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Abstract: This study presents an error flow research method for simulation models of hydraulic
systems in construction machinery based on the state-space approach, aiming to ensure the reliable
application of digital twin models. Initially, a comprehensive analysis of errors in the simulation
modeling of hydraulic systems in construction machinery was conducted, highlighting simulation
model parameters as the primary error sources. Subsequently, a set of metrics for assessing the
accuracy of simulation models was developed. Following this, an error flow analysis method for
simulation models of hydraulic systems in construction machinery was explored based on the state
space approach, delving into the sources, transmission, and accumulation of errors in the simulation
modeling of valve-controlled cylinder systems. The research results unequivocally indicate that the
spring stiffness, viscous damping coefficient, and hydraulic cylinder external leakage coefficient are
critical parameters affecting the accuracy of valve-controlled cylinder system simulation models.
Furthermore, it was observed that the simulation model of the control valve has a significantly
greater impact on the errors in the valve-controlled cylinder system simulation model than the
hydraulic cylinder model. In conclusion, the reliability of the error flow model was confirmed
through simulation experiments, revealing a maximum relative error of only 3.73% between the error
flow model and the results of the simulation experiments.

Keywords: error flow; simulation models; hydraulic system; construction machinery; state-space
approach

1. Introduction

As simulation, big data, and computer technologies continue to advance, digital twin
applications have proliferated in fields such as construction machinery structural optimiza-
tion, trajectory control, and health monitoring [1–3]. In theory, it is feasible to construct
digital twin models for construction machinery hydraulic systems. However, limitations
in computational accuracy have hindered the full realization of digital twin technology’s
potential in hydraulic systems of construction machinery [4]. Digital twin technology
is an online simulation method [5,6] in which the simulation model plays a crucial role
throughout the entire lifecycle of the digital twin model, serving as a representation of the
system in physical, mathematical, or other logical forms [7]. The study of simulation model
errors in hydraulic systems of construction machinery holds paramount importance in
enhancing model precision, ensuring the robust application of digital twin technology in
the domain of hydraulic systems for construction machinery.

Fan et al. [8] employed a truncation error analysis method based on Taylor series
expansion to derive error bounds for linear power flow models in electrical systems.
Qiu et al. [9] proposed a model parameter error correction approach that relies on
sensitivity information and employs a constant value to compensate for model errors.
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Zhou et al. [10] scrutinized the correlations between parameters such as the outlet oil
temperature, oil properties, and environmental temperature with the overall heat transfer
coefficient. Through mathematical functions, they explicitly delineated the relationship
between each parameter and the overall heat transfer coefficient, unveiling the impact of
parameter fluctuations on model errors.

However, it is worth noting that the aforementioned error analysis studies predomi-
nantly target individual, standalone systems, whereas the simulation model for hydraulic
systems in construction machinery belongs to the category of complex systems. The meth-
ods described above are not necessarily applicable to this complex context. In reality,
errors in the simulation model parameters for hydraulic systems in construction machinery
propagate progressively, akin to the stream of variation observed in the mechanical manu-
facturing and assembly processes. The concept of “stream of variation” was first introduced
by Hu et al. [11] in the context of studying variation propagation and accumulation during
the car body assembly process. Subsequently, it found extensive application and research in
mechanical manufacturing and assembly processes. Jin et al. [12] introduced control theory
into the assembly processes of mechanical products, establishing a state-space model for
the stream of variation in mechanical assembly. Currently, the state-space approach has
become the primary approach for modeling the stream of variation in mechanical manufac-
turing and assembly processes [13–15]. Notably, Liu C et al. [16] provided a comprehensive
exposition of the stream of variation modeling method based on the state-space approach,
particularly in the context of molten mold casting processes. The state-space approach
allows for concise mathematical expressions of system variations and distinguishes be-
tween different types of input variations [17,18]. These characteristics align well with the
analysis of parameter errors in the simulation model for hydraulic systems in construction
machinery. Hence, the state-space approach serves as a suitable framework for conducting
error research in the context of simulation models for construction machinery hydraulic
systems. This paper employs this method to investigate errors in the simulation models
of construction machinery hydraulic systems. It is important to highlight that in order
to differentiate it from the “stream of variation model” commonly used in mechanical
manufacturing and assembly processes, the error analysis model for the simulation of
hydraulic systems in construction machinery is referred to as the “error flow model”.

In summary, this paper aims to study error propagation in the simulation model of
hydraulic systems for construction machinery using the state-space method. The remain-
ing sections of the article are structured as follows: Section 1 analyzes the errors in the
simulation modeling of a construction machinery hydraulic system. Section 2 presents a
comprehensive evaluation metric for the accuracy of the simulation model. In Section 3,
the error flow modeling method based on the state-space approach is explained in detail.
Section 4 focuses on the error study of the valve-controlled cylinder system simulation mod-
els. Section 5 discusses and analyzes the research findings. Section 6 provides a summary
of this paper. Finally, in Section 7, the future prospects of the research are discussed.

