Dynamic Analysis and Piezoelectric Energy Harvesting from a Nonideal Portal Frame System including Nonlinear Energy Sink Effect
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Dynamics and Potential of Energy Generation for Variation in Parameters and
3.2. Dynamics and Potential of Energy Generation for Variation in Parameters and
3.3. Dynamics and Potential of Energy Generation for Variation in Parameters and
3.4. Dynamics and Potential of Energy Generation for Variation in Parameters and
3.5. Dynamics and Potential of Energy Generation for Variation in Parameters and
3.6. Dynamics and Potential of Energy Generation for Variation in Parameters and
3.7. Dynamics and Potential of Energy Generation for Variation in Parameters and
3.8. Dynamics and Potential of Energy Generation for Variation in Parameters and
3.9. Dynamics and Potential of Energy Generation for Variation in Parameters and
3.10. Dynamics and Potential of Energy Generation for Variation in Parameters and
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.T. The Factors Affecting Electricity Consumption and the Consumption Characteristics in the Residential Sector—A Case Example of Taiwan. Sustainability 2017, 9, 1484. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, G.E.; Marcovecchio, M.G.; Aguirre, P.A. Optimization of the Integration among Traditional Fossil Fuels, Clean Energies, Renewable Sources, and Energy Storages: An MILP Model for the Coupled Electric Power, Hydraulic, and Natural Gas Systems. Comput. Ind. Eng. 2020, 139, 1016141. [Google Scholar] [CrossRef]
- Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- Chu, W.; Calise, F.; Duić, N.; Østergaard, P.A.; Vicidomini, M.; Wang, Q. Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems. Energies 2020, 13, 5229. [Google Scholar] [CrossRef]
- Behrouzi, F.; Nakisa, M.; Maimun, A.; Ahmed, Y.M. Global Renewable Energy and its Potential in Malaysia: A Review of Hydrokinetic Turbine Technology. Renew. Sustain. Energy Rev. 2016, 62, 1270–1281. [Google Scholar] [CrossRef]
- Pan, H.; Qi, L.; Zhang, Z.; Yan, J. Kinetic Energy Harvesting Technologies for Applications in Land Transportation: A Comprehensive Review. Appl. Energy 2021, 286, 116518. [Google Scholar] [CrossRef]
- Aoudia, F.A.; Gautier, M.; Magno, M.; Berder, O.; Benini, L. Leveraging Energy Harvesting and Wake-up Receivers for Long-Term Wireless Sensor Networks. Sensors 2018, 18, 1578. [Google Scholar] [CrossRef] [Green Version]
- Selleri, G.; Poli, F.; Neri, R.; Gasperini, L.; Gualandi, C.; Soavi, F.; Fabiani, D. Energy Harvesting and Storage with Ceramic Piezoelectric Transducers Coupled with an Ionic Liquid-Based Supercapacitor. J. Energy Storage 2023, 60, 106660. [Google Scholar] [CrossRef]
- Lai, Y.C.; Hsiao, Y.C.; Wu, H.M.; Wang, Z.L. Waterproof Fabric-Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self-Powered Sensors. Adv. Sci. 2019, 6, 1801883. [Google Scholar] [CrossRef] [Green Version]
- Akin-Ponnle, A.E.; Pereira, F.S.; Madureira, R.C.; Carvalho, N.B. From Macro to Micro: Impact of Smart Turbine Energy Harvesters (STEH), on Environmental Sustainability and Smart City Automation. Sustainability 2022, 14, 1887. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, Y.; Tan, Y.; Zhang, M.; Qian, X.; Wang, X. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester. Micromachines 2018, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Pattipaka, S.; Bae, Y.M.; Jeong, C.K.; Park, K., II; Hwang, G.T. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices. Sensors 2022, 22, 9506. [Google Scholar] [CrossRef]
