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Abstract: This paper presents a hierarchical lane-changing trajectory planner based on the least action
principle for autonomous driving. Our approach aims to achieve reliable real-time avoidance of
static and moving obstacles in multi-vehicle interaction scenarios on structured urban roads. Unlike
previous studies that rely on subjective weight allocation and single weighting methods, we propose
a novel trajectory planning strategy that decomposes the process into two stages: candidate trajectory
generation and optimal trajectory decision-making. The candidate trajectory generation employs a
path-velocity decomposition method, using B-spline curves to generate a multi-objective optimal lane-
changing candidate path. Collision checking eliminates paths at risk of collision with static obstacles.
Dynamic programming (DP) and quadratic programming (QP) are then used to plan the velocity
of safe paths, generating candidate lane-changing trajectories based on curvature checking. The
optimal trajectory decision-making process follows the decision mechanism of excellent drivers. We
introduce a comprehensive evaluation function, the average action, which considers safety, comfort,
and efficiency based on the least action principle. Feasible trajectories are ranked based on their
average action, and the trajectory with the minimum average action and no collision risk with moving
obstacles is selected as the tracking target. The effectiveness of the proposed method is validated
through two common lane-changing scenarios. The results demonstrate that our approach enables
smooth, efficient, and safe lane-changing while effectively tracking the planned velocity and path.
This method offers a solution to local trajectory planning problems in complex environments and
holds promising prospects in the field of autonomous driving.

Keywords: autonomous vehicle; lane-changing trajectory planning; trajectory quality assessment

1. Introduction

Intelligent vehicles have emerged as a strategic focus in the global automotive industry.
The development of intelligent vehicles holds significant importance for increasing driving
safety, optimizing travel efficiency, reducing traffic congestion, and increasing passenger
comfort [1]. The key functional modules required for achieving autonomous driving
capabilities include perception, decision-making, and control modules. Among them, the
decision-making module uses information from the perception module to determine future
driving behaviors (such as going straight ahead, turning left, making a U-turn, turning right,
overtaking, parking, etc.) and the corresponding local trajectories. Trajectory planning’s
primary goal is to provide local motion trajectories that align with the intended driving
behaviors. Surrounding traffic participants’ spatial position, orientation, and temporal
information must be considered during the trajectory planning process. The objective
is to create a collision-free trajectory from the starting point to the destination state in
real time, with a focus on driving safety, maneuvering stability, comfort, and efficiency
in driving scenarios with dynamic traffic flow and static obstacles. This is achieved by
satisfying constraints such as vehicle kinematics and dynamics, moving and static obstacles,
road geometry constraints, and traffic regulations. During the driving process, due to
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the presence of static and moving obstacles, the global path provided by the navigation
module cannot guarantee the vehicle’s safety. Therefore, given a known global path and
optimal driving behavior, considering the current motion state of the vehicle, surrounding
obstacle information, and the desired driving behavior, the vehicle needs to perform local
trajectory planning to guide it safely and swiftly to the target position [2]. The purpose
of intelligent vehicle lane-changing trajectory planning is to provide trajectory references
for safe driving [3]. The planned local trajectory has spatiotemporal characteristics that
directly determine the vehicle’s motion state over a certain period of time in the future.

Trajectory planning is mostly done using two methods. The first is the direct construc-
tion method, which uses time parameters to define the trajectory function directly. For
instance, the trajectory is explicitly defined as [x(t) y(t)]T by the Mercedes-Benz intelligent
driving system. Sequential quadratic programming can be used to calculate a trajectory
that meets safety standards and optimization goals, including vehicle yaw rate [4]. This
approach requires multiple adjustments of the time period in order to ensure boundedness
of velocity, acceleration, curvature, and curvature rate along the entire trajectory, which is a
significant challenge. The second method is the path-velocity decomposition method. It
first plans a path that satisfies continuous and bounded curvature constraints, and then it
plans a velocity profile on this path that satisfies continuous and bounded constraints [5]. It
also ensures bounded acceleration and bounded curvature derivatives. Since this method
decouples the constraints of path and velocity, it is relatively simpler compared to the
first method and has been widely applied. Depending on the different path generation
approaches, trajectory planning methods based on “path-velocity decomposition” can be
classified into four types: graph-based, space sampling-based, geometric curve-based, and
numerical optimization-based [6]. Graph-based methods require the establishment of a
grid-based environmental map of the driving space. Nodes are expanded based on a cost
strategy to search for feasible paths within the grid-based environment map [7,8]. Represen-
tative graph-based path planning methods include Dijkstra, A*, D*, etc. However, the paths
generated by this method are relatively coarse and require additional post-processing steps
for fine-tuning before being applied to motion control execution. Space sampling-based
methods connect a series of sampled nodes in obstacle-free spaces to establish a path from
the initial state to the target state [9,10]. Representative space sampling-based path plan-
ning methods include the Probabilistic Roadmap Method (PRM) and the Rapidly-exploring
Random Tree (RRT) method. This method avoids explicitly constructing obstacles in the
state space, and the feasibility of the trajectory is verified by collision checking, saving
computational costs. However, random sampling has limitations in dealing with com-
plex constraint conditions accurately. Geometric curve-based path planning methods use
specific types of function expressions to interpolate or fit a series of discrete waypoints,
resulting in a smooth path [11,12]. Common curve types include polynomial curves, Bezier
curves, spline curves, etc. This method is simple to implement, flexible in curve shape,
and can satisfy requirements such as path curvature continuity and motion planning con-
sistency. However, the quality of the path is influenced by waypoints or control points,
and it is challenging to balance curve shape and continuity. The idea behind numerical
optimization-based methods is to treat all aspects of the trajectory planning process as a
complete dynamic system, where the vehicle’s state, motion model, starting point, target
point, and surrounding environment are considered constraints [13,14]. Model Predictive
Control (MPC) is considered the most promising numerical optimization-based planning
method [15], and it has been widely applied in the fields of trajectory tracking and steering
control [16]. However, this method requires significant computational resources and often
involves linearization of the original model to reduce the complexity of solving it. In addi-
tion, there is another commonly used path planning method in the field of robotics known
as the Artificial Potential Field (APF) method. This method establishes a repulsive potential
field for obstacles and an attractive potential field for the target point. The comprehensive
potential field guides the vehicle to navigate towards the target position, completing the
path planning process. However, the parameter calibration process for establishing the
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potential field model can be cumbersome, and this method may result in non-smooth paths.
Common potential field modeling methods include the driving risk field [17] and elastic
band theory [18], among others.

The trajectory planning method based on the path-velocity decomposition generally
involves sampling multiple target points according to specific methods to calculate multiple
trajectories. Then, through behavior commands and collision analysis of trajectory clusters,
safe candidate paths are selected. Finally, the candidate paths are evaluated to determine
the optimal path [19]. After the generation of trajectory clusters, an optimization system
needs to be established to output the optimal trajectory. The evaluation criteria and
objective functions established in the optimization system directly affect the quality of the
output trajectory. The authors of [20] decomposed the overall goal of vehicle lane-changing
control in mixed traffic scenarios into three sub-goals: safety, feasibility, and efficiency.
The safety sub-goal used a dynamic circle equation to describe the vehicle’s geometric
profile and achieve collision avoidance. The feasibility sub-goal ensured the feasibility of
the trajectory by using constraint equations for motion parameters such as velocity and
acceleration. The efficiency sub-goal comprehensively considered factors such as vehicle
speed, lane-changing duration, and lane-changing comfort. The authors of [21] evaluated
paths from three aspects: safety, smoothness, and coherence. The authors of [22] selected
the optimal path based on static safety, comfort, and dynamic safety as the overall cost.
Static safety was evaluated using a combination of discrete Gaussian convolution and
collision checking, while dynamic safety considered the influence of trajectory acceleration
and travel distance. The authors of [23] generated candidate trajectory clusters based on
multiple target points and established a non-linear programming model with the objectives
of optimizing driving efficiency, safety, comfort, and economy. The evaluation criteria
for the trajectory included speed constraints, acceleration constraints, and collision safety
risks. A rough evaluation of the trajectory curve was used to select the optimal solution
instead of the best solution to improve computational efficiency. The authors of [24]
used a hierarchical approach, where obstacle costs were divided into three levels: safe,
dangerous, and fatal. Longitudinal acceleration costs were divided into a range based on
safety limits for maximum acceleration and deceleration and a flexible range based on
comfort settings. If the lateral acceleration cost exceeded the limit, it was considered fatal;
otherwise, it was set linearly proportional to the lateral acceleration value within the safe
range. Since the trajectory performance evaluation function needs to consider factors such
as the distance of the vehicle deviating from the reference path, maximum speed limits, ride
comfort, curvature rate limits, and trajectory planning consistency, the trajectory planning
problem belongs to a typical multi-objective coupled optimization problem. However,
the subjective nature of assigning weights to the factors in the objective function can lead
to weight preferences. Some studies have proposed dynamically adjusting the weights
of the objective function based on driving style types or the characteristics of natural
driving data, which can enhance the adaptability of trajectories to drivers and driving
scenarios [25,26]. Therefore, the trajectory cost function should have different forms in
different environments, making it challenging to design a performance cost function with
environmental adaptability.

