
Citation: Oveisi, A.; Gogilan, U.;

Keighobadi, J.; Nestorović, T. State
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Abstract: In light of the complex behavior of vibrating structures, their reliable modeling plays a
crucial role in the analysis and system design for vibration control. In this paper, the reverse-path
(RP) method is revisited, further developed, and applied to modeling a nonlinear system, particularly
with respect to the identification of the frequency response function for a nominal underlying linear
system and the determination of the structural nonlinearities. The present approach aims to overcome
the requirement for measuring all nonlinear system states all the time during operation. Especially in
large-scale systems, this might be a tedious task and often practically infeasible since it would require
having individual sensors assigned for each state involved in the design process. In addition, the
proper placement and simultaneous operation of a large number of transducers would represent
further difficulty. To overcome those issues, we have proposed state estimation in light of the
observability criteria, which significantly reduces the number of required sensor elements. To this
end, relying on the optimal sensor placement problem, the state estimation process reduces to the
solution of Kalman filtering. On this ground, the problem of nonlinear system identification for
large-scale systems can be addressed using the observer-based conditioned RP method (OBCRP)
proposed in this paper. In contrast to the classical RP method, the current one can potentially handle
local and distributed nonlinearities. Moreover, in addition to the state estimation and in comparison
to the orthogonal RP method, a new frequency-dependent weighting is introduced in this paper,
which results in superior nonlinear system identification performances. Implementation of the
method is demonstrated on a multi-degree-of-freedom discretized lumped mass system, representing
a substitute model of a physical counterpart used for the identification of the model parameters.

Keywords: nonlinear system identification; Kalman filter; reverse-path method; structural vibration;
acceleration surface method; uncertainty quantification

1. Introduction

The modeling of complex, large-scale vibrating structures plays a crucial role in the
overall procedure of their design. This is particularly relevant for lightweight structures that
are inherently prone to vibrations. As part of the overall design, special attention should be
paid to vibration suppression and control. Different fields employ applications of model-
based vibration control technologies: automotive, aerospace engineering, wind engineering,
and many others. Model development, as an inevitable step in the overall model-based
vibration control procedure, can be based on different assumptions; in practice, it is mainly
based on the assumption of linear system behavior.

A typical linear active vibration control procedure for real applications consists of
nonparametric/parametric modeling, model-based (or model-free) control synthesis, and
finally, experimental evaluation of the closed-loop system performance. The standard
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modeling approach, usually implemented in industrial problems, is based on finite element
analysis (FEA) in combination with model order reduction [1], yet this approach may often
suffer from a mismatch between the model and the real structure, which in turn affects the
performance of the control system.

On the other hand, a two-step modeling paradigm composed of a nonparametric
model of the system in the time/frequency domain together with the appropriate use of
system identification methods is an alternative to the FEA approach. Since this paradigm
is case-dependent, it is expected to achieve a better match in modeling and consequently
better control authority than the FE-based approach alone. It should be pointed out that
the application of analytical and semi-analytical methods in the modeling phase is not
discussed in this paper since they are mostly limited to simple geometries. Similarly, the
control synthesis and experimental evaluation of the closed-loop system in real-time are
out of the scope of this paper, and interested readers may refer to [2,3].

In order to generalize the aforementioned two-step modeling paradigm to nonlinear
systems and their model-based control, several approaches are proposed in the literature
based on polynomial nonlinear state space (PNLSS) system identification [4] and its further
variants [5–9].

In this paper, we propose and implement a methodology based on the two-step model-
ing paradigm: the design of an underlying linear model (ULM) from system identification,
augmented by incorporating a nonlinear dynamics representation aimed at generalization
to a nonlinear setting. The following section represents an overview of the steps in the
proposed methodology and outlines the contributions with respect to previous approaches.

2. Methodology Outline and Contributions

This section presents an outline of the generalized methodology proposed in this
paper for nonlinear systems modeling based on the two-step paradigm. The methodology
employs a partly known model structure based on particular case-dependent system
physics and the identification of system parameters. The implementation of the general
approach outlined in this section and detailed in the subsequent sections is demonstrated
on a substitute model of a multi-degree-of-freedom discretized system, representing the
counterpart of a physical system with nonlinear properties used for identification purposes.

