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Abstract: A multi-objective grasshopper optimization algorithm (MOGOA) with an adaptive curve
c(t) and the enhanced Levy fight strategy (CLMOGOA) was proposed to optimize the process
parameters of rotary screen coating, setting the thickness and uniformity of the adhesive layer on
the structural plates in spacecraft as its optimization objectives. The adaptive curve strikes a balance
between global exploration and local development and accelerates the convergence speed. The
enhanced Levy strategy helps the algorithm to escape local optimizations, increases the population
diversity, and possesses dual searching capabilities. After multiple runs, the average values of the
CLMOGOA’s reverse generation distance were 0.0288, 0.0233, and 0.1810 on the test sets, which
were less than those of the MOGOA. The best Pareto-optimal front obtained by the CLMOGOA had
a higher accuracy and better coverage compared to that of the MOGOA. Thus, it is indicated that
the CLMOGOA managed to outperform the MOGOA on the test functions. In order to solve the
optimization problem, 108 sets of process experiments were designed, and then the experimental
data were used to train a Back Propagation Neural Network (BPNN), a Least Squares Support
Vector Machine (LSSVM), and Random Forest (RF) to obtain the best prediction model for the
process parameters. Considering the thickness and uniformity of the adhesive layer as the objectives,
the improved algorithm was used to optimize the prediction model to obtain the optimal process
parameters. The actual coating effect showed that the optimization algorithm improved the efficiency
and qualification rate of the product.

Keywords: multi-objective optimization algorithm; optimal process parameters; rotary screen coating;
prediction model; spacecraft structural plates

1. Introduction

In recent years, with the progress in science and technology, space exploration has be-
come increasingly widespread [1–3], and the demand for spacecraft is also increasing. With
structural plates in spacecraft being the most important structures, production efficiency
has also become a concern. The coating of adhesives onto the surface of structural plates is
an important step in the manufacturing process. Manual coating methods have high labor
and time costs and cannot ensure a good coating quality, making them difficult to adapt to
the increasingly high production requirements of the aerospace manufacturing industry.
Improving the coating process to achieve a controllable coating thickness and uniformity
may not only improve the production efficiency and qualification rate but also reduce
the weight of structural plates in spacecraft. Screen printing technology has been widely
used in the aerospace industry. Hoces [4] used screen printing technology to produce the
emitters and metal contacts in solar cells. Erika [5] implemented a local rear-side structure
with screen-printed front-side metallization in a solar cell process with dielectric layer
passivation. The coating process for structural plates in spacecraft has been improved to
rotary screen printing, with the basic principles shown in Figure 1. The rotary screen moves
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in the printing direction at a certain rotational speed and printing speed, maintaining a
given distance from the structural plate. The adhesive is pressed out from pores in the
nickel screen to the substrate under the pressure of the squeegee to coat the adhesive.
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Figure 1. Schematic of rotary screen coating.

Coating quality is affected by many process parameters, such as the adhesive properties,
rotary screen mesh, squeegee pressure, rotary screen thickness, and coating speed [6–10].
Combining theory with practice, Dowds [11] provided a detailed introduction to the
influencing factors in screen printing, including the adhesive rheology, substrate selection,
printing angle, squeegee shape, printing pressure, printing speed, and screen characteristics.
Piao [12] analyzed the effects of factors such as the adhesive selection, the mesh size
of the screen, sintering temperature, and sintering time on the cathode film in screen
printing. Haslehurst and Ekere [13] identified the main factors affecting the deposition
height using a factorial experiment and an analysis of variance, including the mesh width,
printing direction, squeegee force, and mesh direction. The literature has involved many
parameters, as well as complex mathematical models. Therefore, these parameters cannot
be coordinated, so it is difficult to guide actual production.