In this context, this work proposes a lane-changing trajectory hierarchical planning
approach based on the least action principle with the goal of achieving high-quality, efficient,
and flexible lane-changing trajectory planning. First, the lane-changing trajectory planning
problem is divided into path planning and velocity planning problems in order to simplify
the solution process and increase computational efficiency. Prior to velocity planning, multi-
objective optimization of path planning is carried out, and then lane-changing trajectory
decision-making is made. Second, the theory of the driving safety field is applied to the
optimal trajectory decision-making process in order to improve the flexibility of the lane-
changing trajectory planning approach in complicated contexts. A Lagrangian function for
assessing the quality of lane-changing trajectories is established by applying the least action
principle, which is learned from the decision-making processes of highly skilled human
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drivers [27]. Finally, by selecting the trajectory with the lowest overall cost, it ensures that
the vehicle can carry out the lane-changing operation in accordance with the recommended
strategy in a smooth, efficient, and safe manner.

2. Trajectory Planning Framework

The framework of the proposed hierarchical lane-changing trajectory planning method
based on the least action principle is shown in Figure 1. The upper level is responsible
for generating candidate lane-changing trajectories, while the lower level focuses on lane-
changing trajectory decision-making. To increase the efficiency of solving the planning
problem, this study adopts the path-velocity decoupling method for lane-changing trajec-
tory planning. First, the potential region for the lane-changing endpoint is determined
based on the surrounding vehicle’s motion state before the lane-changing begins. A
quasi-uniform B-spline curve is used to connect the lane-changing start and end points to
generate the lane-changing path, which is then optimized. Collision checking is performed
to eliminate paths that collide with static obstacles. Next, a temporal and spatial graph is
established based on the prediction of the surrounding vehicle’s trajectories. The feasible
region for velocity planning is determined by combining lane-changing decision-making
behaviors. Dynamic programming (DP) and quadratic programming (QP) are used to plan
velocities for collision-free paths, resulting in a set of lane-changing trajectories. Curvature
detection is applied to check each lane-changing trajectory, obtaining a feasible candidate
set of lane-changing trajectories that are collision-free and satisfy the vehicle’s motion
constraints. To address the issues of weight preference and poor robustness when using
a single-weighting approach for the trajectory evaluation function, this study proposes
a trajectory performance evaluation function based on the least action principle, defined
as the average action along the trajectory. First, a virtual mechanical system for the lane-
changing process is established based on the theory of the driving safety field, analyzing
the virtual field forces acting on the ego vehicle within the driving safety field. Then, the
average action of each trajectory is calculated based on the definition of the least action
principle, and the trajectories are ranked. The trajectory with the smallest average action
and no collisions with moving obstacles is selected as the target for tracking.
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3. Hierarchical Lane-Changing Trajectory Planning Method
3.1. Generation of Candidate Lane-Changing Trajectories
3.1.1. Coordinate Transformation

In order to accurately represent the relative position relationship between the vehicle
and the road, the authors of [19] introduced the concept of the Frenet coordinate system into
trajectory planning on structured roads in 2011. Unlike the Cartesian coordinate system,
which uses orthogonal lines to construct the coordinate system, the Frenet coordinate
system sets the road reference line (curve) as the x-axis and the orthogonal direction of
the road reference line as the y-axis. The position and state information of the vehicle in
both the Cartesian coordinate system and the Frenet coordinate system can be mutually
transformed. The transformation principle is illustrated in Figure 2. Given the known
position and state variables of the vehicle in the Frenet coordinate system, represented
as

{
s,

.
s,

..
s, l, l′, l′′ ,

.
l,

..
l
}

, the corresponding position and state information of the vehicle in

the Cartesian coordinate system
{→

X, vh, ah, θh, kh

}
can be calculated using the following

formulas: 

xh = xr − l sin(θr)
yh = yr + l cos(θr)

θh = tan−1
(

l′
1−kr l

)
+ θr ∈ [−π, π]

vh =
√[ .

s(1 − krl)
]2

+
( .
sl′

)2

ah =
..
s (1−kr l)

cos(θh−θr)
+

.
s2

cos(θh−θr)

[
l′
(

(1−kr l)
cos(θh−θr)

kh − kr

)
− (k′rl + krl′)

]
kh =

(
(l′′ + (k′rl + krl′) tan(θh − θr))

cos2(θh−θr)
(1−kr l) + kr

)
cos(θh−θr)
(1−kr l)

(1)

where s is the longitudinal coordinate of the vehicle in the Frenet coordinate system.
.
s is

the derivative of the longitudinal coordinate with respect to time in the Frenet coordinate
system, representing the velocity along the reference path.

..
s is the second derivative of the

longitudinal coordinate with respect to time in the Frenet coordinate system, representing
the acceleration along the reference path. l is the lateral coordinate of the vehicle in
the Frenet coordinate system.

.
l is the derivative of the lateral coordinate with respect

to time in the Frenet coordinate system, representing the lateral velocity.
..
l is the second

derivative of the lateral coordinate with respect to time in the Frenet coordinate system,
representing the lateral acceleration. l′ is the derivative of the lateral coordinate with
respect to the longitudinal coordinate s in the Frenet coordinate system. l′′ is the second
derivative of the lateral coordinate with respect to the longitudinal coordinate s in the

Frenet coordinate system.
→
X is the coordinates of the vehicle in the Cartesian coordinate

system, represented as a vector
→
X = [xh, yh]. θh is the heading angle of the vehicle in the

Cartesian coordinate system. θr is the tangent angle of the projected point on the reference
path in the Cartesian coordinate system. kh is the actual curvature of the vehicle’s path in
the Cartesian coordinate system. kr is the curvature of the projected point (xr, yr) on the
reference path in the Cartesian coordinate system. vh is the vehicle speed in the Cartesian
coordinate system, vh = dsh/dt. ah is the acceleration in the Cartesian coordinate system,
ah = dvh/dt.
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Given the known position and state information of the vehicle in the Cartesian coordi-

nate system
{→

X, vh, ah, θh, kh

}
, the calculation of the vehicle’s position and state informa-

tion in the Frenet coordinate system
{

s,
.
s,

..
s, l, l′, l′′

}
can be performed using the following

formulas:

s = sr
.
s = vh cos(θh−θr)

(1−kr l)

..
s =

ah cos(θh−θr)−
.
s2
[

l′
(

(1−kr l)
cos(θh−θr)

kh−kr

)
−(k′r l+kr l′)

]
1−kr l

l = sign((yh − yr) cos(θr)− (xh − xr) sin(θr))
√
(xh − xr)

2 + (yh − yr)
2

l′ = (1 − krl) tan(θh − θr)

l′′ = −(k′rl + krl′) tan(θh − θr) +
(1−kr l)

cos2(θh−θr)

(
(1−kr l)

cos(θh−θr)
kh − kr

)
(2)

When using Equations (1) and (2) for coordinate transformation, there are two possible
scenarios where singularities can occur. However, in the rare event that singularities do
occur, several approaches can be adopted to address the issue. One approach is to use
offset or regularization techniques. By introducing a small offset or regularization term
to the equations when such singularities are detected, we can ensure a continuous and
well-defined transformation between the Cartesian and Frenet coordinate systems. Another
approach is to implement numerical stability checks during the transformation process.
By using these approaches, we can enhance the robustness and stability of the coordinate
transformation process.

3.1.2. Lane-Changing Path Planning Based on B-Spline Curves

The lane-changing path is generated in the Frenet coordinate system and then trans-
formed to the Cartesian coordinate system through the aforementioned coordinate trans-
formation.