2. Error Analysis in Construction Machinery Simulation Modeling

Simulation modeling involves four stages: conceptual modeling, mathematical mod-
eling, computer implementation, and simulation execution [19]. Model error is a crucial
factor affecting the accuracy of simulation models [20]. In general, the error factors in the
simulation modeling of hydraulic systems in construction machinery can be categorized as
descriptive error, model structure error, model parameter error [21], and computational
error. The sources of these errors are illustrated in the fishbone diagram shown in Figure 1.
Model structure refers to the mapping relationship between the inputs and outputs of the
model. In the process of simulation modeling, it is necessary to mathematically transform
and simplify the internal principles and processes of the actual system, which leads to
errors known as model structure errors. Even with an accurately determined mathemati-
cal relationship in the model structure, the accuracy of the simulation model parameters
determines the accuracy of the model outputs. In fact, even if the model structure is
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highly accurate, the impact of parameter errors on the output results cannot be ignored.
Model parameter errors primarily result from limitations related to human experience and
experimental testing. Computational errors refer to errors related to the computer in the
implementation and simulation output process. This includes the discretization methods
within the modeling tools, algorithm selection, errors in the compilation process, errors
in the numerical integration and limitations in the accuracy of the computer itself [22,23].
In the process of simulation modeling, both model description and model structure have
usually undergone multiple validations by researchers worldwide. Additionally, compu-
tational errors are challenging to avoid. Therefore, this study primarily focuses on the
influence of simulation model parameter errors on the modeling accuracy of hydraulic
systems in construction machinery.
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In the process of simulating construction machinery hydraulic systems, models are
progressively assembled from multiple subsystems based on fluid dynamics, mechanics,
and other relationships. The output from an earlier level determines the input to a later
level. Consequently, when errors exist in the parameters at a certain level, these errors
continue to propagate and accumulate, thereby affecting the final accuracy of the simulation
model for construction machinery hydraulic systems [24]. To ensure the accuracy of the
simulation model for construction machinery hydraulic systems, it is imperative to establish
a formula for the propagation of parameter errors that describes the errors in the process
of simulating construction machinery hydraulic systems. The error propagation in the
simulation modeling of construction machinery hydraulic systems is depicted in Figure 2.
The simulation model encompasses sequential, selection, parallel, cyclic, and embedded
modes. In the sequential mode, the output of the former level model serves as the input
for the next level model. In the cyclic mode, a portion of the output from the next level
model concurrently becomes part of the input for the former level model. It is worth noting
that simulation models for construction machinery hydraulic systems primarily employ
the sequential mode. This paper will delve into the propagation and accumulation of
model parameter errors in the simulation modeling of construction machinery hydraulic
systems, investigate reliable methods for model error analysis and improvement, and
provide effective support for the application of digital twin technology in this field.
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3. Comprehensive Evaluation Metric for Simulation Model Accuracy

Simulation model error analysis necessitates a well-defined model accuracy assess-
ment metric to serve as an evaluation benchmark. Currently, commonly employed accuracy
metrics include Theil’s inequality coefficient [25], mean squared error (MSE) [26], coefficient
of determination (R2) [27], as well as disparities in shape, position, and spectral features.
These metrics primarily focus on assessing the concordance of simulation model outputs
and actual outputs in terms of distance, shape, and spectral characteristics, representing sin-
gle evaluation metrics. However, for the assessment of accuracy in construction machinery
hydraulic system simulation models, it is imperative to consider both frequency domain
and time domain characteristics. Single evaluation metrics often fall short of meeting these
requirements. Therefore, it is essential to devise a comprehensive accuracy evaluation met-
ric. Furthermore, accuracy assessment of simulation models should adhere to the principles
of incorporating at least one dimensionless statistical parameter, an error statistical dataset,
and a graphical visualization technique [28]. The radar chart is a frequently employed
comprehensive performance assessment method, providing an intuitive representation
of the accuracy status of the subject under evaluation [29,30]. Hence, a comprehensive
evaluation metric based on the radar chart method and accuracy assessment principles is
intended to be devised to meet the requirements of error analysis in simulation models of
construction machinery hydraulic systems. This metric will encompass the assessment of
disparities in the coefficient of determination (R2), shape, position, and spectral characteris-
tics, employing radar charts to evaluate the accuracy of construction machinery hydraulic
system simulation models.
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The coefficient of determination (R2) is a typical dimensionless statistical parameter
that depicts the degree of collinearity between simulation data and reference data. Here is
the formula for its computation:

R2 =

 ∑M
i=1(xs(i)− xs)(xr(i)− xr)√

∑M
i=1 (xs(i)− xs)

2
√

∑M
i=1 (xr(i)− xr)

2

2

(1)

The output from the hydraulic system of construction machinery is dynamic, requiring
decomposition into trend components and random components. The evaluation of trend
component data accuracy entails the examination of disparities in both shape and positional
features. The equations for these are as follows:

e f =
1
T

√√√√ T

∑
i=1

[z(i)]2 (2)

ep =
1
T

√√√√ T

∑
i=1

[z(i)− z]2 (3)

where xs(i) and xr(i) represent simulated data and reference data, respectively, and

i = 1, 2, 3,..., T, with T denoting the sample time duration. xs =

T
∑

i=1
xs(i)

T , xr =

T
∑

i=1
xr(i)

T

and z(i) = xs(i)− xr(i), z =

T
∑

i=1
z(i)

T .
In addition, the random data components are transformed into the frequency domain

using the windowed spectral analysis method to characterize spectral feature disparities:

qs =
m
M

(4)

where M represents the number of points at which random components are transformed
into the frequency domain, and m denotes the number of points validated through compat-
ibility testing.

