
Citation: Mei, L.; Xu, P. Path Planning

for Robots Combined with Zero-Shot

and Hierarchical Reinforcement

Learning in Novel Environments.

Actuators 2024, 13, 458. https://

doi.org/10.3390/act13110458

Academic Editor: Zhuming Bi

Received: 8 October 2024

Revised: 7 November 2024

Accepted: 13 November 2024

Published: 15 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Path Planning for Robots Combined with Zero-Shot and
Hierarchical Reinforcement Learning in Novel Environments
Liwei Mei 1,† and Pengjie Xu 2,*,†

1 School of Information Science and Technology, East China University of Science and Technology,
Shanghai 200237, China; 21013181@mail.ecust.edu.cn

2 School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
* Correspondence: xupengjie194105@sjtu.edu.cn
† These authors contributed equally to this work.

Abstract: Path planning for robots based on reinforcement learning encounters challenges in inte-
grating semantic information about environments into the training process. In unseen or complex
environmental information, agents often perform sub-optimally and require more training time. In
response to these challenges, this manuscript pioneers a framework integrating zero-shot learning
combined with hierarchical reinforcement learning to enhance agent decision-making in complex
environments. Zero-shot learning enables agents to infer correct actions for previously unseen objects
or situations based on learned semantic associations. Subsequently, the path planning component uti-
lizes hierarchical reinforcement learning with adaptive replay buffer, directed by the insights gained
from zero-shot learning, to make decisions effectively. Two parts are trained separately, so zero-shot
learning is available in different and unseen environments. Through simulation experiments, we
compare the traditional hierarchical reinforcement learning method with the proposed method. The
results prove that this structure can make full use of environmental information to generalize across
unseen environments and plan collision-free paths.

Keywords: path planning; zero-shot learning; hierarchical reinforcement learning; adaptive agents

1. Introduction

Robotic path planning involves algorithms that instruct a robot to take reasonable
steps to approach a user-specified location in an unknown environment. This task is
essential for ensuring the effective navigation and decision-making capabilities of robots
and unmanned vehicles in the evolving landscape of autonomous systems. The ability to
navigate through complex and dynamic environments is crucial for applications ranging
from autonomous driving to warehouse automation and search-and-rescue operations.

Moreover, traditional path planning algorithms, including A* and Dijkstra’s algo-
rithm [1,2], although effective in static environments, often struggle in some environments
where full information is not available. For instance, in warehouse automation, the A* algo-
rithm can be used to find the shortest path for a robot to navigate from a storage location to
a packing area. However, if an unexpected obstacle, such as a misplaced package, blocks
the planned route, the algorithm must re-plan the path. This re-planning can introduce
significant delays, reducing operational efficiency. Additionally, A* can sometimes find
paths that are theoretically optimal but practically infeasible due to narrow corridors or
tight turns that the robot cannot navigate, necessitating manual intervention. Apart from
this, heuristic methods like Particle Swarm Optimization (PSO) [3,4], though showing the
capacity to dynamically adjust to environmental changes without the need for complete
map information, also present challenges. For example, in agricultural robotics, PSO has
been applied to navigate drones for crop monitoring. However, the algorithm can suf-
fer from premature convergence, where particles get trapped in local optima, leading to
suboptimal paths. These algorithms generally require a pre-built map which is based on
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simultaneous localization and mapping (SLAM) [5], and do not adapt well to changes,
necessitating frequent re-planning, which can be computationally expensive and inefficient.
The accuracy of SLAM heavily depends on the precision of the sensors used, which can be
compromised by factors such as sensor noise, range limitations, and resolution constraints.
Additionally, the high cost and instability of the equipment under various weather con-
ditions are significant constraints that limit the practical deployment of these traditional
methods in real-world scenarios [6].

Because of the mechanism of reinforcement learning (RL), a robot is able to make
decisions by collecting interactions with the environment and then choosing an optimal
policy by maximizing the collected rewards [7]. An existing problem in the reinforcement
learning training process is how to provide appropriate rewards. Numerous methods can
achieve this functionality, but they come with some compromises in some other perfor-
mance. For instance, the approach of utilizing frequency and rewards to form gradient
information guidance [8] may cause reinforcement learning to fall into local optima and
decrease its exploration capabilities. To solve the mentioned challenges, this manuscript
explores a method combining zero-shot learning and hierarchical reinforcement learning.

2. Related Work

The related work primarily encompasses three research directions: zero-shot learning,
artificial potential field, and hierarchical reinforcement learning. In this section, the main
content of these research directions, as well as some frontier studies in perception and
decision-making within these areas, are introduced.