(1) Selection of a feasible area for the lane-changing endpoint

In the lane-changing scenario as shown in Figure 3, the ego vehicle is denoted as S
with a velocity of vs. During the lane-changing process, the influences of three surrounding
vehicles on the ego vehicle are considered. These vehicles are the front vehicle SF in the
current lane, the front vehicle LF in the target lane, and the rear vehicle LR in the target
lane. Their speeds are denoted as vSF, vLF, and vLR, respectively. The starting time of the
lane-changing is denoted as t0, and the ending time is denoted as t f .
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The shape of the lane-changing endpoint distribution area is a rectangle [28], as
indicated by the dashed box in Figure 4. Within this region, the red dots represent possible
lane-changing endpoints. The boundary of this area is defined as follows:
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The upper boundary along the direction of vehicle travel is denoted as Sup, and the
lower boundary along the direction of vehicle travel is denoted as Slo. The upper boundary
perpendicular to the lane marking is denoted as Lup, and the lower boundary perpendicular
to the lane marking is denoted as Llo. The calculation formulas for each boundary are
as follows:

Sup = k1 · max{vS, vLF} (3)

Slo = k2 · min{vS, vLF} (4)

Lup = Llo = Dsa f e (5)

where k1 and k2 are lane-changing path adjustment coefficients that are related to the
driver’s style. The values are smaller for aggressive drivers compared to conservative
drivers. Typically, k1 = 3 and k2 = 6. Dsa f e represents the minimum safe distance that the
vehicle maintains with road boundaries and lane markers. Usually, Dsa f e = 0.3.

(2) Generation of candidate lane-changing paths

There are many types of geometric curves used to generate lane-changing paths. Dif-
ferent geometric curves require different input information and unknown parameters and
result in different path qualities. In this paper, we adopt B-spline curves to generate lane-
changing paths. The lane-changing paths generated using this method ensure curvature
continuity, and the curvatures at the starting and ending points of the lane-changing match
those of the reference path. Assuming we have P0, P1, P2, · · · Pn, as a set of n + 1 control
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points that define the direction and bounds of the spline curve, the definition of a k-th
B-spline curve is as follows:

p(u) = [P0, P1, P2, · · · Pn]


B0,k(u)
B1,k(u)

...
Bn,k(u)

 =
n

∑
i=0

PiBi,k(u) (6)

where Bi,k(u) represents the i-th kth-order B-spline basis function, corresponding to the
control point Pi. Here, k ≥ 1, and u is the independent variable. The basis functions have
the following recursive formula:

Bi,0(u) =
{

1 u ∈ [ui, ui+1)
0 u /∈ [ui, ui+1)

(7)

Bi,k(u) =
u − ui

ui+k−1 − ui
Bi,k−1(u) +

ui+k − u
ui+k − ui+1

Bi+1,k−1(u) (8)

where ui represents a set of continuously changing values known as the knot vector,
which is a non-decreasing sequence. The initial and final values are typically defined
as 0 and 1, respectively, that is, u0 = 0 and un+k = 1. This sequence is denoted as
[u0, u1, · · · , uk, uk+1, · · · , un, un+1, · · · , un+k], and it satisfies u0 ≤ u1 ≤ · · · ≤ uk ≤ uk+1 ≤
· · · ≤ un ≤ un+1 ≤ · · · ≤ un+k. To alter the shape of the B-spline curve, one or more control
parameters can be modified, such as the position of control points, the location of knots, or
the degree of the curve.

The 4th-order quasi-uniform B-spline curve is used in this paper to generate lane-
changing paths, as shown in Figure 5. By selecting six control points based on the lane-
changing starting and ending points, a curvature-continuous lane-changing path can be
generated, represented by points A, B, C, D, E, and F in Figure 5. The initial position of
the vehicle at the lane-changing starting point is defined as point A, while any sampled
point within the feasible region in Figure 4 can be chosen as the lane-changing endpoint,
represented by point F. According to the characteristics of the quasi-uniform B-spline curve,
when points A, B, and C, as well as D, E, and F, lie on the same line parallel to the lane
centerline (i.e., ABC//DEF//lane centerline), it is possible to achieve zero curvature at
the lane-changing starting and ending points. To ensure that the generated lane-changing
path is symmetric about the centerline, it is required that ABC and DEF exhibit symmetric
distributions. Therefore, by determining the positions of points B and C, a lane-changing
path based on a 4th-order quasi-uniform B-spline curve can be generated. To ensure
the optimality of the generated lane-changing path between the starting point A and the
ending point F, this paper evaluates the quality of the lane-changing path using two metrics:
path length and average curvature. Path length reflects the distance traveled during the
lane-changing process, while average curvature represents the comfort of lateral vehicle
control during the lane-changing process. By employing a multi-objective linear weighting
approach, the lane-changing path evaluation function can be formulated as follows [29]:

Costpath = ω1

n−1

∑
i=1

∆di,i+1 + ω2

n

∑
i=1

κi
n

(9)

where ω1 and ω2 are the weighting coefficients of the sub-objective functions; ∆di,i+1
represents the distance between adjacent waypoints i and i + 1 in the lane-changing path;
κi denotes the curvature corresponding to waypoint i in the lane-changing path, which
can be estimated assuming that three consecutive waypoints lie on the same circle; and n
represents the number of waypoints included in the path.
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Figure 5. Lane-changing path generated based on B-spline curves.

By using a linear weighting approach, the combination of path length and average
curvature is used as the optimization objective. Through an optimization algorithm, the
positions of points B and C can be determined, thus selecting the six control points based
on the lane-changing starting and ending points. Additionally, to simplify the optimiza-
tion process and improve the efficiency of the path search, AB is set to be equal to AC,
transforming the two-dimensional optimization problem into a one-dimensional optimiza-
tion problem. Considering the differences in scale between path length and curvature, in
the process of constructing the optimization objective, each of them is normalized and
then combined through weighted summation to obtain the comprehensive optimization
objective function.

Figure 6 shows the optimization results of lane-changing path control points under
different weight distributions. It can be observed that with different weights, different path
control points can be obtained, thereby affecting the shape of the generated lane-changing
path when the starting and ending points of the lane-changing path are the same. When
ω1 = 0.1 and ω2 = 0.9, the optimal path control points correspond to AB = EF = 5.26 m
and AC = DF = 10.52 m. When ω1 = 0.9 and ω2 = 0.1, the optimal path control points
correspond to AB = EF = 6.68 m and AC = DF = 13.36 m. When ω1 = 0.6 and ω2 = 0.4,
the optimal path control points correspond to AB = EF = 5.74 m and AC = DF = 11.48 m.
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By using equidistant sampling within the possible region of lane-changing endpoints,
multiple lane-changing target endpoints can be generated. Similarly, using the same
approach, the candidate lane-changing paths can be generated, as shown by the solid red
lines in Figure 4.

(3) Collision checking for static obstacle

In this paper, the vehicle collision checking is performed using the dynamic circle
envelope method. Nc circles with the same radius are uniformly placed to cover the
minimum bounding rectangle of the vehicle contour. The radius of the envelope circle is
equal to half of the vehicle width. C0 represents the envelope circle corresponding to the
rear position of the vehicle, while CNc represents the envelope circle corresponding to the
front position of the vehicle. The center coordinates of C0 and CNc can be calculated based
on the vehicle’s centroid position obtained from the vehicle positioning system and the
vehicle’s size information. Let the center coordinates of C0 and CNc be denoted as

(
SC0 , LC0

)
and

(
SCNc

, LCNc

)
, respectively. The calculation formula for the center coordinates of any

envelope circle Ci of the vehicle is as follows:Si = SC0 +
λ

Nc−1

(
SCNc

− SC0

)
Li = LC0 +

λ
Nc−1

(
LCNc

− LC0

) (10)

where λ is the independent variable defined on the interval [0, Nc − 1], and it is an integer.
The collision detection between two vehicles based on dynamic circular envelopes

can be transformed into determining whether there is an overlapping region between any
envelope circle covering the ego vehicle and any envelope circle covering the surrounding
vehicles. The existence of overlap between two circles can be determined based on the
distance between their centers. Therefore, in the scenario depicted in Figure 7, the collision
detection condition between vehicle 1 and vehicle 2 can be represented as follows:

(S1 − S2)
2 + (L1 − L2)

2 ≥ (R1 + R2)
2 (11)

where S1 and S2 represent the S-axis coordinates of the centers of any enveloping circles
for vehicle 1 and vehicle 2, respectively. L1 and L2 represent the L-axis coordinates of
the centers of any enveloping circles for vehicle 1 and vehicle 2, respectively. R1 and R2
represent the radii of the envelope circles for vehicle 1 and vehicle 2, respectively, which
are equal to half of the corresponding vehicle’s width.
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Additionally, it is necessary to ensure that the vehicle remains within the boundaries
of the road while driving along the planned waypoints. This can be achieved by checking
whether there is an intersection between any envelope circle covering the vehicle and the
lane boundaries.
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3.1.3. Velocity Planning Using DP and QP

The task of velocity planning is to assign time-related information, such as speed,
acceleration, etc., to the lane-changing waypoints, thereby completing the trajectory plan-
ning task.