The variables ef and ep are part of the error statistical data within the accuracy evalua-
tion metric, and their values fall within the range of [0, +∞). They require normalization
through Equations (5) and (6):

q f s = 1 −
e f

e f mxa
(5)

qps = 1 −
ep

epmxa
(6)

where e f mxa represents the maximum value of statistical data among various models

e f =
1
T

√
T(max(z(i)))2, and epmxa represents the maximum value of statistical data among

various models 1
T

√
T(max(z(i)− z))2.

Represent the accuracy evaluation metric vector as Qd = [q f s qps qs R2] and conduct
a visual and comprehensive assessment of the individual evaluation metrics within the
vector using a radar chart. The specific steps are as follows:

(a) Generate radar charts based on the metrics.
(b) Calculate the area Sindex enclosed by different metrics.
(c) Calculate the area ST enclosed when all metrics are set to 1.
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(d) Compute the comprehensive evaluation metric l =
√

Sindex
ST

based on the areas Sindex

and ST . It falls within the range of [0, 1], where a higher value of “l” indicates greater
model accuracy, with “1 − l” representing the model’s error characterization.

Taking the example of a nonlinear and non-Gaussian dynamic output model from
reference [31], the accuracies of four different filters are evaluated using the comprehensive
evaluation metric “l”. After computation, the results for the four models’ TRUE, GSF, EKF,
PF and UKF are as shown in Table 1. Here, TRUE, GSF, EKF, PF, and UKF denote the actual
results, Gaussian Sum Filter, Extended Kalman Filter, Particle Filter, and Unscented Kalman
Filter prediction outcomes, respectively.

Table 1. Accuracy evaluation metrics for each model.

Model qfs qps qs R2

GSF 0.865 0.564 0.593 0.955
EKF 0.789 0.477 0.502 0.865
PF 0.972 0.909 0.962 0.995

UKF 0.924 0.765 0.723 0.974

Based on the results in Table 1, radar charts, as illustrated in Figure 3, were gener-
ated, with model accuracy results as follows: lGSF = 0.553, lEKF = 0.433, lPF = 0.921 and
lUKF = 0.716. The models’ accuracy rankings, from highest to lowest, are PF, UKF, GSF, and
EKF, consistent with the findings reported in reference [31]. The comprehensive evaluation
metric “l” aligns with the principles of accuracy assessment in simulation models, allowing
for a reasonable and accurate evaluation of the model accuracy. It can be effectively applied
to error analysis in hydraulic system simulation models for construction machinery.
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4. Error Flow Modeling Based on the State-Space Approach

Using a comprehensive accuracy evaluation metric as the assessment criterion, the
error flow modeling method for a hydraulic system simulation model for construction
machinery, based on the state-space approach, is depicted as shown in Figure 4. The specific
steps are outlined as follows:
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(1) Analysis and Characterization of Model Parameter Errors

In the process of hydraulic system modeling for construction machinery, the error
flow manifests the relationship between parameter errors and the simulation model errors.
The accuracy of the model is largely contingent upon the adopted simulation parameters.
However, the process of acquiring these parameters is intricate and susceptible to various
influences, inevitably leading to the emergence of parameter errors, which further impacts
the accuracy and reliability of the model. In the process of modeling hydraulic systems in
construction machinery, simulation parameters are mainly determined through experience
and experimental testing. However, often there are situations where parameters are un-
known or cannot be measured accurately. This deviation from the target parameter values
affects the accuracy of the simulation model.

Measurement errors can be categorized into three types: systematic errors, random
errors, and gross errors [32]. Systematic errors result from fixed factors and, when experi-
ments are conducted under the same conditions multiple times, the error values remain
constant. Random errors, on the other hand, stem from uncontrollable factors, leading to
uncertainty in error values when conducting multiple experiments under similar conditions.
The influence of random errors can be mitigated by conducting multiple experiments and
employing the method of averaging. Both of these error types are inevitable. Gross errors,
however, are caused by occasional and exceptional factors and should be excluded from a
series of experimental measurement data. Errors that arise due to human experience are
rooted in a lack of knowledge or incomplete information. These errors exhibit randomness
and vary with the degree of personal understanding.

Through the aforementioned analysis, the causes of parameter errors in construction
machinery hydraulic system modeling have been clarified. In the state-space approach,
assuming the nth system contains λ key parameters, the parameter vector of the nth system
can be defined as follows:

φ(n) = (ε1(n), ε2(n), · · · , ελ(n)) (7)

The parameter error vector ∆φ(n) for the nth system is denoted as follows:

∆φ(n) = (∆ε1(n), ∆ε2(n), · · · , ∆ελ(n)) (8)

where n represents the number of model subsystems, λ represents the number of subsystem
model parameters, and ελ(n) represents the error of the λth parameter of the nth subsystem
relative to the target parameter.