2.1. Zero-Shot Generalization

Zero-shot learning (ZSL) [9], a class of algorithms capable of performing well on new
tasks without additional data collection, holds immense potential across various domains.
In this manuscript, two concepts are mainly discussed, ZSL in image processing and
zero-shot generalization (ZSG) in path planning.

ZSL in image processing: It enables models to recognize and classify previously
unseen objects by leveraging semantic information encoded in class attribute descrip-
tions and embeddings [10]. By bridging the gap through semantic knowledge transfer,
zero-shot learning generalizes beyond the confines of training data to novel instances.
The Contrastive Language-Image Pre-Trained (CLIP) model is a masterpiece which has
been implemented in multiple areas. For instance, in feature extraction, Zhang et al. demon-
strated that ZSL could be enhanced by training multi-modality embeddings using a deep
learning model [11]. In environment detection, it combines 3D point clouds and RGB
images to enhance the capability to identify 3D objects. Zhu et al. put forth PointCLIP
V2 [12]. It projects 3D cloud points to a 2D plane, obtains the embedding by Bidirectional
Encoder Representations from Transformers, and then compares the similarity between
embedding and projecting the image and semantic information to form an identifying
result. Additionally, in the multimedia area, Song et al. introduced MeshCLIP [13], which
processes cross-modal information for 3D mesh data using zero-shot learning, thereby
improving reconstruction quality. In this manuscript, CLIP is used to generate action
guidance according to visual information.

Zero-shot generalization: It is an essential metric that evaluates the capability of
a model to perform effectively on new, unseen tasks without additional training [14].
As shown in Figure 1, the data distribution of this problem can be divided into three
situations: the training set and test set are the same, they follow the same distribution,
or they follow different distributions. This capability is particularly crucial in novel en-
vironments where pre-defined training datasets cannot cover all possible scenarios. ZSG
enables models to leverage prior knowledge and apply it to novel situations by relying on
semantic information and transfer learning mechanisms [15]. In the context of RL, zero-
shot generalization is formalized as the ability of a policy, trained in one set of contexts,
to perform well in entirely new, unseen contexts. This involves specifying which subset
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of ZSG problems is being addressed, as it encompasses a range of scenarios rather than
a single specific problem. For instance, a robot trained to navigate in a particular type of
environment should be able to adapt its navigation strategies to different environments it
has never encountered before, relying on the transfer of learned semantic relationships and
policy structures.

Figure 1. Zero-shot generalization data distribution. The singleton environment means that the
training set is identical to the test set.The independent and identical (IID) generalization environ-
ment means that the two sets follow the same distribution while the out-of-distribution (OOD)
generalization environment means that they follow different distributions.

2.2. Artificial Potential Field

The artificial potential field (APF) method is a widely used approach in robotic path
planning [16]. It conceptualizes the environment as a potential field, where the robot is
treated as a particle moving under the influence of this field. The method employs two
primary components: an attractive potential field that pulls the robot towards the goal and
a repulsive potential field that pushes it away from obstacles.

In robotic path planning, the APF method is advantageous due to its simplicity and
real-time applicability, especially in partially known environments. Since this method can
lead to local minima where the net force on the robot is zero, preventing further movement,
we make some modifications to suit the hierarchical reinforcement learning process.

2.3. Hierarchical Reinforcement Learning

HRL draws inspiration from the way humans approach complex problems—by de-
composing them into smaller, more manageable tasks [9]. HRL operates on multiple
levels of decision-making, where high-level policies guide the overall direction toward
the goal, and low-level policies handle the specific action. Such a structure mirrors the
cognitive process of setting a general objective and executing detailed actions to achieve
it [17]. This approach improves learning efficiency and enhances adaptability in dynamic
environments. Recent advancements have seen HRL successfully applied across various
domains, including robotic navigation, gaming, and autonomous driving [18,19]. These
studies highlight the effectiveness of HRL in managing high-dimensional state spaces and
executing complex sequential decisions, showcasing its potential in facilitating long-term
planning and precision control. Christen et al. put forth an explicit task decomposition
method [20], which can conduct a zero-shot of the planning layer across different low-
level agents without retraining. Chen et al. proposed a soft actor–critic structure with a
prioritized experience replay [21], solving the problem of low sample utilization. Ye et al.
proposed a hierarchical policy learning with intrinsic–extrinsic modeling [22]. As analyzed
above, information about environments, especially unseen ones, can impact the efficiency
of an agent. Additionally, the hierarchical structure has shown great potential for the
improvement of efficiency and generalization ability.
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In the robotic visual servoing path planning task, the perception of vision sensors
can be incomplete due to issues such as occlusion. To address this problem, we employ a
hierarchical reinforcement learning framework. The high-level decision-making module is
guided by visual information, and the visual guidance is constrained within a specific area.
This approach ensures that the path planning process can effectively handle challenges
arising from incomplete perception, improving the robustness and accuracy of the task.

