Closed-Loop FES Control of a Hybrid Exoskeleton during Sit-to-Stand Exercises: Concept and First Evaluation
Abstract
:1. Introduction
2. Model Dynamics and Control Strategy
2.1. System Dynamics
2.2. Experiment Setup
2.2.1. Body Motion Capture and STS Trajectories
2.2.2. FES
2.2.3. Exoskeleton
2.2.4. Control Unit
2.2.5. Experimental Procedure
2.3. Hybrid Control Strategy
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FES | Functional electrical stimulation |
NMES | Neuromuscular electrical stimulation |
STS | Sit-to-Stand |
PID | Proportional–integral–derivative |
SCI | Spinal cord injury |
AIS | Acute ischemic stroke |
MPC | Model predictive control |
ILC | Iterative learning control |
IMUs | Inertial measurement units |
EMG | Electromyography |
QTM | Qualisys Track Manager |
CoM | Center of mass |
RMSE | Root-mean-squared error |
TTI | Torque–time integration |
PTI | Pulse width–time integration |
GCP | Good clinical practice |
Appendix A
References
- Haywood, C.; Martin, R.; Dent, K.; Mulcahey, M.J. Development of the International Spinal Cord Injury Basic Data Set for informal caregivers. Spinal Cord 2022, 60, 888–894. [Google Scholar] [CrossRef]
- Kuiper, H.; van Leeuwen, C.M.C.; Stolwijk-Swuste, J.M.; Post, M.W.M. Illness perception of individuals with spinal cord injury (SCI) during inpatient rehabilitation: A longitudinal study. Spinal Cord 2022, 60, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Karger, A.; Fetz, K.; Schäfer, R.; Schlack, R.; Franz, M.; Joksimovic, L. 12-Month Prevalence and Consequences of Current Experiences of Physical and Psychological Violence in a Sample of Patients who Entered First Time a Psychotherapeutic Outpatient Clinic. Psychiatr. Prax. 2017, 44, 323–331. [Google Scholar]
- Dengler, J.; Prass, K.; Palm, F.; Hohenstein, S.; Pellisier, V.; Stoffel, M.; Hong, B.; Meier-Hellmann, A.; Kuhlen, R.; Bollmann, A.; et al. Changes in nationwide in-hospital stroke care during the first four waves of COVID-19 in Germany. Eur. Stroke J. 2022, 7, 166–174. [Google Scholar] [CrossRef]
- Hubert, G.J.; Hubert, N.D.; Maegerlein, C.; Kraus, F.; Wiestler, H.; Müller-Barna, P.; Gerdsmeier-Petz, W.; Degenhart, C.; Hohenbichler, K.; Dietrich, D.; et al. Association Between Use of a Flying Intervention Team vs. Patient Interhospital Transfer and Time to Endovascular Thrombectomy Among Patients with Acute Ischemic Stroke in Nonurban Germany. JAMA 2022, 327, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, S.; Nagano, A.; Himeno, R.; Fukashiro, S. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements. Biomed. Eng. Online 2007, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshioka, S.; Nagano, A.; Hay, D.C.; Fukashiro, S. Peak hip and knee joint moments during a sit-to-stand movement are invariant to the change of seat height within the range of low to normal seat height. Biomed. Eng. Online 2014, 13, 27. [Google Scholar] [CrossRef] [Green Version]
- Kapadia, N.; Moineau, B.; Popovic, M.R. Functional Electrical Stimulation Therapy for Retraining Reaching and Grasping after Spinal Cord Injury and Stroke. Front. Neurosci. 2020, 14, 718. [Google Scholar] [CrossRef]
- Marquez-Chin, C.; Popovic, M.R. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: A review. Biomed. Eng. Online 2020, 19, 1–25. [Google Scholar] [CrossRef]
- Liberson, W.T.; Holmquest, H.J.; Scot, D.; Dow, M. Functional electrotherapy: Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 1961, 42, 101–105. [Google Scholar]