Advanced factories in various countries are gradually transforming and upgrading
towards automation, information, and intelligence [14,15]. The production of structural
plates for spacecraft should also be equipped with a system for real-time monitoring of
important coating parameters so the coating process can be optimized through multi-
objective optimization theory, artificial intelligence technology, and the use of production
data [16,17]. The Taguchi method is an effective method for reducing the number of tests
and optimizing the process parameters, but it is not suitable for multi-objective optimiza-
tion processes [18–20]. This paper proposes an intelligent technology for optimizing the
process parameters in rotary screen coating based on predictive models and multi-objective
optimization algorithms. The framework is shown in Figure 2.

Predictive models can establish the relationship between the process parameters and
adhesive quality in production data. The models include a Back Propagation Neural Net-
work (BPNN), a Least Squares Support Vector Machine (LSSVM), and Random Forest
(RF) [21–24]. Swarm intelligent optimization algorithms have demonstrated potential in op-
timizing engineering problems [25–28]. The multi-objective grasshopper optimization algo-
rithm (MOGOA) is a new algorithm [29] that has been improved into the CLMOGOA in this
paper. It has been proven that the CLMOGOA has better performance than the MOGOA.
The Pareto-optimal front solution is used for multi-objective optimization decision-making
to meet different indicators in the results [30,31].

In Section 2, the experimental process is designed, and experimental data are col-
lected. In Section 3, three prediction models are introduced and compared to select the
optimal model. In Section 4, the original algorithm is improved to enhance its search and
convergence capabilities. Section 5 summarizes this paper and looks forward to future
development directions.
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2. Design and Evaluation of Experiments
2.1. Experimental Design

The thickness and uniformity of the adhesive layer on the structural plate in spacecraft
directly influence the quality of the mounting process. An uneven adhesive layer can result
in unstable mounting, while an excessively thick adhesive layer can cause gel overflow
during the mounting procedure. In the experiment, five factors were selected for 114 sets
of process tests [32]. Each set of parameters was repeatedly used in coating to minimize the
experimental errors. Table 1 summarizes these factors and their respective ranges, while
Figure 3a illustrates the experimental process.
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Table 1. Ranges of process parameters for rotary screen printing.

Printing Factors Descriptions Ranges

Screen thickness (µm) The thickness of the rotary screen 60–120
Squeegee hardness (A) The hardness of the squeegee 65–85
Squeegee pressure (N) The pressure on the adhesive by the squeegee 10–50

Space (mm) The distance between the rotary screen and substrate 0.3–1.6
Coating speed (mm/s) The moving speed of the rotary screen 10–30
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Figure 3. Coating test and measurement of adhesive layer thickness. (a) Coating test. (b) Measure-
ment of adhesive layer thickness. h0 is the average height between the laser scanner and the structural
plate (red dashed line), and h1 is the average height between the laser scanner and the adhesive layer
(red solid line).

2.2. Experimental Evaluation

The purpose of this experiment is to adjust the four factors listed in Table 1 and to
conduct coating tests on structural plates in spacecraft. The responses were recorded as
the thickness D and roughness Ra of the adhesive, utilizing a VC nano 3D laser scanner
(Vision Components, Ettlingen, Germany), as shown in Figure 3b. After recording, a DPS
processor (Qt version 5.9.2) was employed to analyze the results obtained from the smart
camera. The thickness d of a single laser is defined as follows.

d = h0 − h1 (1)

Roughness is defined as a micro-geometric feature determined by small peaks and
valleys with minimal spacing (of less than 1 mm) on the machined surface [33,34]. Conse-
quently, this article employs the concept of roughness in mechanical processing to assess the
uniformity of the adhesive layer. The lower the roughness, the more uniform the adhesive
layer. The roughness ra of a single laser is defined as follows:

ra =
∑m

i=2|hi − h1|
m

(2)

where hi is the height of the i-th point, and m is the number of points. The entire adhesive
layer thickness D is determined as

D =
∑n

j=1 dj

n
(3)
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where dj is the scanning thickness of the j-th laser line. n is the number of laser lines. The
roughness Ra of the adhesive layer is defined as