- Ryu, H.; Yoon, H.J.; Kim, S.W. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting. Adv. Mater. 2019, 31, 1802898. [Google Scholar] [CrossRef]
- Koga, H.; Mitsuya, H.; Honma, H.; Fujita, H.; Toshiyoshi, H.; Hashiguchi, G. Development of a Cantilever-Type Electrostatic Energy Harvester and Its Charging Characteristics on a Highway Viaduct. Micromachines 2017, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Yue, Q.; Zhang, Z.; Yuan, J.; Zhou, J.; Zhang, X.; Lu, S.; Luo, X.; Shi, C.; Yu, H. A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester. Micromachines 2018, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Yang, W.; Zhang, Y.; Bowen, C.R.; Yang, Y. Piezoelectric Materials for Controlling Electro-Chemical Processes. Nanomicro Lett. 2020, 12, 149. [Google Scholar] [CrossRef]
- Lay, R.; Deijs, G.S.; Malmström, J. The Intrinsic Piezoelectric Properties of Materials-a Review with a Focus on Biological Materials. RSC Adv. 2021, 11, 30657–30673. [Google Scholar] [CrossRef] [PubMed]
- Eiras, J.A.; Gerbasi, R.B.Z.; Rosso, J.M.; Silva, D.M.; Cótica, L.F.; Santos, I.A.; Souza, C.A.; Lente, M.H. Compositional Design of Dielectric, Ferroelectric and Piezoelectric Properties of (K,Na)NbO3 and (Ba, Na)(Ti, Nb)O3 Based Ceramics Prepared by Different Sintering Routes. Materials 2016, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Vallem, V.; Sargolzaeiaval, Y.; Ozturk, M.; Lai, Y.C.; Dickey, M.D. Energy Harvesting and Storage with Soft and Stretchable Materials. Adv. Mater. 2021, 33, 2004832. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qin, L.; Qin, Z.; Chu, F. Energy Harvesting from Gravity-Induced Deformation of Rotating Shaft for Long-Term Monitoring of Rotating Machinery. Smart Mater. Struct. 2022, 31, 125008. [Google Scholar] [CrossRef]
- Karmakar, D.; Majumdar, K.; Pal, M.; Roy, P.K.; Machavarapu, S. Energy Harvesting from Pedestrian Movement Using Piezoelectric Material. Mater. Today Proc. 2022, 57, 391–397. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, H.; Jiang, J.; Zhang, Y.; Zhou, Y.; Sun, L.; Zhang, Y. The Optimal Design of a Piezoelectric Energy Harvester for Smart Pavements. Int. J. Mech. Sci. 2022, 232, 107609. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, X.; Qin, Z.; Chu, F. Vibro-Impact Energy Harvester for Low Frequency Vibration Enhanced by Acoustic Black Hole. Appl. Phys. Lett. 2022, 121, 013902. [Google Scholar] [CrossRef]
- Shi, C.; Lin, J.; Ge, G.; Hao, Y.; Song, J.; Wei, Y.; Yao, W. Design and Manufacture of Lead-Free Eco-Friendly Cement-Based Piezoelectric Composites Achieving Superior Piezoelectric Properties for Concrete Structure Applications. Compos. B Eng. 2023, 259, 110750. [Google Scholar] [CrossRef]
- Ngo, T.H.; Chi, I.T.; Chau, M.Q.; Wang, D.A. An Energy Harvester Based on a Bistable Origami Mechanism. Int. J. Precis. Eng. Manuf. 2022, 23, 213–226. [Google Scholar] [CrossRef]
- Sahoo, S.; Krishnamoorthy, K.; Pazhamalai, P.; Mariappan, V.K.; Manoharan, S.; Kim, S.J. High Performance Self-Charging Supercapacitors Using a Porous PVDF-Ionic Liquid Electrolyte Sandwiched between Two-Dimensional Graphene Electrodes. J. Mater. Chem. A Mater. 2019, 7, 21693–21703. [Google Scholar] [CrossRef]