In the context of the proposed methodology, first the ULM is acquired using grey-box
system identification in the frequency domain, where the model states are brought into
modal displacement/velocity coordinates. An important constraint in this phase is to
keep the excitation level small enough such that the nonlinearities within the structure
are not invoked. Since this requirement over the excitation level is a non-trivial task
in the experimental situation, we propose using the multi-input/multi-output (MIMO)
robust Local Polynomial Method (LPM) based on the multiple realizations of the periodic
random-phase multi-sine excitation [10–12]. Based on the calculated contribution of the
nonlinearity (through the total stochastic variance estimation) from the robust LPM, the
linearity assumption of the spectral analysis can be accordingly evaluated. Additionally,
sine-sweep experiments for the time–frequency analysis based on the Morlet wavelet
transformation are employed to validate our observation from the LPM and examine the
smoothness of potential nonlinearity in terms of system states. The interested reader may
refer to [13] for the theoretical discussion; furthermore, its application in physical systems
is reported in [14,15].

One should note that the direct use of the conventional H1 and H2 methods (see [16]
regarding the experimental modal analysis) for a nonlinear system at high excitation levels
will result in a distorted estimation of the frequency response functions (FRFs). These
methods calculate the modal parameters based on the assumption of an uncorrelated noise
contribution. This assumption is subjected to evaluation in the scope of the conditioned
version of H1 and H2 in the RP method (also referred to as Hc1 and Hc2 in the literature [17]).

Next, the subspace system identification approach is used to parameterize the linear
FRFs in the form of continuous and discrete state space systems [18]. This linear model
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is the basis for designing a state estimation mechanism that would capture the system
dynamics later, even in the presence of nonlinearity. This extension is the gateway for
moving from the linear model set to a nonlinear one.

The RP method, as part of the focus of this paper, is revisited since it can accommodate
the contribution of nonlinearity in extracting the modal parameters of the nonlinear system,
while the FRFs of the system obtained from H1 and H2 are severely distorted. Mathemati-
cally speaking, the RP method works on retrogressive input/output calculations, where
for an analytical nonlinear ordinary differential equation of motion, first the spectra of
the system states, the input, and outputs are calculated. Then, the input is reconstructed
backward from these transformed signals. Alternative fundamental approaches are also
proposed in the literature [19–24].

Richards and Singh [17] pointed out one of the main drawbacks of the RP method,
which requires knowledge of the nonlinear function. However, since then, the literature
has become enriched with methods for characterizing nonlinearity in terms of system
states. A comprehensive explanation of this line of characterization methods is wisely
reviewed in [25,26]. For instance, in a local sense, the restoring force method (also called
the acceleration surface method (ASM)), initially proposed by Masri and Caughey [27] and
later brought to attention by Worden [28], predicts the parameterless curve of nonlinearity
by using sensor elements around the predicted nonlinearity location. The application of
this approach is extensively reported in practice, e.g., [29].

On the other hand, in distributed nonlinearities such as geometrical ones due to higher-
order strain terms (e.g., quadratic, cubic terms), characterization of the nonlinear function
in terms of the modal displacement (stiffness) and modal velocity (damping) is tackled
by analytical and experimental modeling [23,30]. As long as the characterization step is
performed in a local and distributed sense, the parameterization of the nonlinearity falls
within the scope of the CRP and orthogonal RP (ORP) methods. It should be noted that,
based on the preliminary results from the ASM and semi-/analytical modeling methods,
the proposed technique in this paper does not necessarily require measurements from the
sensors around the nonlinearity. This is explained in the course of the paper. However,
in short, several pairs of individual reconstructed system states (indicating a DoF in the
semi-physical domain) are involved in the detection process of any nonlinear interaction.
Finally, following the observer-based conditioned RP (OBCRP) method proposed in this
paper, a significant reduction in the number of sensor elements is achieved. This reduction
directly alleviates the issues that may arise due to the change in structural mass distribution
caused by the addition of several accelerometers required by the CRP/ORP method, not
to mention the requirement for costly data acquisition (DAQ) devices for post-processing
analog signals.