Actuators 2024, 13, 14 8 of 18

(2) Obtaining Reference Parameters

The parameter errors discussed are in relation to the target parameters of the sim-
ulation model. In engineering research, acquiring simulation model parameters with
absolute accuracy and establishing a simulation model of utmost accuracy pose significant
challenges and are often unfeasible. Hence, the model parameters that yield the highest
accuracy evaluation metric “l” for the simulation model will be selected, and they will
be designated as the reference parameters for the simulation model in lieu of the target
parameters. Additionally, the model parameter error ∆φ(n) is defined as the disparity
between the model parameters φ(n) and the reference parameters φt(n). The process for
acquiring reference parameters for the simulation model is as follows:

(a) Establish the simulation model for the hydraulic system in construction machinery.
(b) Obtain experimental data as reference data for the simulation model and refine it

through multiple experiments to reduce gross errors and random errors.
(c) Compare the output results of the simulation model with the reference data and assess

the model’s accuracy using evaluation metric “l”.
(d) As the optimization objective, seek to maximize evaluation metric “l” and employ

optimization algorithms such as particle swarm optimization (PSO) [33] to solve for
the reference parameters.

(3) Model Expected Accuracy and Model Error Change Rate

The model accuracy result lt(n) of the model established based on the reference
parameter φt(n) represents the expected accuracy of the model. On the other hand, to
depict the variation in model accuracy, a function for the model error change rate is defined.
The error change rate function s(n) for the nth subsystem model under model parameters
φ(n) is represented as follows:

s(n) =
l(n)

l(n − 1)
(9)

where, l(n) and l(n − 1) represent the accuracy of the nth and (n − 1)th subsystem models
under different model parameters. Based on the definition of the model error change rate,
the accuracy of the nth subsystem model can be expressed as

l(n) = s(n)l(n − 1) (10)

(4) Relationship between Model Parameters and Error Change Rate

As in Equation (10), it is evident that the model error change rate of the nth subsystem
directly influences the accuracy of that subsystem model. The error change rate is asso-
ciated with the subsystem model parameters, and deviations of these parameters from
the reference values can induce fluctuations in the model error change rate, subsequently
affecting model accuracy. The relationship between these two is defined as

s(n) = f (φ(n)) (11)

To represent the relationship between model parameters and the model error change
rate, it is essential to conduct simulation experiments based on experimental data and
simulation models to calculate the model error change rate under various model parameter
samples. A central composite experimental design (CCD) method [34] is employed to
design simulation experiment samples. Utilizing these experimental samples, a function
relationship between the parameters and model error change rate is established using the
response surface method (RSM) [35,36].

(5) Mathematical Formulation of Error Flow

As in Equation (10), the model error induced by simulation parameter errors during
the modeling process can be expressed as
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∆l(n) = s(n)l(n − 1)− st(n)lt(n − 1) (12)

where st(n) represents the error change rate of the nth subsystem when parameters are set
to their reference values, while lt(n − 1) represents the expected accuracy of the (n − 1)th
subsystem when parameters are set to their reference values.

Based on Equations (11) and (12), it can be deduced that the model error induced by
simulation parameter errors is as follows:

∆l(n) = f (φ(n))l(n − 1)− f
(

φt(n)
)
lt(n − 1) (13)

Equations (14) and (15) are obtained by expanding Equation (13) around the reference
parameters using the Taylor series,

∆l(n) = f
(

φt(n)
)
∆l(n − 1) + f ′

(
φt(n)

)
lt(n − 1)∆φ(n) + h(∆φ(n)) (14)

h(∆φ(n)) = r(∆φ(n))
(
lt(n − 1) + ∆l(n − 1)

)
+ f ′(φt(n))∆φ(n) (15)

where r(∆φ(n)) represents the higher-order residual term of ∆φ(n), while h(∆φ(n)) de-
notes the interference of other random factors with negligible magnitudes.

Further simplification yields the error flow expression in the modeling process of a
construction machinery hydraulic system simulation model:

∆l(n) = f
(

φt(n)
)
∆l(n − 1) + f ′

(
φt(n)

)
lt(n − 1)∆φ(n) (16)

5. Case Study: Valve-Controlled Cylinder System
5.1. Error Sources of the Valve-Controlled Cylinder System Model

The valve-controlled cylinder system is a typical subject of study in hydraulics.
Rahmat et al. [37] conducted research on the control system of the electrohydraulic actuator
system. Andrzej et al. [38] investigated the control of the electrohydraulic linear actuator.
Zhang et al. [39] carried out modeling and model parameter sensitivity analysis on the
valve-controlled helical hydraulic rotary actuator system. However, there is currently
no reported research on the error flow analysis in the modeling process of the valve-
controlled cylinder system. Therefore, this paper, taking the simulation model of the valve-
controlled cylinder system as an example, conducts an error analysis on its simulation mod-
eling process. The valve-controlled cylinder system primarily comprises two subsystems,
i.e., the control valve and the hydraulic cylinder, as shown in Figure 5.
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Figure 5. Schematic diagram of valve-controlled cylinder system.
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The mathematical model of the control valve is represented by the spool dynamics
equation and the inlet/outlet flow equations of the control valve [40–42]:

Ppilot Av − F0 = mv
d2xv

dt2 + Bv
dxv

dt
+ Kvxv (17)

q1 =


Cq fA

√
2(pp − pA)/ρ xv > 0

0 xv = 0
Cq fA

√
2(pA − pT)/ρ xv < 0

(18)

q2 =


Cq fA

√
2(pB − pT)/ρ xv > 0

0 xv = 0

Cq fA

√
2(pp − pB)/ρ xv < 0

(19)

where Ppilot is the pilot pressure, Av is the valve spool cross-sectional area, and F0 is the
external force applied to the control valve. The valve spool is primarily subjected to
static pressures, such as spring preload, and the impacts of transient fluid dynamics and
frictional forces on the control valve were ignored. mv is the mass of the valve spool, Bv is
the damping coefficient, Kv is the spring stiffness, xv is the displacement of the valve spool,
Cq is the flow rate coefficient, fA is the overflow area, pp is the main pump outlet pressure,
pT is the tank pressure, pA is the cylinder large cavity pressure, and pB is the cylinder small
cavity pressure.

