A Bionic Control Method for Human–Exoskeleton Coupling Based on CPG Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human–Exoskeleton Coupling Dynamics Model
2.2. CPG Model and Its Characteristics
3. Experimental Validation
4. Results
4.1. The Performance of CPG Controller
4.2. Tracking Error
4.3. Coupling Force
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Li, Q. A systematic review on load carriage assistive devices: Mechanism design and performance evaluation. Mech. Mach. Theory 2023, 180, 105142. [Google Scholar] [CrossRef]
- Yang, F.-A.; Lin, C.-L.; Huang, W.-C.; Wang, H.-Y.; Peng, C.-W.; Chen, H.-C. Effect of Robot-Assisted Gait Training on Multiple Sclerosis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Neurorehabil. Neural Repair. 2023, 37, 228–239. [Google Scholar] [CrossRef]
- Hybart, R.L.; Ferris, D.P. Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, Z.; Ruan, L.; Duan, X.; Wang, Q. Mechatronic Design and Control of a Rigid-Soft Hybrid Knee Exoskeleton for Gait Intervention. IEEE/ASME Trans. Mechatron. 2023. early access. [Google Scholar] [CrossRef]
- Kimura, H.; Witte, H.; Taga, G. Briefing of AMAM. In Proceedings of the International Symposium on Adaptive Motion of Animals and Machines, AMAM, Montreal, QC, Canada, 8–12 August 2000. [Google Scholar]
- Ma, S.; Tomiyama, T.; Wada, H. Omnidirectional static walking of a quadruped robot. IEEE Trans. Robot. 2005, 21, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Baud, R.; Manzoori, A.R.; Ijspeert, A.; Bouri, M. Review of control strategies for lower-limb exoskeletons to assist gait. J. NeuroEng. Rehabil. 2021, 18, 119. [Google Scholar] [CrossRef] [PubMed]
- Arena, P.; Patanè, L.; Spinosa, A.G. A New Embodied Motor-Neuron Architecture. IEEE Trans. Control Syst. Technol. 2022, 30, 2212–2219. [Google Scholar] [CrossRef]
- Arena, P.; Patané, L.; Spinosa, A.G. A nullcline-based control strategy for PWL-shaped oscillators. Nonlinear Dyn. 2019, 97, 1011–1033. [Google Scholar] [CrossRef]
- Srisuchinnawong, A.; Akkawutvanich, C.; Manoonpong, P. Adaptive Modular Neural Control for Online Gait Synchronization and Adaptation of an Assistive Lower-Limb Exoskeleton. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–10. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, X.; Guan, X.; Wang, J. Quadruped robot based on the principle of biological central pattern generator. J. Tsinghua Univ. Sci. Technol. 2004, 2, 166–169. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, C. Walking Control and Optimizaiton for Biped Robots; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Dutta, S.; Parihar, A.; Khanna, A.; Gomez, J.; Chakraborty, W.; Jerry, M.; Grisafe, B.; Raychowdhury, A.; Datta, S. Programmable coupled oscillators for synchronized locomotion. Nat. Commun. 2019, 10, 3299. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.A.; Simo, L.S. A model of visually triggered gait adaption. In Proceedings of the Adaptive Motion of Animals and Machines, Montreal, QC, Canada, 8–12 August 2000. [Google Scholar]
- Delcomyn, F. Neural basis of rhythmic behavior in animals. Science 1980, 210, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Crillner, S. Neurobiological bases of rhythmic motor acts in vertebrates. Science 1985, 228, 143–149. [Google Scholar] [CrossRef]
- Hooper, S.L. Central pattern generators. Curr. Biol. 2000, 10, R176–R177. [Google Scholar] [CrossRef] [Green Version]
- Bachanam, J.T.; Crillner, S. Newly identified glutamate interneurons and their role in locomotion in lamprey spinal cord. Science 1987, 236, 312–314. [Google Scholar] [CrossRef]
- Brambilla, G.; Buchli, J.; Ijspeert, A.J. Adaptive four legged locomotion control based on nonlinear dynamical systems. Int. Conf. Simul. Adapt. Behav. 2006, 4095, 138–149. [Google Scholar]