The relevance of the proposed OBCRP method in the active control of nonlinear
structures lies in the model that is available during the state/output feedback control
synthesis process. In this regard, unlike the robust control methods, i.e., the multi-objective
classical H∞ controller and µ-synthesis [31], where the controller guarantees the stability
of the closed-loop system based on the worst-case analysis, the generated model in this
paper can serve as a less conservative alternative. In other words, instead of sacrificing the
performance of the system for robustness in the presence of large modeling uncertainties,
by bringing the nonlinearity into the system model, the nonlinear controller is invoked
only when the nonlinearity in the system response starts to appear. It should be noted that
the reason for not separating the output feedback control scenario from the state feedback
in nonlinear settings is due to the separation principle, which can be fulfilled under some
reasonable assumptions [32]. In other words, as soon as the nonlinear model is constructed
from the combination of (1) nonparametric modeling in the frequency domain, (2) grey-
box linear subspace system identification, (3) state observation using Kalman filtering,
(4) nonlinearity characterization from the estimated system states (with semi-physical
interpretations), and (5) quantification using the OBCRP method, a state feedback control
system can be designed using some of the available standard control methods, like sliding



Actuators 2024, 13, 142 4 of 26

mode control or feedback linearization. This controller may then be augmented by an
extended high-gain observer proposed in [32] in order to enhance the state estimation
accuracy by having the nonlinearity quantified. We believe that this new closed-loop
smart structure design is a promising route toward a less conservative and more practical
alternative for large-scale industrial systems where the linearity assumption is not valid to
a large operational extent.

In summary, the following contributions are proposed in this paper:

(1) The introduction of frequency-dependent weighting in the calculation of the nonlinear
coefficients in the RP method is motivated by their spectral dependencies. Accordingly,
the estimations are polluted by artifacts propagated from the inaccurate estimation of
the ULM, which results in a complex (non-real) estimation of the physical variables
(the coefficients). The weighting proposed by Muhamad et al. [24] based on the
reciprocal of the magnitude of the imaginary part of the estimated spectra is used
as a background. Such weighting functions suppress the contribution of highly
distorted parts of the estimated data (for the nonlinear coefficients), i.e., parts of
the estimated data that have large imaginary parts. We have noticed that not only
the contribution of the frequency bandwidth of the data with large imaginary parts
should be suppressed in estimating these coefficients, but also a frequency window
around that bandwidth should be weighted properly. Additionally, it is observed
that the normalization of the frequency-dependent weighting function between zero
and one is beneficial in the correct estimation of the coefficients. To this end, it is
proposed to employ the normalized envelope of the imaginary part based on the
Hilbert finite impulse filter as a new weighting function. It should be noted that we
have abandoned the minor revision explained before on the recursive nature of the
estimation of the coefficients [24] because it induces negligible improvements at the
cost of the enormous computational burden for each unknown coefficient.

(2) As stated previously by Worden [33], the concepts in nonlinear dynamics are often
implemented for systems with low modal density, e.g., lumped parameter systems,
since in practice, for large-scale continuous structures, the order of involved linear
and nonlinear dynamics may be huge. Consequently, identifying appropriate mea-
surement protocols to detect the active dynamics out of several hundred of them
is a challenging task [34]. Some real-time implementations of the CRP method are
tackled in the literature [23,24,35]. In this paper, based on the grey-box frequency
domain linear subspace system identification, the dynamics of a continuous system is
first represented in modal coordinates, which can be represented subsequently by a
lumped parameter system of limited DoF for a specific operational bandwidth. The
linear grey-box modeling process may result in a biased estimation of the ULM by
neglecting the contribution of the unmodeled dynamics that may occur outside of the
bandwidth of interest [36]. This tradeoff between the model order/model structure
and the matching quality between the grey- and black-box models is discussed in
detail in [37]. Then, Kalman filter state estimation is employed in order to reconstruct
the system states even in nonlinear settings. It is worth mentioning that the state esti-
mation mechanism should possess fast dynamics to accommodate the nonlinearities.
Accordingly, in the formulation of the non-steady-state Kalman filtering, the contribu-
tion of the nonlinearity is addressed by considering large values for the covariance
matrix associated with the process noise signal. This signal in the context of control
systems can be classified as the source of matched/mismatched disturbances that
invoke nonlinear behavior in the first place. Consequently, the requirement for a large
number of sensors to capture a handful of states is relieved in this paper.

(3) To address the presence of distortion in FRFs, a detection phase is performed based
on the robust LPM, followed by employing the characterization results of closed-form
modeling of geometrically nonlinear systems. As shown in the paper, the latter may
be replaced in local nonlinearities by the ASM. This combination follows the well-
known three-step paradigm for detecting, characterizing, and quantifying linearity in
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structural dynamics, as discussed in [25]. For this purpose, in contrast to the various
forms of RP methods in the literature where the input signal is merely a Gaussian
random variable, we have used single-reference random-phase multi-sine excitation.
The advantages of this decision are discussed in the course of the paper. In short,
it improves the estimates of the dynamic compliance functions and the coefficients
of the analytically predicted (characterized) nonlinear functions. Further remarks
are discussed regarding the justification of the use of spectral conditioning and the
computational effort in the case of the OBCRP method. In order to highlight the
sensitivity of the method in terms of measurement noise, a simulation problem is
carefully designed.