- Megdich, A.; Habibi, M.; Laperrière, L. A Review on 3D Printed Piezoelectric Energy Harvesters: Materials, 3D Printing Techniques, and Applications. Mater. Today Commun. 2023, 35, 105541. [Google Scholar] [CrossRef]
- Craciun, F.; Cordero, F.; Mercadelli, E.; Ilic, N.; Galassi, C.; Baldisserri, C.; Bobic, J.; Stagnaro, P.; Canu, G.; Buscaglia, M.T.; et al. Flexible Composite Films with Enhanced Piezoelectric Properties for Energy Harvesting and Wireless Ultrasound-Powered Technology. Compos. B Eng. 2023, 263, 110835. [Google Scholar] [CrossRef]
- Aradoaei, M.; Ciobanu, R.C.; Schreiner, C.; Paulet, M.; Caramitu, A.R.; Pintea, J.; Baibarac, M. Three-Dimensional Printable Flexible Piezoelectric Composites with Energy Harvesting Features. Polymers 2023, 15, 2548. [Google Scholar] [CrossRef]
- Mokhtari, F.; Shamshirsaz, M.; Latifi, M.; Foroughi, J. Nanofibers-Based Piezoelectric Energy Harvester for Self-Powered Wearable Technologies. Polymers 2020, 12, 2697. [Google Scholar] [CrossRef]
- Roji, A.M.M.; Jiji, G.; Raj, A.B.T. A Retrospect on the Role of Piezoelectric Nanogenerators in the Development of the Green World. RSC Adv. 2017, 7, 33642–33670. [Google Scholar] [CrossRef] [Green Version]
- Yue, R.; Ramaraj, S.G.; Liu, H.; Elamaran, D.; Elamaran, V.; Gupta, V.; Arya, S.; Verma, S.; Satapathi, S.; Hayawaka, Y.; et al. A Review of Flexible Lead-Free Piezoelectric Energy Harvester. J. Alloys Compd. 2022, 918, 165653. [Google Scholar] [CrossRef]
- Aaryashree; Walke, P.; Nayak, S.K.; Rout, C.S.; Late, D.J. Recent Developments in Self-Powered Smart Chemical Sensors for Wearable Electronics. Nano Res. 2021, 14, 3669–3689. [Google Scholar] [CrossRef]
- Sahoo, S.; Ratha, S.; Rout, C.S.; Nayak, S.K. Self-Charging Supercapacitors for Smart Electronic Devices: A Concise Review on the Recent Trends and Future Sustainability. J. Mater. Sci. 2022, 57, 4399–4440. [Google Scholar] [CrossRef]
- Shaukat, H.; Ali, A.; Bibi, S.; Mehmood, S.; Altabey, W.A.; Noori, M.; Kouritem, S.A. Piezoelectric Materials: Advanced Applications in Electro-Chemical Processes. Energy Rep. 2023, 9, 4306–4324. [Google Scholar] [CrossRef]
- Du, X.; Mutsuda, H.; Tanaka, Y.; Nakashima, T.; Kanehira, T.; Taniguchi, N.; Moriyama, Y. Experimental and Numerical Studies on Working Parameter Selections of a Piezoelectric-Painted-Based Ocean Energy Harvester Attached to Fish Aggregating Devices. Energy Sustain. Dev. 2022, 71, 73–88. [Google Scholar] [CrossRef]
- Lu, C.; Jiang, X.; Li, L.; Zhou, H.; Yang, A.; Xin, M.; Fu, G.; Wang, X. Wind Energy Harvester Using Piezoelectric Materials. Rev. Sci. Instrum. 2022, 93, 031502. [Google Scholar] [CrossRef]
- Bao, B.; Wang, Q. A Rain Energy Harvester Using a Self-Release Tank. Mech. Syst. Signal Process. 2021, 147, 107099. [Google Scholar] [CrossRef]
- Ye, J.; Ding, G.; Wu, X.; Zhou, M.; Wang, J.; Chen, Y.; Yu, Y. Development and Performance Research of PSN-PZT Piezoelectric Ceramics Based on Road Vibration Energy Harvesting Technology. Mater. Today Commun. 2023, 34, 105135. [Google Scholar] [CrossRef]
- Mokhtari, F.; Azimi, B.; Salehi, M.; Hashemikia, S.; Danti, S. Recent Advances of Polymer-Based Piezoelectric Composites for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2021, 122, 104669. [Google Scholar] [CrossRef]
- Wu, M.; Yao, K.; Li, D.; Huang, X.; Liu, Y.; Wang, L.; Song, E.; Yu, J.; Yu, X. Self-Powered Skin Electronics for Energy Harvesting and Healthcare Monitoring. Mater. Today Energy 2021, 21, 100786. [Google Scholar] [CrossRef]