- Lan, N.; Niu, C.M.; Hao, M.; Chou, C.H.; Dai, C. Achieving Neural Compatibility with Human Sensorimotor Control in Prosthetic and Therapeutic Devices. IEEE Trans. Med. Rob. Bionics 2019, 1, 122–134. [Google Scholar] [CrossRef]
- Handa, Y. Current topics in clinical FES in Japan. J. Electromyogr. Kinesiol. 1997, 7, 269–274. [Google Scholar] [CrossRef]
- Popovic, M.R.; Curt, A.; Keller, T.; Dietz, V. Functional electrical stimulation for grasping and walking: Indications and limitations. Spinal Cord 2001, 39, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimzadeh, M.; Nakhostin Ansari, N.; Hasson, S.; Shariat, A.; Afzali, S.A. Effect of functional electrical stimulation combined with stationary cycling and sit to stand training on mobility and balance performance in a patient with traumatic brain injury: A case report. Ann. Med. Surg. 2021, 72, 103122. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, E.; Zajc, J.; Ferrante, S.; Ferrigno, G.; Dalla Gasperina, S.; Bulgheroni, M.; Baccinelli, W.; Schauer, T.; Wiesener, C.; Russold, M.; et al. A hybrid robotic system for arm training of stroke survivors: Concept and first evaluation. IEEE Trans. Biomed. Eng. 2019, 66, 3290–3300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, I.L.; Nowakowska, W.; Ulrich, C.; Struijk, L.N.S.A. A Novel sEMG Triggered FES-Hybrid Robotic Lower Limb Rehabilitation System for Stroke Patients. IEEE Trans. Med. Rob. Bionics 2020, 2, 631–638. [Google Scholar] [CrossRef]
- Murray, S.A.; Farris, R.J.; Golfarb, M.; Hartigan, C.; Kandilakis, C.; Truex, D. FES Coupled with a Powered Exoskeleton For Cooperative Muscle Contribution in Persons with Paraplegia. In Proceedings of the 40th International Engineering in Medicine and Biology Conference (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 2788–2792. [Google Scholar]
- Ha, K.H.; Murray, S.A.; Goldfarb, M. An Approach for the Cooperative Control of FES with a Powered Exoskeleton During Level Walking for Persons with Paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 455–466. [Google Scholar] [CrossRef]
- Alouane, M.A.; Huo, W.; Rifai, H.; Amirat, Y.; Mohammed, S. Hybrid fes-exoskeleton controller to assist sit-to-stand movement. IFAC PapersOnLine 2019, 51, 296–301. [Google Scholar] [CrossRef]
- Serea, F.; Poboroniuc, M.; Irimia, D.; Hartopanu, S.; Olaru, R. Preliminary results on a hybrid FES-exoskeleton system aiming to rehabilitate upper limb in disabled people. In Proceedings of the 17th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 11–13 October 2013; pp. 722–727. [Google Scholar]
- Grigoras, A.V.; Irimia, D.C.; Poboroniuc, M.S.; Popescu, C.D. Testing of a hybrid FES-robot assisted hand motor training program in sub-acute stroke survivors. Adv. Electr. Comput. Eng. 2016, 16, 89–95. [Google Scholar] [CrossRef]
- Mohamad, N.Z.; Hamzaid, N.A.; Davis, G.M.; Abdul Wahab, A.K.; Hasnan, N. Mechanomyography and Torque during FES-Evoked Muscle Contractions to Fatigue in Individuals with Spinal Cord Injury. Sensors 2017, 17, 1627. [Google Scholar] [CrossRef] [Green Version]
- Riener, R.; Ferrarin, M.; Pavan, E.; Frigo, C. Patient-driven control of FES-supported standing up and sitting down: Experimental results. IEEE Trans. Rehabil. Eng. 2000, 8, 523–529. [Google Scholar] [CrossRef]
- Riener, R.; Fuhr, T. Patient-driven control of FES-supported standing up: A simulation study. IEEE Trans. Rehabil. Eng. 1998, 6, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narvaez-Aroche, O.; Packard, A.; Arcak, M. Finite Time Robust Control of the Sit-to-Stand Movement for Powered Lower Limb Orthoses. In Proceedings of the Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 2721–2726. [Google Scholar]