To enhance agent performances, we explored a path planning method that integrates
ZSL with HRL. The contributions of our work are described as follows:

(1) The proposed method first fuses ZSL into the reinforcement learning process for robot
path planning. After integrating the unseen semantic information, the agent becomes
more intelligent regarding path selection and training cost control.

(2) A reasonable fusion architecture is proposed specifically. ZSL is utilized on a high
level to infer correct macro-actions for previously unseen objects or situations based
on learned semantic relationships. Then, the HRL follows cues offered by zero-shot
learning to make decisions effectively in specific path selections.

(3) Detailed performance analysis is provided for the proposed combined learning frame-
work. The simulation results corroborate the proposed method’s capability of leverag-
ing visual cues for decisions and modifying agents’ actions.

3. Proposed Method

The system architecture of the proposed method is shown in Figure 2. It is a two-stage
learning process with a combination of zero-shot learning and hierarchical reinforcement
learning. Part A and Part B belong to the zero-shot learning methods. Part C is the main
structure of hierarchical reinforcement learning. The designed visual-act model utilizes
a zero-shot learning image encoder to transfer images into embedding. Then, image
embeddings and correspondent labels are sent to a multi-head self-attention network.
This work is shown in Figure 3. The outputs of this stage are action instructions according
to input images. It identifies the focusing parts of image embedding related to the
exact actions in each direction. The latter stage is a hierarchical reinforcement learning
process. It utilizes a high-level and a low-level policy to form paths. The high-level
policy determines the plausible area while the low-level policy provides exact action.
In the meantime, images captured by a visual sensor are sent to the pre-trained model.
Then, the pre-trained model provides action instructions to correct decisions made by the
reinforcement learning part.

Figure 2. Main structure of the proposed method.
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Figure 3. Pre-trained visual-act decision model

3.1. Contrastive Language-Image Pre-Trained Model.

The CLIP model leverages the relationships between images and their corresponding
text descriptions, specifically their vector representations, to achieve zero-shot learning
capabilities. In this section, we describe the core components and mechanisms of the CLIP
model and how it contributes to our proposed method. As in Figure 1, the method can be
described as follows:

Images I: training set images with the corresponding text descriptions.
Semantic attributes T: different text descriptions, including those that relate to the

image contents and those that do not.
Vision transformer f (I) [23]: it interprets image information into vectors vI .
Text encoder g(T) [24]: it transforms semantic attributes into text embedding vT .
Shared space: a mapping relationship formed by contrastive learning.

vI = f (I), vT = g(T) (1)

The similarity between an image and a text description is then quantified by a similarity
metric S, typically the cosine similarity, which is computed as:

S(vI , vT) =
vI · vT
∥vI∥∥vT∥

(2)

Elements in S(vI , vT) are separated into corresponding pairs and non-corresponding
ones. During training, the model is optimized to maximize the similarity between corre-
sponding images and texts while minimizing the similarity between non-corresponding
pairs [25]. Such a semantic-based zero-shot learning approach allows the model to acquire
the correct embedding of images when faced with previously unseen objects by leveraging
the relationship between semantic information and image features.

3.2. Visual-Act Model

Because this encoder is trained using a contrastive learning strategy, the model can
only focus on the relative relationships between images and semantic information and
cannot attend to absolute information, such as the spatial coordinates of objects. This
limitation is addressed by the training approach of the proposed method, which utilizes
masks to specify exact objects related to decision-making. The visual-act model utilizes
the zero-shot image encoder to transform images into embedding vectors. Then, as shown
in Algorithm 1, the model figures out the relationship between visual information and
action selection, which can extract semantic information related to decision-making, thus
optimizing the path planning process. During training, the model receives raw images
as input and uses the mask-processed images as an amplifier for the attention matrix
error. It trains a neural network to predict the attention matrix and the resulting actions.
During the inference task, the trained neural network directly processes raw images to
output action predictions.
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Algorithm 1 Optimized model for high-level macro-action decision making in action selection