Ra =
∑n

j=1 raj

n
(4)

where raj is the roughness of the j-th laser line. In this study, the main defects of the
adhesive layer are lacks, leakage, and intermittency, as shown in the Figure 4.
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3. Forecasting Models

A total of 114 samples were divided into a training set comprising 92 samples and a
test set consisting of 22 samples, which were utilized in the prediction models. To mitigate
the influence of randomness in the data selection, the model was executed independently
10 times to derive an average performance result. Throughout this process, the training
and test sets were randomly selected from the original dataset. The root mean square
deviation (RMSE) and the correlation coefficient (R2) of the three prediction models were
subsequently compared.

RMSE =
1
n

√
n
∑

i=1

(
Xi − Yi

Xi

)2

R2 =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1

(
Yi − Y

)2

(5)

where X = 1
n ∑n

i=1 Xi, Y = 1
n ∑n

i=1 Yi, n is the number of samples, Xi denotes the actual
response of sample i, and Yi is the predicted response of sample i. The lower the RMSE,
the lower the prediction error. The correlation coefficient ranges from 0 to 1, with values
closer to 1 indicating a stronger correlation of the model. The results satisfy both the RMSE
and R2 requirements, demonstrating that the model effectively captures the relationship
between the input and output variables.

3.1. The BPNN Forecasting Model

The Back Propagation Neural Network (BPNN) is a widely utilized machine learning
algorithm for establishing predictive models. The critical components include defining the
model structure, activation function, loss function, and optimization algorithm, with the
objective of enhancing the prediction accuracy through iterative updating of the connection
weights and biases. The network architecture consists of an input layer, a hidden layer, and
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an output layer. In the current study, five control factors serve as the inputs, while two
responses are designated as outputs. The initial number of hidden layer nodes, denoted as
n, can be estimated using Equation (6) [17].

n =
(Number o f input nodes + Number o f output nodes)

2
+

√
Number o f training samples (6)

We set the number of training iterations to 1000. The default learning rate is 0.8. After
completing multiple training iterations, the prediction results were taken as the average
RMSE and R2, as shown in Table 2.

Table 2. Comparison of different models.

Forecasting
Model

BPN LSSVM RF

Thickness Roughness Thickness Roughness Thickness Roughness

RMSE 1.28 0.2217 1.7851 0.312 0.9151 0.1865
R2 0.8878 0.8585 0.8543 0.8295 0.9043 0.8878

3.2. The LS-SVM Forecasting Model

The Least Squares Support Vector Machine (LSSVM) is based on a loss function from
machine learning [35]. Within its framework, it incorporates two types of norms into the
objective function and replaces the in-equality constraints with equality constraints in the
SVM. Consequently, the loss function can use a system of linear equations that are derived
from the Kuhn–Tucker conditions for solution. For sample x, the prediction model f(x) can
be represented by the following equation:

f (x) =
N

∑
i=1

αiK(x, xi) + b (7)

where αi is the Lagrange multiplier,b is the constant, and N is the number of samples. xi is
the new input sample, and K(x, xi) is the Gaussian radial basis kernel function (RBF).

K(x, xi) = exp
[
−||x, xi||2/2σ2

]
(8)

where σ2 is the kernel parameter. The prediction results were taken as the average RMSE
and R2, as shown in Table 2.

3.3. The RF Forecasting Model

The Random Forest (RF) model is an ensemble learning method with high prediction
robustness and accuracy. After inputting a value, the RF model constructs multiple decision
trees. For each decision tree, the RF model randomly selects N samples with replacement.
The probability of each sample not being selected is (1 − 1/N)N , and when N is large
enough, approximately 37% of the samples will not be selected. The samples that have not
been selected are called out-of-bag (OOB) data. The OOB data can estimate the error of each
decision tree. The average error of K decision trees approximates the generalization error.
The prediction results of any decision tree are averaged or weighted-averaged to obtain
the final prediction result. When constructing the decision trees, the RF model randomly
segments selected features to avoid over-fitting. Given a training sample set S and a sample
feature vector dimension M, the primary variable is the number K of decision trees in the
model. This paper sets the number of decision trees to 300. The results in terms of the
RMSE and R2 are shown in Table 2.
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3.4. Comparison of the Different Models

When comparing the three prediction methods in Table 2, the RF model has the best
performance. It has the lowest error and the highest fitting accuracy, so the RF prediction
model is used as the fitness function for the optimization algorithm.