- Fang, L.H.; Rahim, R.A.; Fahmi, M.I.; Kupusamy, V. Modelling and Characterization Piezoelectric Transducer for Sound Wave Energy Harvesting. J. Adv. Res. Fluid Mech. Therm. Sci. 2023, 102, 81–98. [Google Scholar] [CrossRef]
- Panayanthatta, N.; Clementi, G.; Ouhabaz, M.; Costanza, M.; Margueron, S.; Bartasyte, A.; Basrour, S.; Bano, E.; Montes, L.; Dehollain, C.; et al. A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoring. Sensors 2021, 21, 7503. [Google Scholar] [CrossRef] [PubMed]
- Dinesh Ram, G.; Praveen Kumar, S.; Yuvaraj, T.; Sudhakar Babu, T.; Balasubramanian, K. Simulation and Investigation of MEMS Bilayer Solar Energy Harvester for Smart Wireless Sensor Applications. Sustain. Energy Technol. Assess. 2022, 52, 102102. [Google Scholar] [CrossRef]
- Tommasino, D.; Moro, F.; Zumalde, E.; Kunzmann, J.; Doria, A. An Analytical–Numerical Method for Simulating the Performance of Piezoelectric Harvesters Mounted on Wing Slats. Actuators 2023, 12, 29. [Google Scholar] [CrossRef]
- Elahi, H.; Munir, K.; Eugeni, M.; Abrar, M.; Khan, A.; Arshad, A.; Gaudenzi, P. A Review on Applications of Piezoelectric Materials in Aerospace Industry. Integr. Ferroelectr. 2020, 211, 25–44. [Google Scholar] [CrossRef]
- Holzmann, H.; Weber, M.; Park, Y.J.; Perfetto, S.; Atzrodt, H.; Dafnis, A. Investigation of Biogenic Materials and Ferroelectrets for Energy Harvesting on Vibrating Aircraft Structures. CEAS Aeronaut. J. 2021, 12, 331–344. [Google Scholar] [CrossRef]
- Cao, X.; Xiong, Y.; Sun, J.; Zhu, X.; Sun, Q.; Wang, Z.L. Piezoelectric Nanogenerators Derived Self-Powered Sensors for Multifunctional Applications and Artificial Intelligence. Adv. Funct. Mater. 2021, 31, 2102983. [Google Scholar] [CrossRef]
- Braydi, O.; Gogu, C.; Paredes, M. Robustness and Reliability Investigations on a Nonlinear Energy Sink Device Concept. Mech. Ind. 2020, 21, 603. [Google Scholar] [CrossRef]
- Saeed, A.S.; Abdul Nasar, R.; AL-Shudeifat, M.A. A Review on Nonlinear Energy Sinks: Designs, Analysis and Applications of Impact and Rotary Types. Nonlinear. Dyn. 2023, 111, 1–37. [Google Scholar] [CrossRef]
- Wang, G.X.; Ding, H.; Chen, L.Q. Performance Evaluation and Design Criterion of a Nonlinear Energy Sink. Mech. Syst. Signal Process. 2022, 169, 108770. [Google Scholar] [CrossRef]
- Gendelman, O.; Manevitch, L.I.; Vakakis, A.F.; M’closkey, R. Energy Pumping in Nonlinear Mechanical Oscillators: Part I—Dynamics of the Underlying Hamiltonian Systems. J. Appl. Mech. Trans. ASME 2001, 68, 34–41. [Google Scholar] [CrossRef]
- Vakakis, A.F.; Gendelman, O. Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture. J. Appl. Mech. Trans. ASME 2001, 68, 42–48. [Google Scholar] [CrossRef]
- Chen, P.; Wang, B.; Zhou, D.; Wu, X.; Dai, K. Performance Evaluation of a Nonlinear Energy Sink with Quasi-Zero Stiffness Property for Vertical Vibration Control. Eng. Struct. 2023, 282, 115801. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, Y.; Li, F.; Jing, X. An Integrated Nonlinear Passive Vibration Control System and Its Vibration Reduction Properties. J. Sound. Vib. 2021, 509, 116231. [Google Scholar] [CrossRef]
- Chen, H.Y.; Mao, X.Y.; Ding, H.; Chen, L.Q. Elimination of Multimode Resonances of Composite Plate by Inertial Nonlinear Energy Sinks. Mech. Syst. Signal Process. 2020, 135, 106383. [Google Scholar] [CrossRef]