1: Input: Image dataset D with annotations, Set of masks {Mi}, Number of epochs N
2: Output: Optimized model for action decision Rp[rp( f ), rp(l), rp(r)], processed image

embeddings I1, I2, I3
3: Initialize the zero-shot image encoder Z
4: Initialize action-specific networks for each action Oa
5: Initialize parameters for contrastive loss
6: Define total loss function Ltotal with weighting factor λ
7: for each epoch do
8: for each (Image, R, {Ri}) in dataset D do
9: E← Z(Image)

10: for each mask Mi in Set of masks do
11: Ei ← Z(Image⊕Mi)
12: end for
13: Initialize task-specific losses La for this batch
14: for each action a in {forward, left, right} do
15: Rp, I1, I2, I3 ← action-specific network(E, a)
16: end for
17: La ← ∥Rp − R∥2
18: Lc ← contrastive loss(E, I1, I2, I3, {Ei}, {Ri})
19: Ltotal ← ∑ La + λ× Lc
20: Backpropagate Ltotal and update parameters
21: end for
22: Optionally evaluate the model on the validation set
23: end for
24: Save the optimized model parameters

(1) Mask generation and encoding

For each input image I, a series of object masks [26] are applied to block different
regions. Specifically, some masks are applied to block certain vacant areas of the image, like
grassland or remote objects, which is irrelevant to current action instructions. Some masks
conform to the shapes of certain objects in the image, which are used to occlude specific
objects in the image. The final number of masks is capped at sixteen by disregarding far-
away and trivial objects. The original image and mask-processed images are represented
as E and Ei. By putting masks on images, the zero-shot image encoder can enlarge the
features of the mask-applied part, and it can be reflected in the output embeddings in a
way that allows attention mechanism and contrast learning.

For each action a ∈ {af, al, ar}, we calculate a reward label ra considering several
factors in this direction: the distance to obstacles, the dynamic/static nature of these
obstacles, and the distance to the goal. The backward action is excluded from our model
due to its focus on forward-moving scenarios. Mathematically, the reward label for action a
can be expressed as:

ra = f (dobs, dg, typeobs) (3)

where dobs denotes the distance to the nearest obstacle, dg represents the distance to the goal,
and typeobs indicates whether the obstacle is static or dynamic. The function f computes
the reward label, encapsulating the trade-offs between navigating safely around obstacles
and efficiently moving toward the goal.

The original image E and processed images Ei are labelled as R and Ri. For Ri, we
focus on whether the masked object is in the corresponding direction, and then denote this
with a difference as a mark for contrastive loss. A weight λ is stitched to Ri to decrease the
loss value if the masked object belongs to the background.

(2) Linking semantics of images with actions
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Based on the differences between the image labels Ri after mask processing and the
original label R at each label element, the images that have undergone mask processing are
labeled as positive samples x+ for the positions with differences, while those without any
changes are labeled as negative samples x−. For example, the original label R is [2,−1,−1],
and the masked label Ri is [2,−1,−2]. Then, the masked image is a positive sample for the
third element regression task.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (4)

where Q, K, and V represent queries, keys, and values, respectively.
Then, these samples are sent to a masked multi-head attention network [27], which

aims to forge a shared feature representation pivotal for ensuing action decisions. For every
pre-defined action, action-specific networks Oa process this shared representation, engen-
dering action determinations. The self-attention mechanism allows the model to focus on
specific elements in semantic embeddings. This dynamic is orchestrated by incorporating
each action’s loss La into a cumulative loss function, where the contrastive loss Lc plays a
crucial role in guiding the model towards discerning distinct actions. The contrastive loss
Lc serves as an loss amplifier to help the model better focus on certain semantic attributes
in the embedding that have crucial influences on the formation of the action instructions.

Ltotal = ∑
a

La + λ× Lc (5)

Lc = − log
exp(sim(x, x+)/τ)

exp(sim(x, x+)/τ) + ∑x− exp(sim(x, x−)/τ)
(6)

where sim(x, y) = x·y
∥x∥∥y∥ denotes the cosine similarity between two vectors x and y. x

is the anchor sample, x+ is a positive sample similar to the anchor, and x− represents a
negative sample dissimilar to the anchor. τ is a temperature scaling parameter that controls
the separation between positive and negative pairs.

The model outputs serve as supplemental guidance for high-level policy in hierarchical
reinforcement learning and provide instruction for high-level decisions.

3.3. Hierarchical Policy

In this section, we utilize HRL to complete path planning tasks under the guidance of
leveraging visual cues for the action selection model. A two-level policy layer is conducted
to increase efficiency without sacrificing exploring capability. The process is shown in
Algorithm 2.

(1) Environment representation

The environments are represented in two forms, e.g., high-level grid form and low-
level ones. The high-level network is designed to achieve global decision-making based on
the above work, while the lower-level is used for better local planning.