The mathematical model of the hydraulic cylinder includes the flow rate equation and
the force balance equation:

q1 = AA
dy
dt + Ci(pA − pB) + Ce pA + VA

βe

dpA
dt

VA = VA0 + AAy
VA0 = VAd + AAL0

(20)


q2 = AB

dy
dt + Ci(pA − pB)− Ce pB − VB

βe

dpB
dt

VB = VB0 − ABy
VB0 = VBd + AB(L − L0)

(21)

AA pA − AB pB = M
dy2

dt
+ Bp

dy
dt

+ Ky + Ff + Fl (22)

where AA and AB are the piston areas of cylinder’s large and small cavities, y is the
displacement of the cylinder, Ci and Ce are the cylinder’s internal and external leakage
coefficients, respectively, βe is the equivalent bulk elastic modulus of hydraulic oil, V01 and
V02 are the initial volumes of large and small cavities, and PA and PB are the pressures in
the cylinder’s large and small cavities. VAd and VBd are the dead zone volumes of the large
and small cavities of the cylinder, respectively, L is the maximum stroke of the cylinder,
and L0 is the initial position of the cylinder. M is the total mass of the cylinder, Bp is the
damping coefficient of the cylinder, K is the load stiffness, Ff is the coulomb friction, and
Fl is the load force. In this paper, the minor friction force Ff relative to the load force Fl is
ignored in a valve-controlled cylinder system.

According to the working principle of the valve-controlled cylinder system, the pri-
mary parameters in the simulation model include the control valve model parameters,
namely, F0, Kv, Bv and Cq, as well as the cylinder model parameters, Ci, Ce, βe and Bp. The
parameter vectors for the two subsystems and their respective error vectors are defined
as follows:

φ(1) = (ε1(1), ε2(1), ε3(1), ε4(1)) (23)

∆φ(1) = (∆ε1(1), ∆ε2(1), ∆ε3(1), ∆ε4(1)) (24)

φ(2) = (ε1(2), ε2(2), ε3(2), ε4(2)) (25)
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∆φ(2) = (∆ε1(2), ∆ε2(2), ∆ε3(2), ∆ε4(2)) (26)

where ε1(1), ε2(1), ε3(1) and ε4(1) represent the control valve model parameters F0, Kv, Bv
and Cq, respectively. ∆ε1(1), ∆ε2(1), ∆ε3(1) and ∆ε4(1) represent the error of parameters
F0, Kv, Bv and Cq, respectively. ε1(2), ε2(2), ε3(2) and ε4(2) represent the cylinder model
parameters Ci, Ce, βe and Bp, respectively. ∆ε1(2), ∆ε2(2), ∆ε3(2) and ∆ε4(2) represent the
errors of parameters Ci, Ce, βe and Bp, respectively.

5.2. Error Flow Modeling of the Valve-Controlled Cylinder System

The process of modeling the error flow in the valve-controlled cylinder system model
is illustrated in Figure 6. Based on the state-space approach, the mathematical relationship
expressing the impact of parameter errors on model errors can be established by construct-
ing functional connections among the control valve parameter vector, hydraulic cylinder
parameter vector, and the model error change rates.
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First, the simulation model of the valve-controlled cylinder system is established
based on Equations (17)–(22), and the results are depicted in Figure 7. Additionally,
the reference parameters for the control valve and hydraulic cylinder models were
determined using the particle swarm optimization (PSO) algorithm, denoted as
φt(1) = (297.374, 130.285, 299.386, 0.695) and φt(2) = (387.808, 297.641, 958.414, 825.140),
respectively, utilizing experimental data as a reference.

Second, the central composite design (CCD) method is utilized for experimental
design in simulation trials. Central composite design (CCD) is a method employed within
the context of the response surface method (RSM), with the objective of systematically
exploring and optimizing the influence of multiple factors on the response of a given
system. This involves strategically selecting experimental points, including those at the
center, boundaries, and additional axial points within the designated design space, to
facilitate the construction of a polynomial response surface model. The experimental
factors and levels for the control valve model and hydraulic cylinder model are presented
in Tables 2 and 3, respectively. In the table, alpha represents the axial points in the central
composite design (CCD) method.



Actuators 2024, 13, 14 12 of 18Actuators 2024, 13, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 7. Simulation model of valve-controlled cylinder system. 