(1) Establishment of temporal and spatial graphs

1. Trajectory prediction of surrounding vehicles

For lane-changing scenarios, considering that lane-changings typically occur over a
short duration, a constant acceleration (CA) model in the Frenet coordinate system is often
chosen to predict the motion trajectory of surrounding vehicles. In this model, the state
variables of a vehicle include the longitudinal coordinate s, lateral coordinate l, heading
angle θ (counterclockwise as positive) with respect to the S-axis, velocity vs, and acceleration
as, denoted as follows:

XCA = {s, l, θ, vs, as} (12)

If the sampling period is denoted as ∆T, then the vehicle state transition equation for
the constant acceleration model can be expressed as follows:

XCA(k + 1) = XCA(k) +



(
vs∆T + 1

2 as∆T2
)

cos θ(
vs∆T + 1

2 as∆T2
)

sin θ

0
as∆T

0

 (13)

According to this state transition equation, if the initial states of surrounding vehicles
at the beginning of the lane-changing are known, the CA model can be used to obtain the
predicted trajectories of surrounding vehicles within the prediction time domain.

2. Potential conflict detection for a lane-changing path

Based on whether there is an overlap between the predicted trajectories of surrounding
vehicles and the candidate lane-changing paths generated in the previous steps, the poten-
tial conflict risk of the lane-changing path is determined. If there is no overlap between
the predicted trajectories of surrounding vehicles and the lane-changing path, the velocity
planning task does not need to consider the influence of that vehicle. However, if there
is an overlap, it is necessary to conduct velocity planning for the lane-changing path to
avoid the risk of collision with that vehicle. The method for assessing the potential conflict
between the lane-changing path and surrounding vehicle A is as follows:

(SA − Si)
2 + (LA − Li)

2 ≥ (R0 + RA)
2 (14)

where (SA, LA) represents the coordinates of the center of any enveloping circle of sur-
rounding vehicle A in the Frenet coordinate system, and (Si, Li) represents the coordinates
of any point on the lane-changing path in the Frenet coordinate system. R0 and RA, respec-
tively, represent the radii of the enveloping circle of the ego vehicle and vehicle A, which
are equal to half of the corresponding vehicle’s width.

If for any waypoint on the predicted trajectory of surrounding vehicle A and any point
on the lane-changing path, the equation mentioned above is satisfied, there is no potential
conflict between surrounding vehicle A and the ego vehicle. Conversely, if the equation
is not satisfied, there is a potential conflict between surrounding vehicle A and the ego
vehicle, and the velocity planning task needs to consider the influence of that vehicle, as
shown in Figure 8a.
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(b) description of what is contained in the ST graph.

According to the aforementioned steps, the potential conflicts between the vehicle SF,
vehicle LF, and vehicle LR with the ego vehicle are determined. The surrounding vehicles
with conflicts are selected, and the starting time t1 and ending time t2 of the conflicts, as well
as the coordinates of the corresponding roadway points in the Frenet coordinate system,
are recorded. Any moment with a potential conflict is denoted as tk. The set of waypoints
where the candidate lane-changing path and surrounding vehicles have potential conflicts
is defined as the potential conflict zone ∆St. All waypoints within the potential conflict
zone at any moment of potential conflict are plotted in a coordinate system with time t as
the horizontal axis and coordinate S in the Frenet coordinate system as the vertical axis,
forming a temporal and spatial graph as shown in Figure 8b, commonly referred to as the
ST graph. The slope of the curves in the ST graph can be used to determine the velocity
trend: the steeper the slope, the faster the corresponding velocity. In Figure 8b, the solid
red line represents the vehicle’s acceleration process, and the dashed blue line represents
the vehicle driving at constant speed.

3. Discretization of the temporal and spatial graph

To employ DP for velocity planning, the ST graph needs to be discretized. Based on
calculation efficiency, planning time domain, and path length, an appropriate sampling
interval is chosen to discretize the ST graph uniformly, as shown in Figure 9. It should
be noted that the speed varies between cells but remains constant within each cell. The
blue-shaded area in Figure 9 represents the potential conflict zone between the surrounding
vehicle and the ego vehicle along the planned path in Figure 8a. Both the solid red
line (vehicle acceleration for overtaking) and the dashed blue line (vehicle driving at a
constant speed) overlap with the potential conflict zone, indicating unsafe velocity planning.
The solid green line in the figure represents a velocity planning scheme that involves
deceleration to avoid collisions with surrounding vehicles, meeting safety requirements.
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(2) Velocity generation and smoothing

The velocity planning process involves two steps: initial velocity generation and
velocity smoothing.

1. Velocity generation based on DP

The initial velocity generation method based on DP transforms the velocity planning
problem into a multi-stage decision optimization problem using the discretized ST graph.

In each stage, the selectable S-axis coordinate position is related to the adjacent pre-
vious stage’s vehicle position, velocity, and maximum acceleration. In the discretized ST
graph shown in Figure 9, the time series obtained by discretizing the horizontal axis with
an equal interval ∆t are denoted as {t0, t1, t2, t3, · · · , tn}, where tn is the end time of the
lane-changing. The mileage sequence obtained by discretizing the vertical axis with equal
intervals ∆s is denoted as S = {s0, s1, s2, s3, · · · , sn}, where sn corresponds to the end point
coordinate send of the lane-changing. To evaluate the cost of the state transition, the velocity
vi, acceleration ai, and jerk corresponding to state si at stage i are calculated according to
the following formulas:

vi =
.
si =

si − si−1

∆t
(15)

ai =
..
si =

si + si−2 − 2si−1

(∆t)2 (16)

jerki =
...
s i =

si + si−3 − 3si−1 − 3si−2

(∆t)3 (17)

The optimization objective function for initial velocity generation using DP is defined
as follows:

Ctotal(S) = ωD1Csmooth + ωD2Ctarget + ωD3Cobs(S) (18)

where ωD1, ωD2, and ωD3 represent the weights of each sub-objective function. The
first term of the objective function guarantees that the generated velocity is sufficiently
smooth. The second term primarily aims to improve the efficiency of the lane-changing
process, ensuring that the vehicle reaches the destination of the lane-changing as quickly as
possible. The third term is mainly used to evaluate the distance between the ego vehicle
and surrounding obstacle vehicles, ensuring safety.

The specific form of the objective function for smoothness, which is the first term, is
as follows:

Csmooth(S) = ω11

n

∑
i=0

(ai)
2 + ω12

n

∑
i=0

(jerki)
2 (19)

The specific form of the objective function for efficiency, which is the second term, is
as follows:

Ctarget(S) =
n

∑
i=0

(si − sT)
2 (20)

The specific form of the objective function for obstacle avoidance, which is the third
term, is as follows:

Cobs(S) =
n

∑
i=0

Cobs(si) (21)

Cobs(si) =



in f sobs_L(i) ≤ si ≤ sobs_U(i)
0 si ≥ sobs_U(i) + ssa f e_overtake
0 si ≤ sobs_L(i) + ssa f e_ f ollow(

∆si − ssa f e_ f ollow

)2
0 ≤ sobsL(i)− si ≤ ssa f e_ f ollow(

∆si − ssa f e_overtake

)2
0 ≤ si − sobs_U(i) ≤ ssa f e_overtake

(22)
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where ∆si represents the relative distance between the ego vehicle and surrounding obstacle
vehicles. ssa f e_overtake is the minimum safe distance between the ego vehicle and the rear
vehicle in the target lane during the overtaking process. It depends on the ego vehicle’s
velocity and mass, and a recommended range is 50–100 m. ssa f e_ f ollow is the minimum safe
distance between the ego vehicle and the front vehicle in the target lane during the following
process. It also depends on the ego vehicle’s velocity and mass, and a recommended range
is 50–100 m. sobs_L(i) and sobs_U(i) represent the minimum and maximum values of the
potential conflict region between the ego vehicle and surrounding obstacle vehicles at stage
i on the ST graph.