High-level grid map: It selects the next macro-action, directing the agent towards a
specific region on the grid. The grid map is divided into larger blocks, and each block is
treated as a high-level state. The high-level policy determines the sequence of blocks to be
explored based on the current state and the goal location. The settings of the high-level
grid help agents avoid areas where visual information has not been fully detected and
accelerate the training process in the task of robotic path planning.

Low-level grid map: Within each selected high-level block, the low-level strategy
navigates through the individual grid cells. The policy network produces action instructions
for robotics when visual and state information is obtained in grid cells.

slow ∈ {cell1,1, cell1,2, . . . , cellm,m} (7)
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(2) RL structure

We model after the design of DQN and incorporate this structure into the proposed
framework: a policy network and a target network. As shown in Figure 4, the policy
network is updated continuously based on the Bellman equation and the target network
and generates policies for explored areas πexplored. APF is applied to generate policies for
unexplored areas πunexplored. πexplored and πunexplored are combined to form policy πglobal
for the target net. The target network’s parameters are updated less frequently, specifically,
every 100 episodes, by comparing the global strategy with the most recent policy network.

Q(s, a; θ)→ policy network (8)

Q′(s, a; θ−)→ target network (9)

Algorithm 2 Hierarchical path planning

1: Initialize high-level and low-level policies
2: Initialize policy network Q(s, a; θ) and target network Q′(s, a; θ−)
3: Initialize experience replay buffer D with capacity N
4: for each episode do
5: for each step in episode do
6: Observe visual input It and current state st
7: Generate low-level action at = π(slow | It)
8: if high-level block is unexplored then
9: Generate direction F⃗ = −∇U using APF as Equations (14)–(16)

10: Decompose direction into actions for unexplored blocks
11: else
12: Follow policy πexplored for explored blocks
13: end if
14: Execute action at, observe reward rt and next state st+1
15: Store transition (st, at, rt, st+1) in replay buffer D
16: end for
17: Synthesize global strategy πglobal = πexplored ∪ πunexplored
18: Sample random batch from replay buffer D
19: Compute target Q-value: y = rt + γ maxa′ Q′(st+1, a′; θ−)

20: Perform gradient descent step on (y−Q(st, at; θ))2

21: Update policy network Q(s, a; θ)
22: if episode // 100 == 0 then
23: Compare πglobal with historical strategies
24: Update target network Q′(s, a; θ−) = Q(s, a; θrecent)
25: end if
26: Update policy network Q(s, a; θ) based on target network
27: Dynamically adjust B and b based on Rbar
28: end for

The action selection is based on the ε-greedy policy, balancing exploration and ex-
ploitation. The Q-value updates follow the standard Bellman equation:

Q(st, at) = rt + γ max
a′

Q′(st+1, a′; θ−) (10)

where rt is the reward at time t, γ is the discount factor, and θ− are the parameters of the
target network.

Additionally, the policy network parameters are updated based on the target network
to ensure stability:

θ ← θ + α(y−Q(s, a; θ))∇θQ(s, a; θ) (11)

where y = rt + γ maxa′ Q′(st+1, a′; θ−).
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(a) Data flow for every time step (b) Data flow for every episode
Figure 4. Data flow of the hierarchical policy.

(3) Base policy and reward settings

Visual servoing: For areas already explored, we employ the visual-act model to map
input images to action directives. The network processes the visual input and outputs an
action for the agent. During every step, these action instructions are added to a policy pool,
which serves as the optimal policy to determine the parameters of the target net.

a(x,y) = π(slow | I(x,y)) (12)

πexplored ←
n⋃

(x,y)∈E

a(x,y) (13)

where a(x,y) is the action at the coordination (x, y), I(x,y) is the visual input, and π is the
policy function parameterized by the pre-trained visual-act decision model. πexplored is the
policy developed by the pre-trained model for the explored area.

Artificial potential field for unexplored regions: For high-level blocks that have
not been explored, we utilize the artificial potential field method to generate navigation
strategies. The APF method uses an attractive potential to pull the agent towards the goal
and a repulsive potential to avoid obstacles. The direction generated by the APF is then
decomposed to produce specific actions. The potential field is represented as U, which can
be decomposed into two parts, Uatt and Urep. The formula is represented as follows:

Uatt =
1
2

kattd2 (14)

Urep =

 1
2 krep

(
1
do
− 1

do0

)2
if do ≤ do0

0 if do > do0

(15)

where katt and krep are constants, d is the distance to the goal, do is the distance to the
obstacle, and do0 is the influence distance of the obstacle.