Second, the central composite design (CCD) method is utilized for experimental de-
sign in simulation trials. Central composite design (CCD) is a method employed within 
the context of the response surface method (RSM), with the objective of systematically 
exploring and optimizing the influence of multiple factors on the response of a given sys-
tem. This involves strategically selecting experimental points, including those at the cen-
ter, boundaries, and additional axial points within the designated design space, to facili-
tate the construction of a polynomial response surface model. The experimental factors 
and levels for the control valve model and hydraulic cylinder model are presented in Ta-
ble 2 and Table 3, respectively. In the table, alpha represents the axial points in the central 
composite design (CCD) method. 

Table 2. Accuracy evaluation metrics for each model. 

Levels ( )1 1ε /(N) ( )1 2ε /(N/m) ( )3 1ε /(Nm/s) ( )4 1ε  

−alpha 257.324 105.285 259.386 0.495 
low 277.324 120.285 279.386 0.595 

0 297.324 130.285 299.386 0.695 
high 317.324 150.285 319.386 0.795 

+alpha 337.324 165.285 339.386 0.895 

Table 3. Experimental factors and levels of the hydraulic cylinder model. 

Levels ( )1 2ε /(mm3/MPa/s) ( )2 2ε /(mm3/MPa/s) ( )3 2ε /(MPa) ( )4 2ε /(N·s/m) 

−alpha 2.878 2.351 758.414 78,514 
low 3.378 2.726 858.414 80,514 

0 3.878 2.976 958.414 82,514 
high 4.378 3.476 1058.414 84,514 

+alpha 4.878 3.851 1158.414 86,514 

Simulation models for the control valve and hydraulic cylinder were established 
based on the samples from Tables 2 and 3, respectively. The error change rates of the sim-
ulation models for the control valve and hydraulic cylinder were computed using Equa-
tion (9), model samples, and reference experimental data. The results are presented in 
Tables 4 and 5. 

Figure 7. Simulation model of valve-controlled cylinder system.

Table 2. Accuracy evaluation metrics for each model.

Levels ε1(1)/(N) ε1(2)/(N/m) ε3(1)/(Nm/s) ε4(1)

−alpha 257.324 105.285 259.386 0.495
low 277.324 120.285 279.386 0.595

0 297.324 130.285 299.386 0.695
high 317.324 150.285 319.386 0.795

+alpha 337.324 165.285 339.386 0.895

Table 3. Experimental factors and levels of the hydraulic cylinder model.

Levels ε1(2)/(mm3/MPa/s) ε2(2)/(mm3/MPa/s) ε3(2)/(MPa) ε4(2)/(N·s/m)

−alpha 2.878 2.351 758.414 78,514
low 3.378 2.726 858.414 80,514

0 3.878 2.976 958.414 82,514
high 4.378 3.476 1058.414 84,514

+alpha 4.878 3.851 1158.414 86,514

Simulation models for the control valve and hydraulic cylinder were established
based on the samples from Tables 2 and 3, respectively. The error change rates of the
simulation models for the control valve and hydraulic cylinder were computed using
Equation (9), model samples, and reference experimental data. The results are presented in
Tables 4 and 5.

Table 4. Error change rate samples for the control valve model.

Serial Number ε1(1)/(N) ε1(2)/(N/m) ε3(1)/(Nm/s) ε4(1) Error Change Rates

1 297.324 130.285 299.386 0.895 0.901534
2 317.324 150.285 319.386 0.795 0.836035
3 317.324 150.285 319.386 0.595 0.836035
4 297.324 90.285 299.386 0.695 0.0592399
5 297.324 130.285 299.386 0.695 0.901534
6 297.324 130.285 299.386 0.495 0.901534
7 317.324 110.285 319.386 0.795 0.495151
8 297.324 170.285 299.386 0.695 0.614629
9 317.324 110.285 319.386 0.595 0.495151
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Table 4. Cont.

Serial Number ε1(1)/(N) ε1(2)/(N/m) ε3(1)/(Nm/s) ε4(1) Error Change Rates

10 317.324 150.285 279.386 0.595 0.816725
11 277.324 110.285 279.386 0.595 0.549803
12 297.324 130.285 299.386 0.695 0.901534
13 277.324 150.285 279.386 0.595 0.816725
14 317.324 110.285 279.386 0.795 0.549803
15 277.324 110.285 319.386 0.595 0.495151
16 277.324 150.285 319.386 0.795 0.836035
17 277.324 150.285 279.386 0.795 0.816725
18 277.324 110.285 319.386 0.795 0.495151
19 297.324 130.285 339.386 0.695 0.867413
20 277.324 150.285 319.386 0.595 0.836035
21 317.324 150.285 279.386 0.795 0.816725
22 297.324 130.285 259.386 0.695 0.929980

Table 5. Error change rate samples for the cylinder model.

