Experimental Investigation on the Combined Blowing Control of a Hybrid Wing Body Aircraft
Abstract
:1. Introduction
2. Test Equipment and Method
2.1. Test Device
2.2. Test Model
2.3. Air Supply Device and Method
3. Numerical Calculation
3.1. Calculation Models and Methods
3.2. Calculation Validation
3.3. Position of the LE Slot
3.4. Combinatorial Blowing Control Process
3.5. Surface Pressure and Velocity Distribution
4. Test Results and Discussion
4.1. Data Repeatability
4.2. Uncontrolled Performance
4.3. Effect of TE Blowing Alone
4.4. Effect of LE Blowing Alone
4.5. Combined Blowing Control
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liebeck, R.H. Design of the Blended Wing Body Subsonic Transport. J. Aircr. 2004, 41, 10–25. [Google Scholar] [CrossRef] [Green Version]
- Panagiotou, P.; Antoniou, S.; Yakinthos, K. Cant angle morphing winglets investigation for the enhancement of the aerodynamic, stability and performance characteristics of a tactical Blended-Wing-Body UAV. Aerosp. Sci. Technol. 2022, 123, 107467. [Google Scholar] [CrossRef]
- Larkin, G.; Coates, W. A design analysis of vertical stabilisers for Blended Wing Body aircraft. Aerosp. Sci. Technol. 2017, 61, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Graham, W.R.; Hall, C.A.; Morales, M.V. The potential of future aircraft technology for noise and pollutant emissions reduction. Transp. Policy 2014, 34, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Ammar, S.; Legros, C.; Trépanier, J.Y. Conceptual design, performance and stability analysis of a 200 passengers Blended Wing Body aircraft. Aerosp. Sci. Technol. 2017, 65, S1270963816312640. [Google Scholar] [CrossRef]
- Xin, Z.; Chen, Z.; Gu, W.; Zhang, M.; Zhang, B. Externally blown elevon applied for the longitudinal control of blended wing body transport with podded engines. Aerosp. Sci. Technol. 2019, 93, 105324. [Google Scholar] [CrossRef]
- Hooker, J.R. Design of a Hybrid Wing Body for Fuel Efficient Air Mobility Operations at Transonic Flight Conditions. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2014. [Google Scholar]
- Wick, A.T.; Hooker, J.R.; Walker, J.; Chan, D.T.; Plumley, R.; Zeune, C. Hybrid Wing Body Performance Validation at the National Transonic Facility; NASA Technical Report AIAA-2017-0099; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar]
- Peter, M.; Shmilovich, A.; Douglas, S. Refined AFC-Enabled High-Lift System Integration Study; NASA Technical Report NASA/CR–2016-219170; National Aeronautics and Space Administration: Hampton, VA, USA, 2016. [Google Scholar]
- McLean, J.; Crouch, J.; Stoner, R.; Sakurai, S.; Seidel, G.E.; Feifel, W.M.; Rush, H.M. Study of the Application of Separation Control by Unsteady Excitation to Civil Transport Aircraft; NASA Technical Report NASA-CR-1999-209338; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1999. [Google Scholar]
- Smith, D.; Dickey, E.; Vonklein, T. The ADVINT Program. In Proceedings of the 3rd AIAA Flow Control Conference, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar]
- Bumazzi, M.; Radespiel, R. Design and Analysis of a Droop Nose for Coanda Flap Applications. J. Aircr. 2014, 51, 1567–1579. [Google Scholar]
- Radespiel, R.; Burnazzi, M. Active Flow and Combustion Control; Springer: Berlin, Germany, 2015; pp. 101–114. [Google Scholar]
- Rao, R. Acquisition of Japanese Aircraft likely in 2015. Int. Aerosp. Rev. Anal. 2015, 17, 41. [Google Scholar]
- Lichtwardt, J.; Paciano, E.; Marshall, D.; Jameson, K.K. STOL Performance of Cal Poly’s AMELIA. In Proceedings of the 2013 AIAA Atmospheric Flight Mechanics Conference, Grapevine, TX, USA, 7–10 January 2013; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2013. [Google Scholar]
- Collins, S.W.; Westra, B.W. Wind Tunnel Testing of Powered Lift, All-Wing STOL Model. Aeronaut. J. 2009, 113, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Milholen, W.; Jones, G.; Cagle, C. NASA high Reynolds number circulation control research-overview of CFD and planned experiments. In Proceedings of the AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 4–7 January 2010; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Lin, J.C.; Melton, L.; Hannon, J.; Andino, M.Y.; Koklu, M.; Paschal, K.C.; Vatsa, V.N. Wind Tunnel Testing of High Efficiency Low Power (HELP) Actuation for Active Flow Control. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2010; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar]