- Aroche, O.N.; Meyer, P.J.; Tu, S.; Packard, A.; Arcak, M. Robust control of the sit-to-stand movement for a powered lower limb orthosis. IEEE Trans. Control Syst. Technol. 2020, 28, 2390–2403. [Google Scholar] [CrossRef] [Green Version]
- Narvaez-Aroche, O.; Packard, A.; Meyer, P.J.; Arcak, M. Reachability Analysis for Robustness Evaluation of the Sit-to-Stand Movement for Powered Lower Limb Orthoses. In Proceedings of the Dynamic Systems and Control (DSC) Conference, Atlanta, GA, USA, 30 September–3 October 2018; ASME: New York, NY, USA, 2018; Volume 1, pp. 1–14. [Google Scholar]
- Narvaez-Aroche, O.; Packard, A.; Arcak, M. Motion Planning of the Sit to Stand Movement for Powered Lower Limb Orthoses. In Proceedings of the Dynamic Systems and Control (DSC) Conference, Tysons, VA, USA, 11–13 October 2017; ASME: New York, NY, USA, 2017; Volume 1, pp. 1–15. [Google Scholar]
- Cousin, C.; Duenas, V.; Dixon, W. FES Cycling and Closed-Loop Feedback Control for Rehabilitative Human–Robot Interaction. Robotics 2021, 10, 61. [Google Scholar] [CrossRef]
- Zhvansky, D.S.; Sylos-Labini, F.; Dewolf, A.; Cappellini, G.; d’Avella, A.; Lacquaniti, F.; Ivanenko, Y. Evaluation of Spatiotemporal Patterns of the Spinal Muscle Coordination Output during Walking in the Exoskeleton. Sensors 2022, 22, 5708. [Google Scholar] [CrossRef]
- Bao, X.; Molazadeh, V.; Dodson, A.; Dicianno, B.E.; Sharma, N. Using Person-Specific Muscle Fatigue Characteristics to Optimally Allocate Control in a Hybrid Exoskeleton—Preliminary Results. IEEE Trans. Med. Rob. Bionics 2020, 2, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, N.A.; Bao, X.; Alibeji, N.A.; Dicianno, B.E.; Sharma, N. Model-Based Dynamic Control Allocation in a Hybrid Neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Kirsch, N.; Dodson, A.; Sharma, N. Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. J. Comput. Nonlinear Dyn. 2019, 14, 101009. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Iyer, A.; Sun, Z.; Kim, K.; Sharma, N. A Hybrid Knee Exoskeleton Using Real-Time Ultrasound-Based Muscle Fatigue Assessment. IEEE/ASME Trans. Mech. 2022, 27, 1854–1862. [Google Scholar] [CrossRef]
- Neťuková, S.; Bejtic, M.; Malá, C.; Horáková, L.; Kutílek, P.; Kauler, J.; Krupička, R. Lower Limb Exoskeleton Sensors: State-of-the-Art. Sensors 2022, 22, 9091. [Google Scholar] [CrossRef]
- Bonnal, J.; Monnet, F.; Le, B.T.; Pila, O.; Grosmaire, A.G.; Ozsancak, C.; Duret, C.; Auzou, P. Relation between Cortical Activation and Effort during Robot-Mediated Walking in Healthy People: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS). Sensors 2022, 22, 5542. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wang, X.; Ji, X.; Zhou, Y.; Yang, J.; Wei, Y.; Zhang, W. A Wearable Lower Limb Exoskeleton: Reducing the Energy Cost of Human Movement. Micromachines 2022, 13, 900. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, N.A.; Alibeji, N.A.; Redfern, M.; Sharma, N. Dynamic Optimization of a Hybrid Gait Neuroprosthesis to Improve Efficiency and Walking Duration: A Simulation Study. In Converging Clinical and Engineering Research on Neurorehabilitation II; Springer International Publishing: Cham, Switzerland, 2017; pp. 687–691. [Google Scholar]