Serial
Number

ε1(2)
/(mm3/MPa/s)

ε2(2)
/(mm3/MPa/s) ε3(2)/(MPa) ε4(2)/(N·s/m) Error Change

Rates

1 437.808 347.641 1058.41 80,514 0.985792
2 387.808 297.641 958.412 82,514 0.985787
3 387.808 297.641 758.416 82,514 0.887663
4 387.808 297.641 958.412 82,514 0.887662
5 337.808 347.641 1058.41 84,514 0.996764
6 387.808 197.641 958.412 82,514 0.996764
7 437.808 347.641 1058.41 84,514 0.985792
8 337.808 247.641 1058.41 84,514 0.996768
9 287.808 297.641 958.412 82,514 0.985789
10 437.808 247.641 858.414 80,514 0.887665
11 437.808 247.641 1058.41 84,514 0.887663
12 337.808 247.641 858.414 84,514 0.985789
13 337.808 247.641 1058.41 80,514 0.996764
14 437.808 247.641 1058.41 80,514 0.985794
15 387.808 297.641 958.412 86,514 0.99677
16 487.808 297.641 958.412 82,514 0.990749
17 437.808 247.641 858.414 84,514 0.887663
18 337.808 347.641 1058.41 80,514 0.985794
19 337.808 247.641 858.414 80,514 0.996768
20 437.808 347.641 858.414 84,514 0.985794
21 387.808 297.641 958.412 82,514 0.99677
22 387.808 397.641 958.412 82,514 0.887663
23 337.808 347.641 858.414 84,514 0.887663
24 387.808 297.641 958.412 82,514 0.773039
25 437.808 347.641 858.414 80,514 0.996768
26 387.808 297.641 1158.41 82,514 0.985796
27 387.808 297.641 958.412 78,514 0.887663
28 337.808 347.641 858.414 80,514 0.985789

Finally, mathematical expressions for the error change rates of the control valve and
hydraulic cylinder models are derived through the use of the response surface method
(RSM), utilizing the experimental samples in Tables 4 and 5. The functional relationship
between the control valve model and hydraulic cylinder model error change rate and the
parameter vectors φ(1) and φ(2) are shown as Equations (27) and (28). After computation, it
was determined that the RSM of the control valve simulation exhibited high determination
coefficients, with R2, Adjusted R2, and Predicted R2 values of 0.975, 0.969, and 0.922,
respectively. These significant values indicate a robust fit of the control valve model’s RSM.
Similarly, the RSMs of the hydraulic cylinder simulation model demonstrated outstanding
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determination coefficients, with R2, Adjusted R2, and Predicted R2 values of 0.999, 0.998,
and 0.978, respectively. This also signifies an excellent level of fit for the hydraulic cylinder
model’s RSM.

s(1) = f (φ(1)) = −5.588 + 0.101Kv − 6.578 × 10−3Bv
+1.222Cq + 5.600 × 10−6KvBv − 4.120 × 10−4Kv

2

−0.872Cq
2

(27)

s(2) = f (φ(2)) = −5.299 + 1.903Ce − 3.100 × 10−5βe
+1.540 × 10−4Bp − 4.600 × 10−5CeBp − 5.812 × 10−3Ce

2

+1.669 × 10−8βe
2 − 9.377 × 10−10Bp

2 + 2.785 × 10−10CeBp
2

(28)

The error flow model for the valve-controlled cylinder system simulation can be
derived by substituting the error change rate functions of the control valve and hydraulic
cylinder simulation models into the error flow expression (Equation (16)):

∆l(1) = f (φt(1))∆l(0) + lt(0) f ′(φt(1))∆φ(1)
= 0 + 1 × f ′(φt(1))∆φ(1) = f ′(φt(1))∆φ(1)
= [0, − 6.680 × 10−3, − 5.849 × 10−3, 2.680 × 10−6][∆F0 ∆Kv ∆Bv ∆Cq]

T
(29)

∆l(2) = f (φt(2))∆l(1) + lt(1) f ′(φt(2))∆φ(2)
= lt(2) f ′(φt(1))∆φ(1) + lt(1) f ′(φt(2))∆φ(2)
= 0.9955 × [0,−6.680 × 10−3,−5.849 × 10−3, 2.680 × 10−6][∆F0 ∆Kv ∆Bv ∆Cq]

T

+0.9527 × [0, 0.032, 9.915 × 10−7, −8.892 × 10−6][∆Ci ∆Ce∆βe ∆Bp]
T

(30)

Equations (29) and (30) represent the error flow models for the control valve and the
valve-controlled cylinder system, respectively.

6. Results and Discussion

Using the error flow model, variations in the accuracy of the simulation model for the
valve-controlled cylinder system can be assessed by calculating the parameter error vectors.
For instance, when the subsystem parameter error vectors are ∆φ(1) = [20,−10,−20, 0.1]T

and ∆φ(2) = [0.5, 0.5, 100,−2000]T , the errors in various subsystem models within the
valve-controlled cylinder system simulation model are illustrated in Figure 8. The error in
the control valve model is 0.163, while the error in the valve-controlled cylinder system
model is 0.195. The contributions of the errors in the control valve and hydraulic cylinder
models to the error in the valve-controlled cylinder system model are 0.163 and 0.032,
respectively. Thus, it is essential to focus on the parameters of the control valve model to
ensure its accuracy.
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Figure 8. Variation of the valve-controlled cylinder system simulation model.