The rest of the paper is organized as follows: Section 3 provides an overview of
the OBCRP approach. It involves several steps, presented in detail in corresponding
subsections. In addition, a concise representation of the proposed OBCRP method in the
form of a ready-to-use algorithm is presented, followed by the technical definition of the
random-phase multi-sine and its application in the robust LPM. The state observation
problem based on non-steady-state Kalman filtering and covariance resetting in continuous
and discrete form is presented subsequently in the context of the OBCRP method, with
some implementation modifications based on the transition matrix approach and square
root filtering. Section 4 presents the implementation results for a multi-degree-of-freedom
discretized lumped mass system. Characterization of the system nonlinearity is performed
based on the ASM and OBCRP procedures, and the results are documented accordingly.
Final remarks and the conclusion are presented in Section 5.

3. Methodology of the Observer-Based Conditioned Reverse-Path Approach

Since in the present approach the OBCRP method is aimed at vibration control of
dynamic systems, a nonlinear governing equation of motion in matrix form is selected as a
starting point for the grey-box model representation:

M
..
x(t) + C

.
x(t) + Kx(t) +

n

∑
j=1

Ajyj(t) = f (t) (1)

where M ∈ RN×N , C ∈ RN×N , and K ∈ RN×N are the mass, damping, and stiffness
matrices of the final lumped parameter model, respectively. The constant matrix Aj en-
compasses the unknown coefficients of the nonlinearity. yj represents the appropriate
mathematical functions describing the nonlinearity at each junction. The analytical Fourier
transformation (FT) of Equation (1) results in:

B(ω)X(ω) +
n

∑
j=1

AjYj(ω) = F(ω), (2)

where B represents the unknown ULM to be extracted from the distorted frequency
domain data.

3.1. Localization and Characterization of the Nonlinearity Using the Acceleration Surface Method

Since the different variants of the RP method do not detect the local nonlinearity
and do not yield the appropriate mathematical function to model the nonlinearity, the
ASM is suggested. Its application allows for the determination and characterization of
linear/nonlinear behavior by visualizing the relative accelerations of discrete masses
in a substitute lumped mass model with respect to their displacement–velocity surface.
A broader analysis of the graphical representation allows for representing the detected
nonlinearity in the form of a mathematical function. Using the RP methods, the nonlinear
coefficients of the mathematical function may be calculated afterwards.
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The ASM represents a variant of the restoring force surface (RFS) method [38], facili-
tated by Newton’s second law of motion [28], applied to the discrete masses of the lumped
mass model:

np

∑
n=1

mi,j
..
xn + gi

(
x,

.
x
)
= pi, (3)

where np is the total number of DOFs in the system; mi,j represents the elements of the mass
matrix; x,

.
x, and

..
x are the displacement, velocity, and acceleration vectors, respectively; g

is the restoring force vector; and p is the external force vector.
While the RFS method is generally applied to estimate the nonlinear model parameter,

the ASM focuses on detecting and characterizing the local nonlinearity in the system [38].
Therefore, the term gi

(
x,

.
x
)

of the ASM only considers the inertia and restoring forces,
which are directly related to the nonlinearity of the system, and allows for simplification of
Equation (3).

mi,i
..
xi + gi

(
xi − xj,

.
xi −

.
xj
)
≈ pi (4)

If the masses under consideration are not excited, the force pi can be neglected in
Equation (4). Since the mass has only a scaling function and does not influence the
characterization of the nonlinearity, the mass in Equation (4) can also be ignored. The
resulting equation of the ASM becomes:

gi
(
xi − xj,

.
xi −

.
xj
)
≈ − ..

xi (5)

Based on the fundamentals of Equation (5), the acceleration values can be plotted
against the velocity and displacement values, forming a corresponding spatial surface.
Cross-sections along the velocity and displacement directions are created for the nonlinear
analysis. Using a graphical representation of the acceleration–displacement dependency,
the smoothness of the nonlinearity is approximated by fitting the corresponding mathe-
matical function with the appropriate order. In this paper, any damping nonlinearities
associated with the observed velocity terms are neglected due to the complexity of the
problem. In a subsequent step, a time–frequency analysis will be conducted to detect the
range of the linear/nonlinear behavior and provide a first impression of the nonlinear
behavior of the system.