The combined potential field U determines the direction F⃗ for navigation:

πunexplored ← F⃗ = −∇U (16)

This direction is then translated into specific actions within the unexplored high-level
blocks as the πunexplored. The whole process is conducted after every episode is completed.
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Global strategy: It is synthesized by combining the policies derived from both the
explored and unexplored regions. The synthesized strategy is then compared with the
historical strategy obtained from past episodes. The target network parameters are updated
based on the comparison to ensure the new strategy optimizes over the past strategies.

πglobal = πexplored ∪ πunexplored (17)

Reward settings: The reward functions are listed below. snext represents the next state
of the agent. starget represents the target state. Rcollision and Rsa f e represent the reward value
that the agent receives in collision condition and safe condition, respectively.

(1) Target distance
R1(s, a) = −∥snext − starget∥ (18)

(2) Obstacle avoidance

R2(s, a) =

{
Rcollision if collision
Rsa f e otherwise

(19)

(3) Whether the agent reaches the target

R3(s, a) =

{
Rtarget if snext = starget

Rstep otherwise
(20)

(4) Adaptive experience replay management

The management of the experience replay buffer [28] is adaptively adjusted based
on the cumulative average reward, which serves as an indicator of the learning progress
and the efficiency of the current policy. The cumulative average reward, Ravg, is computed
as follows:

Ravg =
1
N

N

∑
i=1

Ri (21)

where Ri is the immediate reward received after the i-th action, Rg represents rewards of
achieving the goal, Ro represents rewards of encountering obstacles, and N is the total
number of actions taken up to the current point in time. If the agent achieves the goal or
encounters obstacles, Rg or Ro is added to Ravg and this episode is instantly suspended.

Based on Ravg, we adjust the buffer size, Bsize, and the batch size, bsize, of the experience
replay buffer to enhance the learning efficiency. The adjustments are made according to the
following rules:

Bsize = Bmin + (Bmax − Bmin) ·min
(

Ravg

Rtarget
, 1
)

(22)

bsize = bmin + (bmax − bmin) ·min
(

Ravg

Rtarget
, 1
)

(23)

where Bmin and Bmax represent the minimum and maximum buffer sizes, respectively;
similarly, bmin and bmax denote the minimum and maximum batch sizes. Rtarget is a target
average reward that indicates an optimal learning performance. These formulas ensure that
as the average reward approaches the target, both the buffer size and the batch size increase,
allowing the model to learn from a larger set of experiences. Conversely, if the performance
drops, the model focuses on a smaller, potentially more relevant set of experiences to adjust
its policy more rapidly.

4. Simulations

In this section, we build up joint simulation environments based on the V-rep platform
and Pycharm. We conduct simulations on the environments and validate the
following conclusions:
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(1) The leveraging of visual cues for the action selection model does focus on certain
objects in images to form correspondent advice for action selection.

(2) To assess the model’s capability to generate across environments, we conduct path
planning simulation in unseen environments, which proves that the proposed method
can reduce training time and increase exploring efficiency.

(3) The proposed method performs well when combined with reinforcement learning.

4.1. Simulation Setting

The simulation settings, including equipment and environment settings, are listed below.
Equipment: The simulations are conducted on Windows 11 operating system powered

by 13th Gen Intel(R) Core(TM) i9-13900HX, with training executed on an NVIDIA GeForce
4090 GPU. The simulation experiment is conducted on V-rep (version 4.6.0 Edu.) and
Pycharm (version 2023.2.5, professional edition). Simulation environment: Table 1 presents
the parameters of the model car and obstacles in the virtual simulation platform.

Table 1. Parameters of the robot.

Parameter Value

Wheel radius (m) 0.5
Tread (m) 1

On-board camera resolution 512× 512
Robot cabinet width (m) 0.9
Robot cabinet length (m) 2

Radius of obstacle (m) 1

Network parameters of the proposed method: Table 2 presents the parameters of the
pre-trained visual information alignment model. The high-level grid size is calculated by
the viewing range of the vision sensor.

Table 2. Hyper-parameters of the HRL model.

