A Multidirectional Forearm Electromagnetic Generator Designed via Numerical Simulations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Coil Configuration Optimization
2.2. Design of EMG Frame
2.3. Performance of EMGs upon Various Arm Motions
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Song, Y.; Han, M.; Zhang, H. Portable and Wearable Self-Powered Systems Based on Emerging Energy Harvesting Technology. Microsyst. Nanoeng. 2021, 7, 25. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, R.; Fan, Z.; Lin, Y. Self-Powered and Wearable Biosensors for Healthcare. Mater. Today Energy 2022, 23, 100900. [Google Scholar] [CrossRef]
- Gao, M.; Wang, P.; Jiang, L.; Wang, B.; Yao, Y.; Liu, S.; Chu, D.; Cheng, W.; Lu, Y. Power Generation for Wearable Systems. Energy Environ. Sci. 2021, 14, 2114–2157. [Google Scholar] [CrossRef]
- Choi, Y.-M.; Lee, M.G.; Jeon, Y. Wearable Biomechanical Energy Harvesting Technologies. Energies 2017, 10, 1483. [Google Scholar] [CrossRef]
- Liu, M.; Qian, F.; Mi, J.; Zuo, L. Biomechanical Energy Harvesting for Wearable and Mobile Devices: State-of-the-Art and Future Directions. Appl. Energy 2022, 321, 119379. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, A.; Wang, Y.; Dai, X.; Lu, Y.; Wang, F. Rotational Electromagnetic Energy Harvester for Human Motion Application at Low Frequency. Appl. Phys. Lett. 2020, 116, 053902. [Google Scholar] [CrossRef]
- Toyabur Rahman, M.; Sohel Rana, S.; Salauddin, M.; Maharjan, P.; Bhatta, T.; Kim, H.; Cho, H.; Park, J.Y. A Highly Miniaturized Freestanding Kinetic-Impact-Based Non-Resonant Hybridized Electromagnetic-Triboelectric Nanogenerator for Human Induced Vibrations Harvesting. Appl. Energy 2020, 279, 115799. [Google Scholar] [CrossRef]
- Liu, Y.; Khanbareh, H.; Halim, M.A.; Feeney, A.; Zhang, X.; Heidari, H.; Ghannam, R. Piezoelectric Energy Harvesting for Self-Powered Wearable Upper Limb Applications. Nano Sel. 2021, 2, 1459–1479. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, N.; Yang, T.; Wang, L.; Cao, X.; Wang, Z.L. A Piezoelectric Nanogenerator Promotes Highly Stretchable and Self-Chargeable Supercapacitors. Mater. Horiz. 2020, 7, 2158–2167. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Lin Wang, Z. Flexible Triboelectric Generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Walden, R.; Aazem, I.; Babu, A.; Pillai, S.C. Textile-Triboelectric Nanogenerators (T-TENGs) for Wearable Energy Harvesting Devices. Chem. Eng. J. 2023, 451, 138741. [Google Scholar] [CrossRef]
- Khan, A.S.; Khan, F.U. A Survey of Wearable Energy Harvesting Systems. Int. J. Energy Res. 2022, 46, 2277–2329. [Google Scholar] [CrossRef]
- Luo, J.; Gao, W.; Wang, Z.L. The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Adv. Mater. 2021, 33, 2004178. [Google Scholar] [CrossRef]
- Iqbal, M.; Nauman, M.M.; Khan, F.U.; Abas, P.E.; Cheok, Q.; Iqbal, A.; Aissa, B. Vibration-Based Piezoelectric, Electromagnetic, and Hybrid Energy Harvesters for Microsystems Applications: A Contributed Review. Int. J. Energy Res. 2021, 45, 65–102. [Google Scholar] [CrossRef]
- Williams, C.B.; Yates, R.B. Analysis of a Micro-Electric Generator for Microsystems. Sens. Actuators A Phys. 1996, 52, 8–11. [Google Scholar] [CrossRef]
- Spreemann, D.; Hoffmann, D.; Folkmer, B.; Manoli, Y. Numerical Optimization Approach for Resonant Electromagnetic Vibration Transducer Designed for Random Vibration. J. Micromech. Microeng. 2008, 18, 104001. [Google Scholar] [CrossRef]
- Saha, C.R.; O’Donnell, T.; Wang, N.; McCloskey, P. Electromagnetic Generator for Harvesting Energy from Human Motion. Sens. Actuators A Phys. 2008, 147, 248–253. [Google Scholar] [CrossRef]
- Nguyen, D.S.; Halvorsen, E.; Jensen, G.U.; Vogl, A. Fabrication and Characterization of a Wideband MEMS Energy Harvester Utilizing Nonlinear Springs. J. Micromech. Microeng. 2010, 20, 125009. [Google Scholar] [CrossRef]
- Harne, R.L.; Wang, K.W. A Review of the Recent Research on Vibration Energy Harvesting via Bistable Systems. Smart Mater. Struct. 2013, 22, 023001. [Google Scholar] [CrossRef]
- Foisal, A.R.M.; Hong, C.; Chung, G.-S. Multi-Frequency Electromagnetic Energy Harvester Using a Magnetic Spring Cantilever. Sens. Actuators A Phys. 2012, 182, 106–113. [Google Scholar] [CrossRef]