To improve the efficiency of velocity generation using DP, the state variable s(i) at
stage i during the search process can be constrained by the following conditions:

si > si−1 (23)

vi < vmax (24)

amin ≤ ai ≤ amax (25)

The first constraint ensures that the vehicle can only move forward and is not allowed
to move backward. The second constraint states that the generated velocity must be lower
than the vehicle’s maximum designed speed vmax. The third constraint specifies that the
vehicle’s acceleration cannot exceed the maximum acceleration capability of the vehicle.

The velocity generated through DP is optimal, but due to the discretization process,
the resulting ST curve is represented as a piecewise linear curve, as shown by the solid
green line in Figure 10. The slope of this curve represents the velocity, but the slope is not
continuous. Therefore, further smoothing is required for the ST curve.
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2. Velocity smoothing based on QP

To generate a smooth velocity profile, a fifth-degree polynomial is used to connect
adjacent state s(i) and s(i + 1) obtained from the ST curve generated using DP. For the
discrete ST curve composed of n states, the smoothed ST curve is formed by connecting the
n − 1 segments of fifth-degree polynomial curves. The expression for each segment of the
polynomial curve is as follows:

si(t) = a0,i + a1,it + a2,it2 + a3,it3 + a4,it4 + a5,it5 (26)

vi(t) = a1,i + 2a2,it + 3a3,it2 + 4a4,it3 + 5a5,it4 (27)
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ai(t) = 2a2,i + 6a3,it + 12a4,it2 + 20a5,it3 (28)

jerki(t) = 6a3,i + 24a4,it + 60a5,it2 (29)

The definition of the objective function for smoothing the ST curve includes three
aspects: acceleration, jerk, and position error.

Ctotal(S) =
n−1

∑
i=0

[
ωS1

∫ ti

ti−1

a2
i (t)dt + ωS2

∫ ti

ti−1

jerk2
i (t)dt + ωS3

∫ ti

ti−1

(si(t)− si)
2dt

]
(30)

where ωS1, ωS2, and ωS3 represent the weight coefficients of the sub-objective functions. ti−1
and ti represent the start and end times of the i-th segment of the fifth-degree polynomial
curve. Since the ST curve generated through DP in the previous steps is uniformly sampled
in the time dimension, the time period of each polynomial curve segment is equal, that is,
ti − ti−1 = ∆t.

The vehicle velocity smoothing problem based on QP includes three types of equality
or inequality constraints, as described below.

First, there are equality constraints for the position, velocity, and acceleration at the
connecting points between adjacent polynomial curves.

si(t) = si+1(0)
vi(t) = vi+1(0)
ai(t) = ai+1(0)

(31)

Second, the first segment of the polynomial curve should satisfy the equality con-
straints for the starting position, velocity, and acceleration of the original ST curve.

s1(0) = s0
v1(0) = v0
a1(0) = a0

(32)

Finally, all position points need to satisfy the corresponding maximum limit constraints
for position, velocity, and acceleration.

si(t) ≥ sobsU (i) + ssa f e_overtake
si(t) ≤ sobs_L(i)− ssa f e_ f ollowing

vi(t) ≤ vmax
amin ≤ ai(t) ≤ amax

(33)

By combining the objective functions and constraints mentioned above, solving the QP
problem will yield a smooth ST curve, which corresponds to a smooth velocity planning
result. As shown in Figure 10, the red dashed line represents the ST curve obtained
after smoothing.

(3) Curvature checking of a lane-changing trajectory

The curvature check considers the minimum turning radius and prevents the vehicle
from experiencing side slip during the turning process. First, the radius corresponding to
the maximum curvature ρmax of the trajectory should be greater than the vehicle’s minimum
turning radius Rmin. Second, to prevent side slip during the turning process, the lateral
force during steering should not exceed the maximum available tire grip. Considering
vehicle stability, the absolute value of the maximum lateral acceleration should be less than
0.4 g. Based on these considerations, the following constraint relationship between the
trajectory curvature radius ρ and the planned vehicle speed v can be derived as follows:∣∣∣∣v2

ρ

∣∣∣∣ ≤ 0.4 g (34)
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By performing curvature checking on the lane-changing trajectory, candidate feasible
lane-changing trajectories can be generated that satisfy the constraints of the minimum
turning radius and prevent lateral slip from occurring.

3.2. Decision for Lane-Changing Target Trajectory
3.2.1. Definition of Trajectory Performance Evaluation Function

The Least Action Principle (LAP) is used to describe extremal phenomena in the
natural world and physics. The actual motion or trajectory of objects in nature always
minimizes the action, and for any stable state, there exists a corresponding minimum action.
The term “action” refers to a cost measure of different motion choices that satisfies this
principle. For example, when a rope hangs freely with both ends fixed, the system’s action,
gravitational potential energy, tends to be minimized. In the problem of the fastest descent
of a ball from a higher point to a lower point, time is the measure of action for this process.
The significance of the Least Action Principle is that for every mechanical system, there
exists an integral S called the action, which has a minimum value for the actual motion,
that is →, variation δS is zero. The authors of [27] discovered through statistical analysis
of natural driving data that the main characteristic parameters reflecting driver decision-
making behaviors during vehicle operation exhibit extremal phenomena. They conducted
real-world experiments to verify that the driver decision-making mechanism follows the
Least Action Principle, where drivers aim to achieve optimal maneuverability and safety
while driving, pursuing the highest comprehensive performance while ensuring driving
safety. They established the action of the driving process based on two dimensions: driving
risk and travel time, and they defined the system’s Lagrangian function in the driving
process as the difference between vehicle kinetic energy and potential energy. Therefore,
this study aims to establish an action function for lane-changing trajectories based on two
dimensions: driving risk and travel time, to objectively describe the driving goals pursued
during the lane-changing process of intelligent vehicles.

(1) Dynamic driving risk modeling based on the DSF

To ensure the safety of the lane-changing process, intelligent vehicles need to accurately
assess the driving risks in the traffic environment and provide precise quantification
of risk evaluation for real-time trajectory planning in dynamic and complex scenarios.
Considering the similar characteristics between the risks generated by traffic factors and
fields in physics [30], the concept of the driving safety field (DSF) is proposed to represent
the risks generated by various elements of traffic to the driving vehicles on the road. The
objects in the traffic scene that can cause driving risks can be mainly categorized into three
types: human (drivers), vehicle (moving objects on the road), and road (static elements in
the road environment). All traffic elements that pose driving risks to the vehicles on the
road form a driving safety field, which repels other objects approaching it. Accordingly,
the driving safety fields formed by these three types of objects are defined as the behavior
field, kinetic field, and potential field, respectively.

This paper establishes a dynamic driving risk quantification evaluation model based
on the theory of driving safety and illustrates the construction process of the dynamic
driving risk quantification model using a lane-changing scenario as an example. For
the lane-changing scenario shown in Figure 11, the driving risks are generated by the
road boundaries, lane markers, and moving vehicles. First, we employ the potential field
model proposed in Reference [30] to establish a risk field for the road boundaries and
lane markers. Additionally, we use the kinetic field model from the same reference to
establish risk fields for the moving vehicles. Next, we superimpose the risk field strengths
generated by different traffic elements to obtain the comprehensive driving risk field for
the lane-changing scenario, as depicted in Figure 11. Finally, considering the vehicle’s
state and the road information at different time steps during the lane-changing process, we
recalculate the distribution of the comprehensive driving risk field to obtain the dynamic
driving risk distribution for the lane-changing process. Figure 11a shows the positional
relationship between the ego vehicle and surrounding vehicles at the beginning of a lane
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change. Due to the presence of a stationary vehicle ahead in the current lane, the ego
vehicle needs to select a different lane to avoid a collision. Before changing lanes, the ego
vehicle needs to determine whether the target lane meets the lane-changing conditions
based on perception information. It obtains the position and motion status of vehicles in
the target lane and calculates the potential field formed by lane markings, the potential
field formed by stationary vehicles, and the kinetic field of vehicles in the target lane based
on the theory of driving safety field. The distribution of driving risk at the start of the
lane-changing is shown in Figure 11a. From the figure, it can be observed that the current
lane has higher risks ahead, while the target lane has lower risks. Moving the ego vehicle
to a low-risk area through lane-changing improves driving safety. Figure 11b shows the
motion trajectories of the ego vehicle and the following vehicles in the target lane during the
lane-changing process, as well as the distribution of driving risk after the lane-changing is
completed. During the lane-changing process, the relative positions of the ego vehicle to the
preceding stationary vehicle and the following vehicles in the target lane are dynamically
changing. The magnitudes and directions of the driving safety field formed by various
traffic participants are also dynamically changing, resulting in the low-risk area available
for the ego vehicle to drive also changing with time and space. Therefore, in the trajectory
planning process of lane-changing, this paper constructs a dynamic driving risk model
based on real-time position and attitude information of the ego vehicle and various traffic
participants to ensure the safety of the planned trajectory.
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(2) Definition of the evaluation function based on the LAP