Parameter Value

Learning rate (high-level) α1 0.002
Learning rate (low-level) α2 0.002

ϵdecay 0.995
ϵmin 0.1

Γ 0.99
High-level grid size 4× 4
Low-level grid size 32× 32

Goal reward 1000
Max step number 500
Obstacle reward −200

Buffer size ascending rate 0.9
Buffer size ascending threshold 1.2

Buffer size descending rate 0.9
Buffer size descending threshold 1.0

Initialized buffer size 10,000
Initialized batch size 128

Buffer size (min–max) 1000–20,000
Batch size (min–max) 16–256

4.2. Simulation Process

The comparative and validation simulation experiments follow this routine:
Step 1: Communication between the Python terminal and V-rep is established, the

simulation step size is set to 0.05 s, and the initial state of the robot is calibrated. The maxi-
mum range of the vision sensor is 5 m, and each grid covers 0.625 × 0.625 square meters, so
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we would include 8 × 8 grids in a high-level grid. This grid is then used in the high-level
grid map. The parameters of the grid map are initialized for path planning.

Step 2: The designed control algorithm runs on the Python side, generating the
trajectory. This is then converted into control rates for the four wheels at each moment.
The control laws are sent to the model car’s rotational joints to execute the movement
according to the control instructions.

Step 3: In the environment, the state of key robot nodes is recorded and this informa-
tion is sent to the Python terminal through the application programming interface.

Step 4: Steps 2 and 3 are repeated, iterating through the set simulation time and
frequency until the entire simulation is completed.

4.3. Assessment of the Visual-Act Model

In this part, we train our model on several diverse environments and test its perfor-
mance on a separate set of unseen environments that follow different distributions from
the training set. The training environments utilize cityscapes [29]. Labels are modified to
fulfill the model input requirements. It includes various layouts, obstacle types, and goal
locations in real road scenes.

As shown in Figure 5, observations of the loss curve reveal a contracting trend during
the training process, indicating a consistent enhancement in model accuracy. The training
process converges around 200 epochs because the zero-shot image encoder is perfectly
pre-trained, which can well reflect the semantic and spatial information of objects in the
image in the coding and accelerate the convergence speed in the proposed method’s
training process.

Figure 5. Loss curve of the pre-trained model

The loss of the model training drops rapidly in Area I, but it picks up in Area III. We
speculate that when setting the loss function, we treat the similarity using the sigmoid
function to guarantee the artificial number in logarithm loss calculation to be positive,
and the gradient is amplified during the loss backward process; thus, the fluctuation occurs.

As shown in Figure 6, the test environments are designed to differ significantly from
the training ones regarding layout complexity and obstacle placements, ensuring a rigorous
assessment of the model’s generalization ability. The virtual environment is primarily
designed to imitate a wilderness setting, and its significant differences from the urban
road image data in the training set and the inexperience of the pre-trained model in such a
scenario further contribute to the rigorousness of the assessment.

We conduct a comparative simulation experiment to confirm the focused area of the
visual-act model. I0 represents the embeddings produced by the original image with
CLIP. I1, I2, and I3 represent the image embeddings processed by the visual-act model.
The sim(I0) value represents the similarity between the image embeddings and semantic
vector of certain objects.
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(a) (b) (c)
Figure 6. Test set samples. (a–c) The subfigures are test images samples.

In Table 3, data labeled in bold have the highest similarity to the corresponding object
after processing with the attention mechanism in all directions. For example, as shown
in Figure 7, the tree is in front of the robot, and the similarity comparison represents that
the corresponding processed embeddings raise focus on this obstacle from 0.2607 to 0.4121
while decreasing focus in irrelevant directions. This shows that the pre-trained model
focuses on certain obstacles related to the corresponding action while disregarding the
unrelated ones.

Table 3. Similarity comparison.

Object Sim(I0) Sim(I1) Sim(I2) Sim(I3)

Tree 0.2607 0.4121 0.1298 0.0736
People 0.2473 0.5223 0.2954 0.1371
Floor 0.1849 0.0718 0.1035 0.1302
Sand 0.3001 0.1727 0.0931 0.1127
Grass 0.2131 0.1981 0.1703 0.0689

Figure 7. High-level policy combined with action instruction.

4.4. Performance Assessment Under Singleton Environment

In this part of the study, we conduct simulation experiments in a singleton envi-
ronment, where the training and test datasets are identical. This experimental setup is
designed to assess the robustness and effectiveness of our proposed reinforcement learning
method for path planning, by directly comparing it to other conventional RL methods
under controlled conditions.

(1) Settings

The singleton environment simplifies the problem space by using the same scenarios
in both the training and test phases, allowing us to focus on the learning and optimization
capabilities of the algorithms without the variability introduced by unseen test conditions.
The experimental area measures 25 m × 25 m, and high-level grids are planned based on
camera parameters to provide better guidance for macro-action. The representation of one
train environment sample is shown in Figure 8.
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(a) Grid form (b) Simulation environment sample
Figure 8. Environment representation; the simulation environments can be represented by grid forms.
The red star represents the target, the green circle represents the starting point, the yellow blocks
represent sand piles, the green blocks represent trees, and the black blocks represent people.