4. Multi-Objective Optimization Algorithm
4.1. Multi-Objective Optimization

The problem of multi-objective optimization is described as follows:

minF(X) = [ f1(X), f2(X), · · · , fm(X)]T

s.t. gj(X) ≤ 0, j = 1, 2, · · · , p
(9)

The function F(X) is called the objective function, which evaluates the performance
indicators of the design system; gj(X) is called the constraint function; and X is an n-
dimensional design variable. X = {} is called the feasible region of the above formula. In
practical engineering problems, the goal pursued by decision-makers is to simultaneously
optimize various performance indicators. The concept of Pareto optimality is widely ap-
plied to multi-objective optimization problems. Below is the definition of Pareto optimality
as follows.

Definition 1 (Pareto domination). Assume two decision vectors, such as
→
x = (x1, x2, . . . , xk)

and
→
y = (y1, y2, . . . , yk). Vector

→
x is said to dominate vector

→
y (denote as

→
x ≺ →

y ), when

∀i ∈ {1, 2, . . . , k} : fi

(→
x
)
≤ fi

(→
y
)
∧ ∃i ∈ {1, 2, . . . , k} : fi

(→
x
)
< fi

(→
y
)

(10)

Definition 2 (Pareto-optimal solution). Assuming
→
x ∈ X is a decision vector,

→
x is said to be a

Pareto-optimal solution when {
∄→y ∈ X

∣∣∣→y ≺ →
x
}

(11)

Definition 3 (Pareto-optimal set). Ps is the set of Pareto-optimal solutions:

Ps :=
{→

x ,
→
y ∈ X

∣∣∣∄→y ≺ →
x
}

(12)

Definition 4 (Pareto front). Pareto front P is a set of Pareto-optimal solutions for all objec-
tive functions,

Pf :=
{

f
(→

x
)∣∣∣→x ∈ Ps

}
(13)

4.2. The GOA

The grasshopper optimization algorithm (GOA) simulates the swarming behavior of
grasshoppers in nature and has been applied in practical scenarios. The solution is the
position of the grasshoppers in the GOA. Therefore, the mathematical formulation for the
i-th grasshopper position is given by

Xi = Si + Gi + Ai (14)

where Si simulates social interaction, Gi represents the influence of gravity, and Ai repre-
sents the influence of wind. Social interaction plays an important role in the movement of
grasshoppers, and the relationship between grasshoppers can be described as follows:

si = ∑N
i = 1
j ̸= i

s(dij)d̂ij (15)
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where N is the number of grasshoppers. dij is the distance between the i-th and j-th

grasshopper, calculated as dij =
∣∣xj − xi

∣∣, and d̂ij =
xj−xi

dij
is the unit vector of the distance

between the i-th and j-th grasshopper. s is a coefficient of social interaction. When s is
negative, it indicates mutual exclusion, and when s is positive, it indicates mutual attraction,
as defined in Equation (16):

s(r) = f e
−r
l − e−r (16)

where l is an attraction intensity parameter, and f is an attraction scale parameter.
The gravity force G is calculated as follows:

Gi = −gêg (17)

where g is the gravitational constant, and êg indicates a unity vector of g.
The wind advection A in equation (18) is given by

Ai = uêw (18)

where u is the wind force constant, and êw is a unity vector in the direction of wind. Thus,
Equation (14) can be rewritten with all components as follows:

Xi = ∑N
i = 1
j ̸= i

s(
∣∣xj − xi

∣∣) xj − xi

dij
− gêg + uêw (19)

When the grasshoppers reach the comfort zone, they still do not exhibit convergence.
In order to solve optimization problems and coordinate global and local optimization
processes, parameters are introduced to optimize each stage. The improved mathematical
model is as follows:

Xi = c

∑N
i = 1
j ̸= i

c
ubd − lbd

2
s(
∣∣xj − xi

∣∣) xj − xi

dij

+ T̂d (20)

where ubd and lbd are, respectively, the upper and lower bound in the d-th dimension. T̂d
is the position of the current optimal individual in the d-th dimension. c is the decreasing
coefficient of reducing the comfort zone. The parameter c is updated to reduce exploration
and increase exploitation in accordance with the number of iterations, as indicated in the
following equation:

c = cmax − t
cmax − cmin

T
(21)

where cmax = 1, and cmin = 0.00001. t indicates the current iteration, and T is the maximum
number of iterations.

4.3. The CLMOGOA

The parameter c plays a key role in the integrity of the multi-objective grasshopper
optimization algorithm (MOGOA). The parameter c linearly decreases in the initial stage
of the algorithm, resulting in an insufficient global exploration ability of the algorithm.
With the number of iterations increasing, the descent speed of the algorithm remains
unchanged, leading to the premature occurrence of local optimal values, and the rate of
convergence is relatively slow. To solve this problem, a curve function c(t) is proposed to
replace parameter c to balance the ability for global exploration and local development.
This function is defined as follows:

c(t) = cmax − t2 cmax − cmin
T2 (22)
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In Figure 5, the quadratic function c(t) depicted exhibits a decreasing trend over
time. During the initial iteration, c(t) changes slowly, facilitating the exploration of a local
optimal value that satisfies the specified conditions; after finding the local optimal value,
c(t) can quickly converge to the global optimal value to improve the operational efficiency.
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The MOGOA is susceptible to local convergence tendencies and a limited global search
capability in nonlinear optimization problems. While the Levy flight strategy improves
the algorithm’s ability to explore globally, it does not entirely mitigate the risk of local
optimization. To enhance the search ability, a novel Levy flight strategy is introduced in this
paper, modifying the step factor α from a static to a dynamic value. The revised strategy
aims to bolster the algorithm’s search effectiveness by adapting the step factor dynamically
during the optimization process. The definition is as follows:

α(t) =
t

Tmax
sinh

(
1 − t

Tmax

)
∗ r (23)

where r is an adjustable parameter. When r = 3.83, α(t) varies between 0 and 1, and the
Levy fight mechanism is enhanced to find the optimal value, as shown in Figure 6.
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Following the algorithm update, the Levy flight strategy is used to update the indi-
vidual position, which achieves the effect of jumping out of the local optimal solution and
expanding the search ability. The enhanced Levy fight strategy is incorporated, and the
location update method is as follows:

xt+1
i = xt

i + α(t)
φ ∗ µ

|v|
1
λ

(
xt

i − xbest
)

(24)

where xt
i indicates the position of the grasshopper in the current iteration number; xt+1

i
indicates the next position of the grasshopper; xbest is the current optimal solution; the
value of λ is 1.5; and µ and v follow a normal random distribution. The expression for φ is
as follows:

φ =

∣∣∣∣∣∣
γ(1 + λ) ∗ sin

(
π ∗ λ

2

)
γ
(

1+λ
2

)
∗ λ ∗ 2

λ−1
2

∣∣∣∣∣∣
1
λ

(25)

4.4. Analysis of the MOGOA and the CLMOGOA on Test Functions

Zitzler, Deb, and Thiele proposed a test function set for multi-objective optimization
problems known as the ZDT function [36]. It contains multiple test functions with different
characteristics, such as ZDT1, ZDT2, and ZDT3. In this section, the CLMOGOA was com-
pared with the MOGOA on benchmark test functions to evaluate the overall performance.
Inverted generational distance (IGD) was used to assess the convergence performance of
the algorithms, which is defined as follows:

IGD(P, P∗) =
∑x∈P∗ miny∈Pdis(x, y)

|P∗| (26)

where P∗ is a uniformly distributed set of points. P is the point set of the algorithm. dis(x, y)
represents the Euclidean metric of points (x, y) in P∗ and P. The lower the value of the IGD,
the stronger the convergence and the overall performance of algorithms.