3.2. Excitation Signal

In system identification, the excitation signal must fulfill the “being exciting enough”
requirement. From that point of view, the multi-sine signal is the primary candidate for the
single-reference excitations throughout the nonlinear parametrization process. A multi-sine
signal, regardless of its phase, is a periodic time history for which the amplitude spectrum
can be freely set and consequently may be represented by a Fourier series of a trigonometric
sum [39]. As pointed out in [5], due to its appearance, it may be interpreted as a pseudo-
random signal. However, the amplitude spectrum of a multi-sine is deterministic. The
advantages of using multi-sine in nonlinear system identification in comparison to zero-
mean Gaussian excitation are its periodicity, broad-band behavior with an optimizable crest
factor [40], and elimination of leakage effects (after transient). In combination with [12],
multi-sine excitation can be used to calculate the covariance of the noise.

The multi-sine signal is the summation of sinusoidal harmonics with arbitrary ampli-
tudes, phases, and frequencies.

x(t) =
ns

∑
k=1

Uksin(2π f kt + φk) (6)

where Uk, fk, and φk are the coefficients of amplitude, frequency, and phase vectors,
respectively, and ns is the number of sinusoids. Using Euler’s formula and having in mind
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that the sinusoid can be presented as a linear combination of sine and cosine, the sinusoid
of Equation (6) can be formulated as an imaginary part:

x(t) =
ns

∑
k=1

Uke(2π f kt+φk)i. (7)

Using discrete Fourier transformation, Equation (7) can be presented in the form
of Equation (8), where fk is substituted by the maximum frequency fmax divided by the
number of frequency components ns :

u(t) = n−1/2
s

ns

∑
k=−ns

Uke(2πk fmaxt/ns)i. (8)

with Uk = U−k = U(k)eiφk . The uniformly distributed random process is realized by
independent phases φk over the [0, 2π) range.

3.3. The Fast Method

The fundamental idea of this approach is to measure the nonlinear system response
under the odd random-phase multi-sine excitation, where some of the in-band harmonics
known as detection lines (selected randomly) are omitted. Then, the detection process
is performed by examining the spectrum of the response at the detection lines, which
at the same time provides an approximate estimation of the stochastic nonlinearity on
neighboring lines [41]. As pointed out in [42,43], impurities in input spectra may jeopardize
the estimation quality of the nonlinearity contribution since only a polluted measure of
the actually implemented input signal is available. The fast method starts by grouping
the excited lines, also known as the random harmonic grid. Then, the designed periodic
excitation drives the nonlinear system for two or more consecutive periods, producing the
steady-state response of the system. Finally, the variance of the process and measurement
noise and the variance of the stochastic nonlinear distortion are calculated following
Schoukens et al. [44] (pp. 200–206). This procedure is briefly explained in Figure 1.
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Figure 1. Spectrum of the odd-random excitation input signal and the spectrum of the output signal
with detection lines (red) and neighboring lines (green).

In Figure 1, the spectrum of the odd-random multi-sine (also random-phase) input
signal where the detection lines are presented in grey color is shown on the left. Accordingly,
each group includes a random selection of odd lines, which are activated within the multi-
sine harmonic grid. If the system were linear, it would be expected to acquire only the
excited lines (black arrows) in the spectra of the response. However, the spectrum of the
unknown odd and even nonlinear distortion is detectable in the right-hand side response
by red and green colored arrows, respectively. Consequently, the variance of the odd/even
nonlinearities can be quantified. In contrast, the noise variance can be calculated using the
non-periodic nature of the noise over repeated periods.

