10.3390/act12040163
APA StyleAlbukhari, A., & Mescheder, U. (2023). Inchworm Motors and Beyond: A Review on Cooperative Electrostatic Actuator Systems. Actuators, 12(4), 163. https://doi.org/10.3390/act12040163