- Cappozzo, A.; Catani, F.; Leardini, A.; Benedetti, M.; Della Croce, U. Position and orientation in space of bones during movement: Experimental artefacts. Clin. Biomech. 1996, 11, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Penzlin, B.; Enes Fincan, M.; Li, Y.; Ji, L.; Leonhardt, S.; Ngo, C. Design and Analysis of a Clutched Parallel Elastic Actuator. Actuators 2019, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Penzlin, B.; Leipnitz, A.; Bergmann, L.; Li, Y.; Ji, L.; Leonhardt, S.; Ngo, C. Conceptual design, modeling and control of a rigid parallel serial-elastic actuator. at-Automatisierungstechnik 2020, 68, 410–422. [Google Scholar] [CrossRef]
- Dempster, W.T.; Gaughran, G.R.L. Properties of body segments based on size and weight. Am. J. Anat. 1967, 120, 33–54. [Google Scholar] [CrossRef] [Green Version]
Items | Human Body | Exoskeleton | |||
---|---|---|---|---|---|
Shank | Thigh | Upper Body | Shank | Thigh | |
Sub.A M (kg) | 7.8 | 13.0 | 44.2 | 8.2 | 9.0 |
Sub.B M (kg) | 9.2 | 16.7 | 48.1 | 8.3 | 9.3 |
Sub.A L (m) | 0.48 | 0.42 | 0.58 | 0.48 | 0.42 |
Sub.B L (m) | 0.46 | 0.47 | 0.63 | 0.46 | 0.47 |
Sub.A (m) | 0.24 | 0.23 | 0.18 | 0.24 | 0.21 |
Sub.B (m) | 0.23 | 0.22 | 0.20 | 0.23 | 0.23 |
Conditions | Trial | RMSE | |||
---|---|---|---|---|---|
Left Hip | Left Knee | Right Hip | Right Knee | ||
Open-loop | 1 | 1.213 | 0.739 | 1.359 | 0.759 |
Open-loop | 2 | 1.204 | 1.110 | 1.292 | 0.745 |
Open-loop | 3 | 1.200 | 0.736 | 1.320 | 0.709 |
Open-loop | Ave. | 1.206 | 0.862 | 1.324 | 0.738 |
A = 0 | 1 | 1.253 | 2.844 | 3.178 | 1.453 |
A = 0 | 2 | 1.266 | 4.537 | 5.115 | 1.054 |
A = 0 | Ave. | 1.260 | 3.691 | 4.147 | 1.254 |
A = 0.2 | 1 | 1.378 | 2.366 | 1.616 | 0.860 |
A = 0.2 | 2 | 1.269 | 5.573 | 1.580 | 1.341 |
A = 0.2 | Ave. | 1.324 | 3.970 | 1.598 | 1.341 |
A = 0.4 | 1 | 1.242 | 5.173 | 1.402 | 0.912 |
A = 0.4 | 2 | 1.248 | 2.480 | 1.418 | 0.796 |
A = 0.4 | Ave. | 1.245 | 3.827 | 1.410 | 0.854 |
A = 0.6 | 1 | 1.256 | 2.665 | 1.466 | 0.825 |
A = 0.6 | 2 | 1.245 | 1.101 | 1.454 | 0.832 |
A = 0.6 | Ave. | 1.251 | 1.883 | 1.460 | 0.829 |
A = 0.8 | 1 | 1.272 | 3.192 | 1.821 | 0.881 |
A = 0.8 | 2 | 1.254 | 1.987 | 2.190 | 0.849 |
A = 0.8 | Ave. | 1.263 | 2.590 | 2.006 | 0.865 |
A = 1.0 | 1 | 1.266 | 3.998 | 2.181 | 0.825 |
A = 1.0 | 2 | 1.260 | 4.530 | 2.324 | 0.867 |
A = 1.0 | Ave. | 1.255 | 3.685 | 2.253 | 0.846 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, C.; Morim, P.T.; Penzlin, B.; Röhren, F.; Bergmann, L.; von Platen, P.; Bollheimer, C.; Leonhardt, S.; Ngo, C. Closed-Loop FES Control of a Hybrid Exoskeleton during Sit-to-Stand Exercises: Concept and First Evaluation. Actuators 2023, 12, 316. https://doi.org/10.3390/act12080316
Lyu C, Morim PT, Penzlin B, Röhren F, Bergmann L, von Platen P, Bollheimer C, Leonhardt S, Ngo C. Closed-Loop FES Control of a Hybrid Exoskeleton during Sit-to-Stand Exercises: Concept and First Evaluation. Actuators. 2023; 12(8):316. https://doi.org/10.3390/act12080316
Chicago/Turabian StyleLyu, Chenglin, Pedro Truppel Morim, Bernhard Penzlin, Felix Röhren, Lukas Bergmann, Philip von Platen, Cornelius Bollheimer, Steffen Leonhardt, and Chuong Ngo. 2023. "Closed-Loop FES Control of a Hybrid Exoskeleton during Sit-to-Stand Exercises: Concept and First Evaluation" Actuators 12, no. 8: 316. https://doi.org/10.3390/act12080316
APA StyleLyu, C., Morim, P. T., Penzlin, B., Röhren, F., Bergmann, L., von Platen, P., Bollheimer, C., Leonhardt, S., & Ngo, C. (2023). Closed-Loop FES Control of a Hybrid Exoskeleton during Sit-to-Stand Exercises: Concept and First Evaluation. Actuators, 12(8), 316. https://doi.org/10.3390/act12080316