We set the maximum number of iterations to 200, the number of populations to 20,
and the archive size to 100 in the test sets. Two algorithms were run independently 10 times
for statistics. A comparison of the Pareto-optimal front solution on different benchmark
functions is shown in Figure 7. The IGD performance of the two algorithms on different
benchmark functions is shown in Table 3. It can be observed that the Pareto-optimal front
solution of the CLMOGOA has better coverage than that of the MOGOA on all benchmark
functions, indicating the effectiveness of the improved algorithm, in Figure 7.

Table 3. Results in terms of the IGD on the test functions employed.

Algorithm MOGOA CLMOGOA

ZDT1
Average 0.2030 0.0288
Median 0.0408 0.0254

Standard deviation 0.2392 0.0199

ZDT2
Average 0.1718 0.0233
Median 0.0334 0.0186

Standard deviation 0.2510 0.0176

ZDT3
Average 0.2687 0.1810
Median 0.1810 0.0894

Standard deviation 0.2462 0.2257
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Figure 7. Best Pareto optimal front obtained by the multi objective algorithms on ZDT1, ZDT2, and
ZDT3. (a) The MOGOA on ZDT1. (b) The MOGOA on ZDT2. (c) The MOGOA on ZDT3. (d) The
CLMOGOA on ZDT1. (e) The CLMOGOA on ZDT2. (f) The CLMOGOA on ZDT3. The dots are the
optimal Pareto-optimal fronts. The solid lines are the true Pareto-optimal fronts of the test functions.

It can be seen from Table 3 that compared with that of the MOGOA, the IGD of
the CLMOGOA is lower on all three benchmark test functions, so better than that of the
MOGOA. Compared to the MOGOA, the CLMGOA has an enhanced ability to find Pareto-
optimal front solutions while also having higher convergence and coverage. Therefore,
this paper adopts the CLMOGOA to obtain the optimal process parameter combination for
rotary screen coating of structural plates in spacecraft.

4.5. The Result of Process Parameter Optimization

The entire optimization process is run in MATLAB 2023b. The RF prediction model
is used as the fitness function of the CLMOGOA to obtain the optimal process parameter
combination for the rotary screen coating process for structural plates in spacecraft. The
thickness of the adhesive layer is required to be between 0.1 and 0.12 mm. The smaller the
absolute value of the difference, the more precise the optimization result. The lower the
roughness, the more uniform the adhesive layer.

Objective function 1: Minimization of the absolute value of the difference

Minimize f1 = |RF_predict([x(1), x(2), x(3), x(4), x(5)])− 0.11| (27)

Objective function 2: Minimization of the roughness

Minimize f2 = RF_predict([x(1), x(2), x(3), x(4), x(5)]) (28)

The RF prediction model sets the number of decision trees to 300. The CLMOGOA
sets the maximum number of iterations to 200, the number of populations to 20, and the
archive size to 100. The Pareto optimal front solutions are shown in Figure 8. The optimal
combination of process parameters is presented in Table 4.



Actuators 2024, 13, 469 12 of 14
Actuators 2024, 13, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 8. Pareto-optimal front solutions. 

Table 4. The archive of the CLMOGOA. 