- Imamura, T.; Ura, H.; Yokokawa, Y.; Yamamoto, K. A Far-Field Noise and Near-Field Unsteadiness of a Simplified High-Lift-Configuration Model(Slat); AIAA Paper, no. 1239; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2009. [Google Scholar]
- Jameson, K. Part 1: The Wind Tunnel Model Design and Fabrication of Cal Poly’s AMELIA 10 Foot Span Hybrid Wing-Body Low Noise CESTOL Aircraft. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Portland, OR, USA, 8–11 August 2011; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2011. [Google Scholar]
- Hooker, J.R.; Wick, A.T.; Hardin, C.J. Commercial Cargo Derivative Study of the Advanced Hybrid Wing Body Configuration with Over-Wing Engine Nacelles; NASA Technical Report NASA/CR-2017-219653; National Aeronautics and Space Administration: Hampton, VA, USA, 2017. [Google Scholar]
- Chan, D.T.; Hooker, J.R.; Wick, A.; Plumley, R.W.; Zeune, C.H.; Ol, M.V.; DeMoss, J.A. Transonic Semispan Aerodynamic Testing of the Hybrid Wing Body with Over Wing Nacelles in the National Transonic Facility. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar]
- Galbtaith, M.C. Numerical simulations of a high-lift airfoil employing active flow control. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Shmilovich, A.; Yadlin, Y. Flow control for the systematic buildup of high-lift systems. J. Aircr. 2008, 45, 1680–1688. [Google Scholar] [CrossRef]
- Bauer, M.; Peltzer, I.; Nitsche, W.; Gölling, B. Active Flow Control on an Industry-Relevant Civil Aircraft Half Model; Springer: Berlin, Germany, 2010. [Google Scholar]
- Chen, J.; Wu, X.; Zhang, J.; Li, B.; Jia, H.; Zhou, N. FlowStar: General unstructured-grid CFD software for National Numerical Wind tunnel (NNW) Project. Acta Aeronaut. Astronaut. Sin. 2021, 42, 9–30. [Google Scholar]
- Roe, P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 1981, 43, 357–372. [Google Scholar] [CrossRef]
- Wick, A.T.; Hooker, J.R.; Clark, C.M. Powered Low Speed Testing of the Hybrid Wing Body. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Chen, C.; Zakharin, B.; Wygnanski, I.J. On the parameters governing fluidic control of separation and circulation. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008. [Google Scholar]
α/° | σCL | σCD | σCm |
---|---|---|---|
−4 | 0.001260 | 0.000286 | 0.000426 |
−2 | 0.001170 | 0.000320 | 0.000538 |
0 | 0.000899 | 0.000354 | 0.000442 |
2 | 0.000839 | 0.000348 | 0.000320 |
4 | 0.000940 | 0.000313 | 0.000492 |
6 | 0.000746 | 0.000324 | 0.000527 |
8 | 0.000936 | 0.000346 | 0.000522 |
10 | 0.000761 | 0.000430 | 0.000353 |
α/° | L/D | ΔL/D | ||
---|---|---|---|---|
δf = 30° (Cμt = 0.015) | δf = 40° (Uncontrolled) | |||
4 | 12.908 | 9.342 | 3.566 | 38.2% |
6 | 11.124 | 8.472 | 2.651 | 31.3% |
8 | 8.368 | 6.791 | 1.577 | 23.2% |
10 | 6.512 | 5.659 | 0.853 | 15.1% |
12 | 5.169 | 4.526 | 0.643 | 14.2% |
14 | 4.146 | 3.837 | 0.310 | 8.1% |
α/° | L/D | ΔL/D | ||
---|---|---|---|---|
δf = 30° (Cμt = 0.005 Clt = 0.030) | δf = 40° (Uncontrolled) | |||
4 | 13.110 | 9.342 | 3.768 | 40.3% |
6 | 13.107 | 8.472 | 4.635 | 54.7% |
8 | 11.148 | 6.790 | 4.357 | 64.2% |
10 | 9.016 | 5.659 | 3.357 | 59.3% |
12 | 6.777 | 4.526 | 2.251 | 49.7% |
14 | 5.240 | 3.837 | 1.403 | 36.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Wang, W.; Qin, C.; Wang, X.; Sun, Q.; Zhang, X. Experimental Investigation on the Combined Blowing Control of a Hybrid Wing Body Aircraft. Actuators 2023, 12, 237. https://doi.org/10.3390/act12060237
Pan J, Wang W, Qin C, Wang X, Sun Q, Zhang X. Experimental Investigation on the Combined Blowing Control of a Hybrid Wing Body Aircraft. Actuators. 2023; 12(6):237. https://doi.org/10.3390/act12060237
Chicago/Turabian StylePan, Jiaxin, Wanbo Wang, Chen Qin, Xunnian Wang, Qixiang Sun, and Xin Zhang. 2023. "Experimental Investigation on the Combined Blowing Control of a Hybrid Wing Body Aircraft" Actuators 12, no. 6: 237. https://doi.org/10.3390/act12060237
APA StylePan, J., Wang, W., Qin, C., Wang, X., Sun, Q., & Zhang, X. (2023). Experimental Investigation on the Combined Blowing Control of a Hybrid Wing Body Aircraft. Actuators, 12(6), 237. https://doi.org/10.3390/act12060237