The error flow model elucidates the pathways for the transmission of errors within
various subsystem models. The coefficient of the model reflects the influence of parameter
errors on the accuracy of the model for the valve-controlled cylinder system. In the
valve-controlled cylinder system, the parameters that have the most significant impact
on the accuracy of the model are the spring stiffness ε2(1), viscous damping coefficient
ε3(1), and hydraulic cylinder external leakage coefficient ε2(2). Therefore, in the process
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of modeling the valve-controlled cylinder system, efforts should be made to minimize
the errors between these three parameters and their reference values. As indicated by
Equations (29) and (30), the external force ε1(1) applied to the control valve and the internal
leakage coefficient of the hydraulic cylinder ε1(2) do not affect the accuracy of the valve-
controlled cylinder system model. The spring stiffness ε2(1), viscous damping coefficient
ε3(1), and hydraulic cylinder damping coefficient ε4(2) exhibit a negative correlation with
the error in the valve-controlled cylinder system model.

The error flow model was employed to calculate the errors in the model corresponding
to four sets of parameter samples in Table 6. These errors were then compared to the results
of the simulation model. The results are presented in Table 7, which shows that the relative
errors between the error flow model and the simulation results are relatively small, with
a maximum value of only 3.73%. This indicates a high level of accuracy in the error flow
model’s calculations. Among these four sample sets, smaller errors in the spring stiff-
ness ε2(1) and hydraulic cylinder external leakage coefficient ε2(2) correspond to smaller
model errors, thereby validating the significant influence of these two parameters on the
model accuracy.

Table 6. Parameter samples of the valve-controlled cylinder system model.

Samples
The Control Valve Model Parameters The Hydraulic Cylinder

Model Parameters

ε1(1) ε2(1) ε3(1) ε4(1) ε1(2) ε2(2) ε3(2) ε4(2)

1 314.884 118.076 318.576 0.618 3.777 2.572 942.981 83,180.112
2 312.362 119.322 296.941 0.654 3.905 2.812 967.988 81,226.530
3 300.806 127.713 295.735 0.697 4.006 2.782 1055.024 81,198.484
4 285.634 122.729 303.182 0.612 3.670 3.333 918.705 80,644.403

Table 7. Error results of the valve-controlled cylinder system model.

Samples

The Control Valve Model Parameter The Hydraulic Cylinder Model Parameter

Results of
Stream of
Variation

Model

Results of
Simulation

Model
Relative Error

Results of
Stream of
Variation

Model

Results of
Simulation

Model
Relative Error

1 10.55% 10.39% 1.54% 11.67% 11.43% 2.10%
2 8.32% 8.56% 2.72% 8.89% 8.69% 2.40%
3 1.77% 1.84% 3.68% 2.47% 2.55% 2.97%
4 6.06% 6.29% 3.73% 6.95% 6.76% 2.86%

Simulation engineers can efficiently simulate and compute errors within the simula-
tion models of construction machinery hydraulic systems using error flow models. This
approach enables the analysis of error propagation pathways and accumulation processes,
offering valuable guidance for simulation parameter control and optimization. The im-
provement and optimization of the accuracy of construction machinery hydraulic system
models through error flow models can significantly enhance the computational accuracy
of digital twin models. This, in turn, facilitates the possibility of detecting and tracking
the accuracy of digital twin models, thereby providing robust support for the widespread
adoption and application of digital twin technology in the realm of construction machinery
hydraulic systems.

7. Conclusions

This paper addresses the issue of error analysis in simulation models of construction
machinery hydraulic systems and proposes an error flow modeling approach based on
the state-space approach. It has been elucidated that modeling parameters constitute the
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primary source of error within the hydraulic system model in construction machinery.
Additionally, various errors in the modeling process have been comprehensively explained
using the error source fishbone diagram. A comprehensive evaluation metric for accuracy
has been designed that provides an accurate evaluation scale for error analysis of hydraulic
system models for construction machinery. Key parameters affecting the accuracy of the
valve-controlled cylinder system simulation model are determined to be the spring stiffness
ε2(1), viscous damping coefficient ε3(1), and hydraulic cylinder external leakage coefficient

ε2(2). When the deviations of each parameter for the control valve are 20, −10, −20, and
0.1, and the deviations of each parameter for the hydraulic cylinder are 0.5, 0.5, 100, and
−2000, respectively, the error contributions from the control valve and hydraulic cylinder
models to the model errors of the valve-controlled cylinder system are 0.163 and 0.032,
respectively. The maximum relative error between the error flow model and simulation
experiments is only 3.73%, underscoring the high accuracy and reliability of the error
flow model.

8. Future Work

The error flow model can be applied to model hydraulic systems in construction
machinery, providing simulation engineers with a tool for error analysis. It offers a new
perspective for accuracy analysis and parameter control of models, enabling precise de-
tection and tracking in digital twin models. This, in turn, provides crucial support for the
advancement and application of digital twin technology. However, despite the progress
made in the error flow modeling presented in this paper, there are still areas that require
further investigation. First, this work primarily focuses on construction machinery hy-
draulic system models based on sequential modes and does not include other modes such
as selection modes, parallel modes, loop modes, and embedded modes. Future research
could delve deeper into these aspects. Second, although this paper employs the response
surface method (RMS) to construct the error change rate function, other fitting methods,
such as different surrogate modeling methods, can also be used for this purpose. Future
work could consider comparing the merits and drawbacks of different fitting methods and
making further improvements. Lastly, while this paper emphasizes error flow research in
construction machinery hydraulic system models, future research could extend to mechan-
ical, electrical, and hydraulic simulation systems in construction machinery, exploring a
broader range of applications.
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