- Zheng, H.; Zhang, X.; Li, T.; Duan, G. Robot motion control method based on CPG principle. Chin. High Technol. Lett. 2003, 7, 64–68. [Google Scholar]
- Cumplido-Trasmonte, C.; Molina-Rueda, F.; Puyuelo-Quintana, G.; Plaza-Flores, A.; Hernández-Melero, M.; Barquín-Santos, E.; Destarac-Eguizabal, M.A.; García-Armada, E. ‘Satisfaction analysis of overground gait exoskeletons in people with neurological pathology. A systematic review. J. NeuroEng. Rehabil. 2023, 20, 47. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, X.; Cheng, Z.; Zhao, L.; Guan, X.; Liu, P.; Tang, X. Biologically-Inspired Motion Control Theory and Its Application for a Legged-Robot; Tsinghua University Press: Beijing, China, 2011. [Google Scholar]
- Drew, T. Neuronal mechanisms for the adaptive control of locomotion in the cat. In Proceedings of the Adaptive Motion of Animals and Machines, Montreal, QC, Canada, 8–12 August 2000. [Google Scholar]
- Liu, G.; Habib, M.; Watanabe, K.; Izumi, K. The Design of Central Pattern Generators Based on the Matsuoka Oscillator to Generate Rhythmic Human-Like Movement for Biped Robots. J. Adv. Comput. Intell. Intell. Inform. 2007, 11, 946–955. [Google Scholar] [CrossRef]
- Gomes, M.A.; Siqueira, A.A.G. Trajectory Generation of Exoskeleton for Lower Limbs Using Synchronized Neural Oscillators [Internet]. Anais. 2013. Available online: http://abcm.org.br/anais/cobem/2013/PDF/191.pdf (accessed on 21 July 2023).
- Yan, Y.; Chen, Z.; Huang, C.; Chen, L.; Guo, Q. Human-exoskeleton coupling dynamics in the swing of lower limb. Appl. Math. Model. 2022, 104, 439–454. [Google Scholar] [CrossRef]
- Li, Z.; Kang, Y.; Xiao, Z.; Song, W. Human–Robot Coordination Control of Robotic Exoskeletons by Skill Transfers. IEEE Trans. Ind. Electron. 2016, 64, 5171–5181. [Google Scholar] [CrossRef]
- Mobile Robots: Towards New Applications; I-Tech Education and Publishing: Vienna, Austria, 2006. [CrossRef]
- Fukuoka, Y.; Kimura, H.; Cohen, A.H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int. J. Robot. Res. 2003, 22, 187–202. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, Q.; Yan, Y.; Shi, Y. Model identification and adaptive control of lower limb exoskeleton based on neighborhood field optimization. Mechatronics 2022, 81, 102699. [Google Scholar] [CrossRef]
bounded | value ranges | value ranges | ||||
bounded | value ranges | value ranges | slope of | |||
slope of | slope of | waveform | slope of | phase sequence | ||
slope of | slope of | slope of | phase sequence | |||
value ranges | value ranges | value ranges | value ranges | slope of | gait |
Parameter Groups | Values [Unit] |
---|---|
5.00175 [kg m2] | |
2.0653 [kg m2] | |
0.52645 [kg m] | |
2.3319 [kg m] | |
31.38 [N m] | |
43.67 [N m] | |
15.55 [N m s−1] | |
27.51 [N m s−1] |
Parameter Groups | Values [Unit] |
---|---|
5.29985 [kg m2] | |
0.9504 [kg m2] | |
1.73995 [kg m] | |
3.2035 [kg m] |
Parameters | Values |
---|---|
10 | |
−1 | |
−2 | |
0.23 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Zhang, S.; Li, R.; Yan, Y. A Bionic Control Method for Human–Exoskeleton Coupling Based on CPG Model. Actuators 2023, 12, 321. https://doi.org/10.3390/act12080321
Sun T, Zhang S, Li R, Yan Y. A Bionic Control Method for Human–Exoskeleton Coupling Based on CPG Model. Actuators. 2023; 12(8):321. https://doi.org/10.3390/act12080321
Chicago/Turabian StyleSun, Tianyi, Shujun Zhang, Ruiqi Li, and Yao Yan. 2023. "A Bionic Control Method for Human–Exoskeleton Coupling Based on CPG Model" Actuators 12, no. 8: 321. https://doi.org/10.3390/act12080321
APA StyleSun, T., Zhang, S., Li, R., & Yan, Y. (2023). A Bionic Control Method for Human–Exoskeleton Coupling Based on CPG Model. Actuators, 12(8), 321. https://doi.org/10.3390/act12080321