According to the definition of the Least Action Principle, the action of the lane-
changing process for vehicles can be defined as follows:

SRisk =
∫ t f

t0

Lidt (35)

Li = Ti − Ui (36)

where SRisk represents the action of the vehicle during the lane-changing process along the
planned trajectory. t0 is the starting time of the lane-changing, and t f is the ending time of
the lane-changing. Li is the system Lagrangian during the lane-changing process. Ti and
Ui represent the kinetic and potential energies of the vehicle, respectively. Ui is the sum of
the safety potential energies that the vehicle possesses while driving in the driving safety
field generated by stationary and moving obstacles.

Ti =
1
2

mv2
i (37)
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where m represents the mass of the ego vehicle and vi represents the corresponding vehicle
speed of the ego vehicle during the lane-changing process along the planned trajectory.

Ui =
K

∑
j=1

∫ t f

t0

Fij
(
vi − vj

)
dt (38)

where K represents the number of surrounding vehicles around the ego vehicle. For the
scenario shown in Figure 1, K = 3. vj represents the speed of the surrounding vehicle j of
the ego vehicle. Fij represents the interaction force exerted on the ego vehicle in the risk
field generated by the surrounding vehicle j.

Fij = Eij·m·RO =
K·Tj·RO·Mj·m·e(kD2·vij · cos (θDo))∣∣rjo

∣∣kD1
(39)

where Eij represents the strength of the driving risk field generated by the surrounding
vehicle j (dynamic obstacle) at the position of the ego vehicle. The calculation formula can
be found in reference [30]. RO is the influencing factor of road adhesion at the position of
the ego vehicle, which is related to the road adhesion coefficient determined by the road
surface and tires. When the adhesion rate Cφ of the driving wheels is less than or equal to
the road adhesion coefficient φ, RO = 1. When the adhesion rate Cφ of the driving wheels
is greater than the road adhesion coefficient φ, RO = f

(
Cφ − φ

)
and RO > 1. The larger

the value of
∣∣Cφ − φ

∣∣, the larger the value of RO.
∣∣rjo

∣∣ is the distance from the centroid
position of surrounding vehicle j to the position of the ego vehicle. Mj is the mass of the
surrounding vehicle j. Tj is the influencing factor of the risk magnitude of the surrounding
vehicle j, which is related to the size of the moving obstacle. It is obvious that trucks have
larger values of Tj compared to passenger cars, and Tj > 1. Generally, Tj falls within the
range of [1, 10]. For example, Tj is 1 for passenger cars and 3 for trucks. K, kD1, and kD2 are
constants. Typically, K = 1, kD1 falls within the range of [1, 10], and kD2 falls within the
range of [0.01, 0.1]. vij represents the magnitude of the relative velocity between the ego
vehicle and surrounding vehicle j. θDo represents the angle between the motion velocity of
the ego vehicle and the surrounding vehicle j.

3.2.2. Selection of Lane-Changing Trajectory

The lane-changing trajectory decision is primarily based on the trajectory evaluation
results to select a target one from the candidate lane-changing trajectories. For any feasible
candidate lane-changing trajectory, the actual action SRisk of the vehicle during the lane-
changing process is calculated. Considering the differences in lane-changing duration for
different trajectories, this paper defines the average action as a measure of lane-changing
trajectory quality. The average action is defined as the ratio of the actual action of the
lane-changing trajectory to the lane-changing duration, and the calculation formula is
as follows:

SAve =
SRisk

t f − t0
(40)

According to the average action of the lane-changing trajectories, all feasible candidate
lane-changing trajectories are sorted, and the trajectory with the smallest average action
is selected for moving obstacle checking. If the collision checking fails, the trajectory is
excluded, and the decision process continues by selecting the candidate trajectory with the
next smallest average action quantity for collision checking. This continues until a collision-
free trajectory is chosen as the final output of the lane-changing trajectory planning.

3.2.3. Collision Checking for Moving Obstacles

Collision checking for moving obstacles is carried out to ensure the safety of the
selected lane-changing trajectory. It mainly focuses on collision-checking between the ego
vehicle and surrounding moving vehicles. The same method as static obstacle collision
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checking is employed. The process involves sequentially checking whether the ego vehicle’s
movement along the selected lane-changing trajectory with the smallest average action
satisfies the collision checking requirements with the surrounding moving vehicles.

4. Simulation Analysis and Discussion

The proposed hierarchical trajectory planning method in this paper was validated
using the MATLAB 2021a simulation platform. Two types of scenarios were set up: lane-
changing overtaking and lane-changing following. The trajectory algorithm involves
multiple optimization models, including lane-changing path optimization based on B-
spline curves, ST curve optimization based on DP, and ST curve smoothing based on QP.
These optimization problems are all typical multi-objective optimization problems. In this
paper, a weighted sum approach was used to transform the objectives into single-objective
optimization problems. The weight coefficients of the sub-objective functions for each
optimization problem are shown in Table 1.

Table 1. Weight parameters for multi-objective optimization problems.

Type Parameter Value

Path optimization ω1 0.5
ω2 0.5

Dynamic programming

ω11 0.2
ω12 0.2
ωD2 0.5
ωD3 5

Quadratic programming
ωS1 20
ωS2 20
ωS3 300

The lane-changing scenario, as shown in Figure 12, was constructed for algorithm
validation in this paper. The scenario consists of a single-direction dual-lane with curved
arcs. The thick, solid blue line represents the road boundary, the dashed blue line represents
the lane markings, and the dashed black line represents the lane centerline. To facilitate
the subsequent scenario description, a Frenet coordinate system was established with the
red asterisk in the figure as the origin. The lane-changing scenario depicted in Figure 12a
was transformed to the Frenet coordinate system. The curved lane-changing scenario
in the Cartesian coordinate system was converted to a straight lane-changing scenario
in the Frenet coordinate system, as shown in Figure 12b. The figure demonstrates the
transformation of the lane-changing path (red solid line) from the Cartesian coordinate
system to the Frenet coordinate system (red solid line).

4.1. Simulation Scenario 1: Lane-Changing and Following

Figure 13a depicts the lane-changing and following scenario. At the beginning of
the lane-changing, there is a stationary vehicle (obstacle) ahead of the ego vehicle in the
current lane. The ego vehicle needs to perform the lane-changing to avoid collision with
the stationary vehicle and, after the lane-changing, follow the moving vehicles in the target
lane. The initial parameters of each vehicle at the start time are provided in Table 2. The ego
vehicle has an initial velocity of 10 m/s with an acceleration of 0. The distance between the
ego vehicle and the leading obstacle vehicle on the current lane is 30 m. The leading vehicle,
LF, on the target lane has an initial velocity of 10 m/s with an acceleration of 0.5 m/s2,
moving with constant acceleration. The requirements for the lane-changing process are to
avoid collision with the vehicle SF and maintain an appropriate following distance with
the leading vehicle, LF, on the target lane. The vehicle’s heading angle should align with
the centerline of the lane at the beginning and end of the lane-changing.
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Table 2. Initial parameter settings for scenario 1.