- Lo Feudo, S.; Job, S.; Cavallo, M.; Fraddosio, A.; Piccioni, M.D.; Tafuni, A. Finite Contact Duration Modeling of a Vibro-Impact Nonlinear Energy Sink to Protect a Civil Engineering Frame Structure against Seismic Events. Eng. Struct. 2022, 259, 114137. [Google Scholar] [CrossRef]
- Yao, H.; Cao, Y.; Ding, Z.; Wen, B. Using Grounded Nonlinear Energy Sinks to Suppress Lateral Vibration in Rotor Systems. Mech. Syst. Signal Process. 2019, 124, 237–253. [Google Scholar] [CrossRef]
- Cao, Y.; Yao, H.; Li, Q.; Yang, P.; Wen, B. Vibration Mitigation and Dynamics of a Rotor-Blade System with an Attached Nonlinear Energy Sink. Int. J. Non. Linear Mech. 2020, 127, 103614. [Google Scholar] [CrossRef]
- Ma, X.; Song, Y.; Cao, P.; Li, J.; Zhang, Z. Self-Excited Vibration Suppression of a Spline-Shafting System Using a Nonlinear Energy Sink. Int. J. Mech. Sci. 2023, 245, 108105. [Google Scholar] [CrossRef]
- Bergeot, B.; Bellizzi, S.; Cochelin, B. Passive Suppression of Helicopter Ground Resonance Using Nonlinear Energy Sinks Attached on the Helicopter Blades. J. Sound. Vib. 2017, 392, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Araujo, G.P.; da Silva, J.A.I.; Marques, F.D. Energy Harvesting from a Rotational Nonlinear Energy Sink in Vortex-Induced Vibrations. J. Fluids Struct. 2022, 113, 103656. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, K.; Xiong, L.; Tang, L. A Non-Traditional Variant Nonlinear Energy Sink for Vibration Suppression and Energy Harvesting. Mech. Syst. Signal Process. 2022, 181, 109479. [Google Scholar] [CrossRef]
- Chen, L.; Liao, X.; Xia, G.; Sun, B.; Zhou, Y. Variable-Potential Bistable Nonlinear Energy Sink for Enhanced Vibration Suppression and Energy Harvesting. Int. J. Mech. Sci. 2023, 242, 107997. [Google Scholar] [CrossRef]
- Qiao, Y.; Yao, G. Vibration Energy Harvesting Enhancement of a Plate Interacting with Subsonic Airflow in a Narrow Gap. Int. J. Non. Linear Mech. 2023, 153, 104404. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Yang, Z.; Zhou, S. Flutter Suppression of an Airfoil Using a Nonlinear Energy Sink Combined with a Piezoelectric Energy Harvester. Commun. Nonlinear Sci. Numer. Simul. 2023, 125, 107350. [Google Scholar] [CrossRef]
- Fang, S.; Chen, K.; Xing, J.; Zhou, S.; Liao, W.H. Tuned Bistable Nonlinear Energy Sink for Simultaneously Improved Vibration Suppression and Energy Harvesting. Int. J. Mech. Sci. 2021, 212, 106838. [Google Scholar] [CrossRef]
- Karama, M.; Hamdi, M.; Habbad, M. Energy Harvesting in a Nonlinear Energy Sink Absorber Using Delayed Resonators. Nonlinear Dyn. 2021, 105, 113–129. [Google Scholar] [CrossRef]
- Tan, T.; Wang, Z.; Zhang, L.; Liao, W.H.; Yan, Z. Piezoelectric Autoparametric Vibration Energy Harvesting with Chaos Control Feature. Mech. Syst. Signal Process. 2021, 161, 107989. [Google Scholar] [CrossRef]
- Tusset, A.M.; Balthazar, J.M.; Felix, J.L.P. On Elimination of Chaotic Behavior in a Non-Ideal Portal Frame Structural System, Using Both Passive and Active Controls. JVC/J. Vib. Control. 2013, 19, 803–813. [Google Scholar] [CrossRef]
- Al-Shudeifat, M.A. Asymmetric Magnet-Based Nonlinear Energy Sink. J. Comput. Nonlinear Dyn. 2015, 10, 014502. [Google Scholar] [CrossRef]