 
Control Factors Forecasting Values 

Screen 
Thickness (µm) 

Squeegee 
Hardness (A) 

Squeegee 
Pressure (N) 

Space 
(mm) 

Coating Speed 
(mm/s) 

Thickness 
(µm) 

Roughness 
(µm) 

Solution of the 
archive 

118.82 76.61 22.64 0.97 23.95 116.86 6.45 
101.76 74.23 39.45 1.26 16.15 109.99 5.5 

120 75.94 24.05 0.98 25.66 116.6 6.87 
104 74.57 39.89 1.25 15.98 109.76 8.33 

5. Conclusions 
An intelligent technology based on predictive models and optimization algorithms 

is proposed to solve the issue of there being numerous process parameters in rotary 
screen coating. According to numerous works in the literature and parameter character-
istics, five important process parameters were selected as the control factors, and the 
thickness and uniformity of the adhesive layer were selected as the response factors. In 
training BPN, LSSVM, and RF prediction models with experimental data, the RF’s pre-
diction results are the most accurate. Finally, the MOGOA was improved into the 
CLMOGOA from the aspects of convergence speed, search range, and local optimization. 
It was demonstrated that the CLMOGOA has better performance than that of the 
MOGOA. After obtaining multiple sets of optimal process parameters by combining the 
RF prediction model and the CLMOGOA, coating experiments were conducted on 
structural plates for spacecraft. The efficiency and quality of coating were improved, 
which is of great significance for the coating process for structural plates in aerospace. 
Compared to manual coating, this intelligent technology reduces the number of experi-
ments required. However, in order to obtain precise results, many experiments were still 
conducted. In future work, it will be necessary to obtain more accurate results using a 
smaller sample size. 

Author Contributions: Methodology, P.L.; investigation, Y.C.; data curation, Y.C.; writ-
ing—original draft, Y.G.; writing—review and editing, P.L. and Y.S.; supervision, P.L. and Y.S.; 
funding acquisition, X.C. All authors have read and agreed to the published version of the manu-
script. 

Figure 8. Pareto-optimal front solutions.

Table 4. The archive of the CLMOGOA.

Control Factors Forecasting Values

Screen
Thickness (µm)

Squeegee
Hardness (A)

Squeegee
Pressure (N)

Space
(mm)

Coating Speed
(mm/s)

Thickness
(µm)

Roughness
(µm)

Solution of
the archive

118.82 76.61 22.64 0.97 23.95 116.86 6.45
101.76 74.23 39.45 1.26 16.15 109.99 5.5

120 75.94 24.05 0.98 25.66 116.6 6.87
104 74.57 39.89 1.25 15.98 109.76 8.33

In Figure 8, when the screen thickness is 110, the squeegee hardness is 75, the squeegee
pressure is 40, the space is 1.26, and the coating speed is 16, the result of the algorithm is
optimal. This paper conducted three experiments on all of the parameter combinations in
the table, and the coating results were basically consistent with the optimization results.
A mounting test was conducted on the coating effect, and there was no overflow or
loose installation. After observing the actual production for four days, the coating effect
met the production requirements, improved the coating efficiency, and reduced the cost
of mounting.

5. Conclusions

An intelligent technology based on predictive models and optimization algorithms is
proposed to solve the issue of there being numerous process parameters in rotary screen
coating. According to numerous works in the literature and parameter characteristics, five
important process parameters were selected as the control factors, and the thickness and
uniformity of the adhesive layer were selected as the response factors. In training BPN,
LSSVM, and RF prediction models with experimental data, the RF’s prediction results
are the most accurate. Finally, the MOGOA was improved into the CLMOGOA from the
aspects of convergence speed, search range, and local optimization. It was demonstrated
that the CLMOGOA has better performance than that of the MOGOA. After obtaining
multiple sets of optimal process parameters by combining the RF prediction model and
the CLMOGOA, coating experiments were conducted on structural plates for spacecraft.
The efficiency and quality of coating were improved, which is of great significance for
the coating process for structural plates in aerospace. Compared to manual coating, this
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intelligent technology reduces the number of experiments required. However, in order to
obtain precise results, many experiments were still conducted. In future work, it will be
necessary to obtain more accurate results using a smaller sample size.
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