Parameter Value

Ego vehicle velocity 10 m/s
Ego vehicle acceleration 0

Coordinate of ego vehicle position (30, 0)
Vehicle SF velocity 0

Vehicle SF acceleration 0
Coordinate of vehicle SF position (70, 0)

Vehicle LF velocity 10 m/s
Vehicle LF acceleration 0.5 m/s2

Coordinate of vehicle LF position (40, D)

Based on the proposed lane-changing endpoint selection method and the lane-changing
requirements of the scenario, the lane-changing endpoint is selected on the centerline of
the target lane. The range of the longitudinal position for the lane-changing endpoint is set
with a minimum distance of 30 m from the ego vehicle’s current position and a maximum
distance of 60 m. The endpoints for the lane-changing are generated by sampling at 5 m in-
tervals, as shown by the blue circles in Figure 14. The red circle represents the lane-changing
starting point, the blue square represents the ego vehicle, and the gray squares represent
the vehicles LF and SF in the scenario depicted in Figure 13a. The candidate lane-changing
paths generated using a fourth-order quasi-uniform B-spline curve are shown by the red
solid line in Figure 14.



Actuators 2024, 13, 10 21 of 30

Actuators 2024, 13, x FOR PEER REVIEW 21 of 30 
 

 

Based on the proposed lane-changing endpoint selection method and the lane-chang-
ing requirements of the scenario, the lane-changing endpoint is selected on the centerline 
of the target lane. The range of the longitudinal position for the lane-changing endpoint 
is set with a minimum distance of 30 m from the ego vehicle’s current position and a max-
imum distance of 60 m. The endpoints for the lane-changing are generated by sampling 
at 5 m intervals, as shown by the blue circles in Figure 14. The red circle represents the 
lane-changing starting point, the blue square represents the ego vehicle, and the gray 
squares represent the vehicles LF and SF in the scenario depicted in Figure 13a. The can-
didate lane-changing paths generated using a fourth-order quasi-uniform B-spline curve 
are shown by the red solid line in Figure 14. 

 
Figure 14. Candidate lane-changing paths for scenario 1. 

Selecting any one from the candidate lane-changing paths, its curvature and heading 
angle in the Cartesian coordinate system are analyzed, as shown in Figure 15. The red 
dashed line represents the curvature of the road centerline, while the blue solid line rep-
resents the curvature of the planned path. The curvature at the beginning and end of the 
lane-changing matches the curvature of the road centerline, satisfying the requirement for 
the vehicle to travel along the centerline before and after the lane-changing. Additionally, 
from the path heading angle with respect to distance, it can be observed that the vehicle’s 
heading angle varies continuously along the planned path. This would provide continu-
ous control targets for the vehicle’s trajectory tracking. 

 
Figure 15. Curvature and heading angle of the lane-changing path. 

The CA model is used to obtain the predicted trajectory of vehicle LF for the next 6 s, 
as shown by the green dashed line in Figure 16. The four vertices of LF’s minimum-

Figure 14. Candidate lane-changing paths for scenario 1.

Selecting any one from the candidate lane-changing paths, its curvature and heading
angle in the Cartesian coordinate system are analyzed, as shown in Figure 15. The red
dashed line represents the curvature of the road centerline, while the blue solid line
represents the curvature of the planned path. The curvature at the beginning and end of the
lane-changing matches the curvature of the road centerline, satisfying the requirement for
the vehicle to travel along the centerline before and after the lane-changing. Additionally,
from the path heading angle with respect to distance, it can be observed that the vehicle’s
heading angle varies continuously along the planned path. This would provide continuous
control targets for the vehicle’s trajectory tracking.
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The CA model is used to obtain the predicted trajectory of vehicle LF for the next 6
s, as shown by the green dashed line in Figure 16. The four vertices of LF’s minimum-
bounding rectangle are projected onto the lane-changing path. By comparing the shortest
distance between the four vertices and the lane-changing path with the minimum safety
distance between vehicles, the presence of a collision risk between the ego vehicle and LF is
determined. If there is potential collision risk, the length of LF occupying the lane-changing
path is projected onto the ST graph. Throughout the lane-changing process, the intervals
where vehicle LF and the ego vehicle have potential collision risk on the lane-changing
path are projected onto the ST graph, resulting in the blue-shaded area shown in Figure 17.
The ST graph is discretized with a time sampling interval of 0.5 s on the horizontal axis
and a distance sampling interval of 0.2 m on the vertical axis, creating the search space for
velocity generation using DP. Figure 17a illustrates the initial velocity generation process
for the lane-changing path. The cyan solid line represents the feasible velocity sequence
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from the lane-changing starting point to the endpoint. Based on the objective function and
constraints, the red solid line represents the optimal ST curve obtained through DP, and the
solid red dots represent the optimal state at each stage. It can be observed that the ST curve
consists of line segments, resulting in non-smooth velocity. After applying the proposed
smoothing method, the smoothed velocity curve is obtained, as shown by the red dashed
line in Figure 17b.
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Figure 17. Velocity planning for scenario 1: (a) velocity generation based on DP and (b) velocity
smoothing based on QP.

Figure 18 shows the variation of distance, velocity, acceleration, and jerk over time for
the lane-changing trajectory planned using the proposed method. It can be seen that during
the lane-changing and following processes, the ego vehicle first decelerates to ensure that
the distance between the ego vehicle and vehicle LF meets the safety requirements after
the lane-changing. Once the spacing between the two vehicles reaches the safe following
distance, the ego vehicle starts accelerating to the target speed for following, ensuring a
quick completion of the lane-changing process. The acceleration during the entire lane-
changing process is continuous and smooth, with a maximum jerk of less than 5 m/s3,
which can improve the driving comfort during the lane-changing process.
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According to the proposed trajectory quality evaluation function in this paper, the
actual action is calculated for the candidate lane-changing trajectories. Table 3 shows the
lane-changing durations for seven candidate trajectories, with a maximum duration of
5.65 s and a minimum duration of 3 s. Considering the time differences among different
trajectories, we evaluate the quality of the trajectories based on the average action. The
average action is defined as the ratio of the actual action of the trajectory to the lane-
changing duration. Figure 19 shows the comparison of average action for the seven
candidate trajectories in the lane-changing and following scenario. From the figure, it can
be observed that the second trajectory has the smallest average action. The lane-changing
endpoint coordinate of this trajectory is (65, 3.7). After the moving obstacle collision
checking, the second trajectory is ultimately selected as the target lane-changing trajectory
with the best comprehensive performance and alignment with driver characteristics. By
adopting a weighted cost function similar to the one in reference [22], we selected three
evaluation metrics, namely trajectory length, trajectory curvature, and lane-changing
duration, to construct a multi-objective cost for assessing trajectory quality. The weights
of the three sub-objective functions are denoted as ωc1, ωc2, and ωc3, respectively. When
ωc1 = 1, ωc2 = 2, and ωc3 = 10, the evaluation results of trajectory quality are shown
as the black-dashed line in Figure 19, where the 7th trajectory has the minimum total
cost and is considered the optimal trajectory. When ωc1 = 2, ωc2 = 1, and ωc3 = 10, the
evaluation results of trajectory quality are shown as the red-dashed line in Figure 19, where
the 3rd trajectory has the minimum total cost and is considered the optimal trajectory. It
can be observed that slight variations in the weights will result in changes in the trajectory
selection outcomes. Furthermore, the allocation of weights is subjective, and a single-
weighted objective function is difficult to adapt to complex scenarios. However, the
evaluation metrics proposed in this paper do not require consideration of weight allocation
issues and can adapt to dynamic environments by selecting reasonable trajectories that
meet the driver’s requirements.
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Table 3. Duration of candidate trajectory in scenario 1.

Number of Trajectories Lane-Changing Duration (s)

1 3.00
2 3.50
3 4.00
4 4.40
5 4.80
6 5.20
7 5.65
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Figure 19. The average action of the lane-changing and following.

To further validate the effectiveness of the hierarchical planning method proposed in
this paper, the trajectory tracking control method based on model predictive control (MPC)
proposed in reference [31] is employed to analyze the lateral and longitudinal errors of
the vehicle tracking the planned lane-changing trajectory. Figure 20a shows the results
of the error analysis during the trajectory tracking process. It can be observed that the
maximum lateral tracking error is less than 0.01 m, the heading angle tracking error is less
than 0.02 rad, and the velocity tracking error does not exceed 0.2 m/s. These errors satisfy
the requirements for trajectory tracking, indicating that the vehicle can successfully track
the planned lane-change trajectory and complete the lane-change process effectively.