(2) Metrics

The metrics are listed below:
(1) Efficiency—the step costs compared to the shortest possible paths.
(2) Final convergence value—the value of cumulative average reward when the reward

curve converges.
(3) Convergence degree—the fluctuation trend during the training process, the number

of epochs each algorithm took to converge, and the final convergence value.

(3) Outcomes

Figure 9 illustrates the cumulative average reward curve when incorporating the
visual-act network into hierarchical reinforcement learning. We can corroborate that the
proposed method has a good convergence trend and a low degree of fluctuation. Com-
pared to the traditional HRL method, the convergence episodes decrease from 780 to 480
and the final convergence value increases from 24 to 297, which shows great progress
in performance.

Figure 9. Cumulative average reward curve.

Figure 10 presents gradients formed in the high-level grid and path in novel envi-
ronments. We can see that the proposed method adequately provides efficient high-level
gradient information for path planning tasks, resulting in an efficient and collision-free
final path planning outcome.
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(a) Grid guidance (b) Path in simulation
Figure 10. Path planning with train environment.

4.5. Performance Assessment Under Test Environments

In this part, we conduct the generalization simulation under several environments
modeled after the trained ones.

(1) Settings

The test environments differ from the training ones. As shown in Figure 11, they follow
a different distribution. The tests are conducted without extra training within unseen test
environments. The distinction between the training environments and test environments is
listed below:

(1) The starting and target points follow different distributions from the training
environments. Specifically, as shown in Figure 11a,b, they all lie in different directions.

(2) The patterns of the available paths are different from the training environments.
(3) The distributions of obstacles are different.

(a) (b)
Figure 11. Environment representation samples in grid form.

(2) Metrics

In this experiment, we emphasize the guiding role of ZSL and visual action at a high
level. Therefore, the analysis is conducted on a grid map. We select success rate and
collision rate as metrics. The specific results are shown in Table 4 and Figure 12.

(3) Outcome
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(a) (b)
Figure 12. Path in novel environments.

Table 4. Similarity comparison.

Environment S 1 C 2 S′ 3 C′ 4

(a) 9.25% 8.53% 21.62% 2.64%
(b) 3.31% 14.72% 11.91% 3.12%
(c) 16.28% 7.34% 31.88% 0.65%

1 S represents the average success rate under several novel environments for the traditional HRL method.
2 C represents the average collision rate under several novel environments for the traditional HRL method.
3 S′ represents the average success rate under several novel environments for the proposed method. 4 C′ represents
the average collision rate under several novel environments for the proposed method.

In novel environment tests, as shown in Table 4, the collision rate and success rate
indicate that the proposed method has significantly reduced the collision rate, effectively
lowering the collision rate of the intelligent agent in the path planning task. Additionally,
a certain degree of enhancement is observed in the success rate. The paths planned under
the corresponding samples are shown in Figure 12. Among environments (a), (b), and (c),
the performance under environment (b) is not good enough because the target area cannot
be seen most of the time during the process, and thus the designed visual-act cannot
perform well in success rate, but the collision rate remains at a low level, indicating that the
proposed method has excellent performance in obstacle avoidance.

5. Conclusions

In this manuscript, we propose a novel method that combines ZSL with HRL for
robot path planning. Based on ZSL, the model manages to integrate visual information
in the high-level policy of hierarchical reinforcement learning process to achieve better
macro-actions. Furthermore, ZSL helps the robotic path planning process to alleviate the
dependency on depth information. For HRL agents, we detail how the HRL architecture is
implemented and propose an adaptive experience pool strategy to balance the exploration
capability and convergence dynamically.

We conduct several simulation experiments to validate the proposed method. In cross-
environment generalization assessment, we test the proposed method with unseen environ-
ments, demonstrating that the proposed method still has good convergence, thus exhibiting
strong generalizing performance. The comparative analysis proves that the visual-act
model focuses on areas related to decision-making, highlighting the model’s capability to
leverage visual cues for action selection. Finally, we evaluate the model’s performance in
path planning when encountering unseen environments. The proposed method improves
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the robustness and efficiency of robotic path planning and helps to decrease the collision
rate during the training process.

Author Contributions: Conceptualization, L.M. and P.X.; methodology, L.M. and P.X.; software, L.M.;
validation, L.M. and P.X.; data curation L.M. and P.X.; writing—original draft preparation, L.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as potential conflicts of interest.

References
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