- Halim, M.A.; Cho, H.; Park, J.Y. Design and Experiment of a Human-Limb Driven, Frequency up-Converted Electromagnetic Energy Harvester. Energy Convers. Manag. 2015, 106, 393–404. [Google Scholar] [CrossRef]
- Kulah, H.; Najafi, K. Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications. IEEE Sens. J. 2008, 8, 261–268. [Google Scholar] [CrossRef]
- Haroun, A.; Yamada, I.; Warisawa, S. Study of Electromagnetic Vibration Energy Harvesting with Free/Impact Motion for Low Frequency Operation. J. Sound Vib. 2015, 349, 389–402. [Google Scholar] [CrossRef]
- Zelik, K.E.; Takahashi, K.Z.; Sawicki, G.S. Six Degree-of-Freedom Analysis of Hip, Knee, Ankle and Foot Provides Updated Understanding of Biomechanical Work during Human Walking. J. Exp. Biol. 2015, 218, 876–886. [Google Scholar] [CrossRef]
- Samad, F.A.; Karim, M.F.; Paulose, V.; Ong, L.C. A Curved Electromagnetic Energy Harvesting System for Wearable Electronics. IEEE Sens. J. 2016, 16, 1969–1974. [Google Scholar] [CrossRef]
- Maharjan, P.; Bhatta, T.; Salauddin Rasel, M.; Salauddin, M.; Toyabur Rahman, M.; Park, J.Y. High-Performance Cycloid Inspired Wearable Electromagnetic Energy Harvester for Scavenging Human Motion Energy. Appl. Energy 2019, 256, 113987. [Google Scholar] [CrossRef]
- Wu, Z.; Tang, J.; Zhang, X.; Yu, Z. An Energy Harvesting Bracelet. Appl. Phys. Lett. 2017, 111, 013903. [Google Scholar] [CrossRef]
- Maharjan, P.; Toyabur, R.M.; Park, J.Y. A Human Locomotion Inspired Hybrid Nanogenerator for Wrist-Wearable Electronic Device and Sensor Applications. Nano Energy 2018, 46, 383–395. [Google Scholar] [CrossRef]
- Li, Z.; Yan, Z.; Luo, J.; Yang, Z. Performance Comparison of Electromagnetic Energy Harvesters Based on Magnet Arrays of Alternating Polarity and Configuration. Energy Convers. Manag. 2019, 179, 132–140. [Google Scholar] [CrossRef]
- Li, Z.; Luo, J.; Xie, S.; Xin, L.; Guo, H.; Pu, H.; Yin, P.; Xu, Z.; Zhang, D.; Peng, Y.; et al. Instantaneous Peak 2.1 W-Level Hybrid Energy Harvesting from Human Motions for Self-Charging Battery-Powered Electronics. Nano Energy 2021, 81, 105629. [Google Scholar] [CrossRef]
- Wang, W.; Wei, H.; Wei, Z.-H. Numerical Analysis of a Magnetic-Spring-Based Piecewise Nonlinear Electromagnetic Energy Harvester. Eur. Phys. J. Plus 2021, 137, 56. [Google Scholar] [CrossRef]
- Haroun, A.; Yamada, I.; Warisawa, S. Micro Electromagnetic Vibration Energy Harvester Based on Free/Impact Motion for Low Frequency–Large Amplitude Operation. Sens. Actuators A Phys. 2015, 224, 87–98. [Google Scholar] [CrossRef]
- Beeby, S.P.; O’Donnell, T. Electromagnetic Energy Harvesting. In Energy Harvesting Technologies; Priya, S., Inman, D.J., Eds.; Springer: Boston, MA, USA, 2009; pp. 129–161. ISBN 978-0-387-76464-1. [Google Scholar]
- Chow, T.L. Introduction to Electromagnetic Theory: A Modern Perspective; Jones & Bartlett Learning: Burlington, MA, USA, 2006; ISBN 0-7637-3827-1. [Google Scholar]
- Solve Nonstiff Differential Equations—Medium Order Method—MATLAB Ode45. Available online: https://www.mathworks.com/help/matlab/ref/ode45.html (accessed on 9 November 2022).
- Zarzycka, N.; Załuska, S. Measurements of the forearm i inhabitants of the Lublin region. In Annales Universitatis Mariae Curie-Sklodowska. Sectio D: Medicina; Uniwersytetu Marii Curie Sklodowskies: Lublin, Poland, 1989; Volume 44, pp. 85–92. [Google Scholar]
- Kim, H.; Jeong, S. Case Study: Hybrid Model for the Customized Wrist Orthosis Using 3D Printing. J. Mech. Sci. Technol. 2015, 29, 5151–5156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, N.; King, C.; Xie, Q.; Zhao, F.; Gao, W. A Multidirectional Forearm Electromagnetic Generator Designed via Numerical Simulations. Actuators 2023, 12, 225. https://doi.org/10.3390/act12060225
He N, King C, Xie Q, Zhao F, Gao W. A Multidirectional Forearm Electromagnetic Generator Designed via Numerical Simulations. Actuators. 2023; 12(6):225. https://doi.org/10.3390/act12060225
Chicago/Turabian StyleHe, Nanfei, Colton King, Qizheng Xie, Feng Zhao, and Wei Gao. 2023. "A Multidirectional Forearm Electromagnetic Generator Designed via Numerical Simulations" Actuators 12, no. 6: 225. https://doi.org/10.3390/act12060225
APA StyleHe, N., King, C., Xie, Q., Zhao, F., & Gao, W. (2023). A Multidirectional Forearm Electromagnetic Generator Designed via Numerical Simulations. Actuators, 12(6), 225. https://doi.org/10.3390/act12060225