4.2. Simulation Scenario 2: Lane-Changing and Overtaking

Figure 13b shows the lane-changing and overtaking scenario. At the beginning, there
is a stationary vehicle (obstacle) ahead of the ego vehicle in the current lane. The ego vehicle
needs to perform the lane-changing to avoid a collision with the stationary vehicle. As there
is a moving vehicle behind the target lane, the ego vehicle needs to overtake the vehicle after
completing the lane-changing. The initial parameters of each vehicle at the starting time
are shown in Table 4. The ego vehicle has an initial velocity of 10 m/s and an acceleration
of 0. The distance between the obstacle vehicle and the ego vehicle in the longitudinal
direction is 30 m. The target lane’s rear vehicle LR has an initial velocity of 10 m/s and an
acceleration of 0.5 m/s2, moving with constant acceleration. The requirements for the ego
vehicle during the lane-changing process are to avoid a collision with the front vehicle SF
and maintain an appropriate safe distance with the rear vehicle LR in the target lane. At
the start and end times of the lane-changing, the ego vehicle’s heading angle is required to
align with the centerline of the lane.
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Figure 20. The trajectories tracking error based on MPC: (a) lane-changing and following and
(b) lane-changing and overtaking.

Table 4. Initial parameter settings for scenario 2.

Parameter Value

Ego vehicle velocity 10 m/s
Ego vehicle acceleration 0

Coordinate of ego vehicle position (30, 0)
Vehicle SF velocity 0

Vehicle SF acceleration 0
Coordinate of vehicle SF position (70, 0)

Vehicle LR velocity 10 m/s
Vehicle LR acceleration 0.5 m/s2

Coordinate of vehicle LR position (20, D)

Similar to Scenario 1, the lane-changing endpoint is selected on the centerline of
the target lane. The range of longitudinal positions for the lane-changing endpoint is
determined by the minimum longitudinal distance of 30 m from the current position of the
ego vehicle as the lower bound and the maximum longitudinal distance of 60 m as the upper
bound. The lane-changing endpoints are generated by sampling at intervals of 5 m, as
shown by the blue circles in Figure 21. The red circle represents the lane-changing starting
point, the blue square represents the ego vehicle, and the gray squares represent the vehicles
LR and SF in the scenario depicted in Figure 13b. The candidate paths generated using
fourth-order quasi-uniform B-spline curves are shown by the red solid line in Figure 21.
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Since the lane-changing endpoints in Scenario 2 are the same as in Scenario 1, the
planned lane-changing paths are also the same as in Scenario 1. The path has continuous
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curvature, and the curvature of the lane-changing starting and endpoint aligns with the
road centerline. However, the same lane change path in two different scenarios results
in differences in the ST graph established due to variations in the positions and motion
states of the surrounding vehicles relative to the ego vehicle. The blue-shaded area in
Figure 22 represents the projection of a potential conflict region between the predicted
trajectory of vehicle LR and the lane-changing path on the ST graph. Comparing it with
the ST graph shown in Figure 17, it can be observed that the positions and motion states
of the surrounding vehicles can affect the feasible space for ego vehicle velocity planning.
Therefore, even though the lane-changing paths are the same in Scenario 1 and Scenario
2, the velocity planning is different. Figure 22 illustrates the velocity planning process for
the candidate path with an endpoint of (70, 3.7). In Figure 22a, the thin solid cyan line
represents the feasible ST curve from the starting point to the endpoint. The red solid line
represents the optimal ST curve obtained by DP based on the defined cost function and
constraints. The solid red dots represent the optimal states at each stage. It can be seen
that the optimal ST curve reaches the lane-changing endpoint at 3.5 s, indicating that the
lane-changing and overtaking process can be completed in just 3.5 s. Additionally, it can be
observed that the optimal ST curve is a polyline, resulting in non-smooth velocity. After
applying the smoothing method proposed in this paper, the smoothed velocity is obtained,
as shown by the red dashed line in Figure 22b.
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based on QP.

Figure 23 shows the variations of distance, velocity, acceleration, and jerk of the
trajectory over time. After the ego vehicle changes lanes, it needs to maintain a safe
distance from the trailing vehicle in the target lane. Starting from the lane change initiation,
the ego vehicle needs to increase the spacing with the trailing vehicle through acceleration.
When the distance between the two vehicles exceeds the safety threshold and does not affect
the normal driving of the trailing vehicle, the ego vehicle continues to maintain a higher
velocity to ensure a safe and efficient completion of the lane-changing and overtaking
processes. It can be observed that the velocity sequence obtained through DP and QP meets
the requirements of lane-changing and overtaking. The acceleration of the ego vehicle
changes continuously and smoothly, and the maximum acceleration and jerk satisfy the
limit constraints. Table 5 presents the lane-changing duration for the candidate trajectory in
Scenario 2. Comparing it with Table 3, it can be seen that for the same path, lane-changing
and overtaking require less time compared to lane-changing and following.
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Table 5. Duration of candidate trajectory in scenario 2.

Number of Trajectories Lane-Changing Duration (s)

1 2.50
2 3.00
3 3.40
4 3.85
5 4.30
6 4.75
7 5.20

Figure 24 shows the comparison of the average action for the seven candidate tra-
jectories in the lane-changing and overtaking scenario. It can be observed that the sixth
trajectory has the smallest average action. The lane-changing endpoint coordinate of this
trajectory is (85, 3.7). After the moving obstacle collision checking, the sixth trajectory
is ultimately chosen as the target lane-changing trajectory with the best comprehensive
performance and alignment with driver characteristics. Similar to Scenario 1, we also
select three evaluation metrics, namely trajectory length, trajectory curvature, and lane
change duration, to construct a multi-objective evaluation function. The weights of the
three sub-objective functions are denoted as ωc1, ωc2, and ωc3, respectively. When ωc1 = 1,
ωc2 = 2, and ωc3 = 10, the evaluation results of trajectory quality are shown as the black
dashed line in Figure 24, where the 7th lane change trajectory has the minimum total
cost and is considered the optimal trajectory. When ωc1 = 2, ωc2 = 1, and ωc3 = 10, the
evaluation results of trajectory quality are shown as the red dashed line in Figure 24, where
the 1st lane change trajectory has the minimum total cost and is considered the optimal
trajectory. This further verifies the advantages of the proposed method over the weighted
objective function evaluation method, which can be used to solve local trajectory planning
problems in complex environments.
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curvature, and challenging conditions to further validate its superiority. 
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Figure 24. The average action of the lane-changing and overtaking.

Similar to Scenario 1, Figure 20b shows the analysis results of the tracking errors
during the lane-change and overtaking processes. It can be seen that the maximum lateral
tracking error is less than 0.01 m, the heading angle tracking error is less than 0.02 rad, and
the speed tracking error does not exceed 0.5 m/s. These errors satisfy the requirements
for trajectory tracking, indicating that the vehicle can successfully track the planned lane-
change trajectory and complete the lane-change process effectively.

5. Conclusions

Intelligent vehicles have significant implications for enhancing driving safety, improv-
ing travel efficiency, alleviating traffic congestion, and enhancing driving comfort. This
paper focuses on the research of lane-changing trajectory planning methods for autonomous
driving, aiming to achieve reliable real-time avoidance of obstacles in multi-vehicle interac-
tion scenarios. Existing studies primarily rely on quantitative comparisons using evaluation
metrics and functions. However, the diversity of evaluation metrics introduces issues such
as subjective weight allocation, preference bias, and poor robustness. To address these
challenges, we propose a hierarchical lane-changing trajectory planning method based on
the Least Action Principle (LAP).

Our method uses a path-velocity decomposition approach, follows the decision-
making mechanism of excellent drivers, and establishes a comprehensive evaluation
function considering safety, comfort, and efficiency. This enables multi-objective opti-
mal decision-making for lane-changing trajectory selection.

We validate the effectiveness of our proposed method through experiments on two
common lane-change scenarios. The proposed method automatically adjusts the lane-
changing endpoint area based on surrounding dynamic traffic information, improving
adaptability. It optimizes candidate paths, performs obstacle checking before speed plan-
ning, and combines DP and QP for vehicle velocity planning. This reduces speed variations
during the lane-changing process and enhances driving comfort. The integration of a
multi-objective optimal evaluation function, inspired by excellent drivers’ decision-making
mechanisms, generates safe, smooth, and efficient lane-changing trajectories for differ-
ent scenarios.

Future research will involve testing and evaluating our proposed method in various
scenarios using autonomous vehicles. We will compare our method with lane-changing
trajectories of multiple driver types in complex scenarios, including fixed and variable
curvature, and challenging conditions to further validate its superiority.
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