- Iliuk, I.; Balthazar, J.M.; Tusset, A.M.; Piqueira, J.; De Pontes, B.R.; Felix, J.; Bueno, Á.M. Application of Passive Control to Energy Harvester Efficiency Using a Nonideal Portal Frame Structural Support System. J. Intell. Mater. Syst. Struct. 2014, 25, 417–429. [Google Scholar] [CrossRef]
- Rocha, R.T.; Balthazar, J.M.; Tusset, A.M.; Piccirillo, V.; Felix, J.L.P. Comments on energy harvesting on a 2:1 internal resonance portal frame support structure, using a nonlinear-energy sink as a passive controller. Int. Rev. Mech. Eng. 2016, 10, 147–156. [Google Scholar] [CrossRef]
- Tusset, A.M.; Piccirillo, V.; Iliuk, I.; Lenzi, G.G.; Fuziki, M.E.K.; Balthazar, J.M.; Litak, G.; Bernardini, D. Piezoelectric Energy Harvesting from a Non-ideal Portal Frame System Including Shape Memory Alloy Effect. In Nonlinear Vibrations Excited by Limited Power Sources. Mechanisms and Machine Science; Balthazar, J.M., Ed.; Springer: Cham, Switzerland, 2022; Volume 116, pp. 369–380. [Google Scholar] [CrossRef]
- Triplett, A.; Quinn, D.D. The Effect of Non-Linear Piezoelectric Coupling on Vibration-Based Energy Harvesting. J. Intell. Mater. Syst. Struct. 2009, 20, 1959–1967. [Google Scholar] [CrossRef]
- Gottwald, G.A.; Melbourne, I. A New Test for Chaos in Deterministic Systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 2004, 460, 603–611. [Google Scholar] [CrossRef]
- Gottwald, G.A.; Melbourne, I. Testing for Chaos in Deterministic Systems with Noise. Physica D 2005, 212, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Litak, G.; Bernardini, D.; Syta, A.; Rega, G.; Rysak, A. Analysis of Chaotic Non-Isothermal Solutions of Thermomechanical Shape Memory Oscillators. Eur. Phys. J. Spec. Top. 2013, 222, 1637–1647. [Google Scholar] [CrossRef]
- Bernardini, D.; Litak, G. An Overview of 0–1 Test for Chaos. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 1433–1450. [Google Scholar] [CrossRef]
Case | Parameter | Parameter | Average Power | K Value (Test 0–1) | Behavior |
---|---|---|---|---|---|
1 | Chaotic | ||||
2 | Periodic | ||||
3 | Periodic | ||||
4 | Chaotic | ||||
5 | Periodic | ||||
6 | Quasi-periodic | ||||
7 | Chaotic | ||||
8 | Periodic | ||||
9 | Chaotic | ||||
10 | Periodic | ||||
11 | Quasi-periodic | ||||
12 | Periodic | ||||
13 | Periodic | ||||
14 | Periodic | ||||
15 | Periodic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tusset, A.M.; Pires, D.B.; Balthazar, J.M.; Fuziki, M.E.K.; Andrade, D.I.; Lenzi, G.G. Dynamic Analysis and Piezoelectric Energy Harvesting from a Nonideal Portal Frame System including Nonlinear Energy Sink Effect. Actuators 2023, 12, 298. https://doi.org/10.3390/act12070298
Tusset AM, Pires DB, Balthazar JM, Fuziki MEK, Andrade DI, Lenzi GG. Dynamic Analysis and Piezoelectric Energy Harvesting from a Nonideal Portal Frame System including Nonlinear Energy Sink Effect. Actuators. 2023; 12(7):298. https://doi.org/10.3390/act12070298
Chicago/Turabian StyleTusset, Angelo M., Dim B. Pires, Jose M. Balthazar, Maria E. K. Fuziki, Dana I. Andrade, and Giane G. Lenzi. 2023. "Dynamic Analysis and Piezoelectric Energy Harvesting from a Nonideal Portal Frame System including Nonlinear Energy Sink Effect" Actuators 12, no. 7: 298. https://doi.org/10.3390/act12070298
APA StyleTusset, A. M., Pires, D. B., Balthazar, J. M., Fuziki, M. E. K., Andrade, D. I., & Lenzi, G. G. (2023). Dynamic Analysis and Piezoelectric Energy Harvesting from a Nonideal Portal Frame System including Nonlinear Energy Sink Effect. Actuators, 12(7), 298. https://doi.org/10.3390/act12070298