3.4. The Algorithm of the CRP Method

The conventional spectral analysis and coherence estimation are based on the orthog-
onality assumption of the normal modes, which is not satisfied in the nonlinear setting.
Accordingly, the orthogonal decoupling based on the mode shapes is lost once the system
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possesses non-proportional damping, mode interaction, and nonlinear modes [40]. In
contrast, the CRP method preserves the ease of implementation similar to classical spectral
analysis to some extent. It also provides an intuitive interpretation of continuous nonlin-
ear mechanical systems in terms of their ULM’s system states. Owing to these features,
we believe the family of RP methods deserves a broader currency than they have in the
literature. Technically, other than the unknowns B and Aj, the rest of the parameters in
Equation (2) are known in real-time discrete measurements using fast FT (FFT) over states
and input. However, in the context of CRP/ORP methods, the states are assumed to be
known. Nevertheless, due to this operation, instead of X/Y in the classical notation of
CRP/ORP methods, X̂/Ŷ are utilized, where the hat accent (.̂) indicates the estimation
of the associated variable since in practice only the estimation could be available. For
concision purposes, the details of the CRP algorithm are not rewritten here, and the in-
terested reader may find the description of the method in [17]. Instead, the CRP method
is brought into a practically tractable form of Algorithm 1. Before presenting Algorithm
1, and for the sake of completeness, the theory behind the fourth step of the algorithm is
briefly discussed. Accordingly, the spectra of the estimated states should be iteratively
decoupled from the known analytical nonlinear functions’ spectra. To this end, we are
interested in the calculation of the uncorrelated component of the spectra of the estimated
states indicated as X̂(−1:n), which is obtained by subtracting the contribution of the spectra
of uncorrelated estimated nonlinearity iteratively, i.e., Ŷj(−1:j−1) [17]:

X̂(−1:n) = X̂ −
n

∑
j=1

LjX̂Ŷj(−1:j−1) (9)

where LjX̂ is the conditioned estimate of FRF calculated as:

LT
jX̂ = G−1

jj(−1:j−1)GjX̂(−1:j−1), (10)

while Gji specifies the cross-power spectral density between Ŷj and Ŷi.

Algorithm 1 Summary of the CRP method

Step 1. Input excitation design: Design the input excitation signal, i.e., a Gaussian random signal
or a random-phase multi-sine.

Step 2. Real-time experiments and state estimation: Apply the excitation signal f to the system
and acquire the system output while reconstructing the system states x̂ as described in
Appendix A.

Step 3. Spectral operation: Perform spectral analysis to calculate GX̂X̂ , GFF, GFX̂ , GX̂F, Gij, GiX̂ ,
GX̂i, GiF, and GFi from the time–domain data of x̂, ŷi, ŷj, and f . (In the context of this
paper, the auto-/cross-power spectral density estimates of GX̂X̂ , GFF, GFX̂ , GX̂F, Gij, GiX̂ ,
GX̂i, GiF, and GFi are calculated by employing Welch’s overlapped segment averaging
estimator (see [45], pp. 910–913)).

Step 4. Decorrelation step: Calculate the uncorrelated PSD of the matrices in Step 3 by following
the equation for all r = 1, .., n iteratively:

Gpq(−1:r) = Gpq −
r

∑
k=1

Gpk(−1:k−1)G
−1
kk(−1:k−1)Gkq(−1:k−1),

where p and q are replaced with X̂, F, Ŷj, and Ŷi.
Step 5. Condition spectral estimation of FRFs: Calculate Hc1 and Hc2 as

HT(ω) : Hc1 = G−1
FF(−1:n)GFX(−1:n),

HT(ω) : Hc2 = G−1
XF(−1:n)GXX(−1:n),

based on the decorrelation process of Step 4.
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Algorithm 1 Cont.

Step 6. Spectral estimation of nonlinear coefficients: Since the forcing matrix in Equation (1) is not
fully populated (single-reference modal analysis), the iterative procedure of spectral
extraction of the nonlinear coefficients is performed as follows:
for i = 1 . . . s

ÂT
j (ωi)HT(ωi) = G−1

jj(−1:j−1)(ωi)
{

GjF(−1:j−1)(ωi)HT(ωi)− GjX(−1:j−1)

−
n
∑

k=j+1
Gjk(−1:j−1)(ωi)ÂT

j (ωi)HT(ωi)

}
,

end
assuming that G−1

ij(−1:0)(ωi) = G−1
ij (ωi), obtained from Step 3, with ÂT

j (ωi) being the
frequency-dependent estimation of the constant unknown Aj. The iterative process of
Step 6 starts from j = n and works backwards to j = 1, while in each step (j), the spectral
estimation of ÂT

j (ωi) of previous step (j + 1) is used in the last summation operation of
the right-hand side of the equation. Also, s is the number of frequency domain samples.

Step 7. Spectral mean operation: A scalar estimation of the nonlinear coefficients (Âj) from the
spectral estimation ÂT

j (ωi) of Step 6 is calculated as:

ϑ̂ =
∑s

i=1 W(ωi)ϑ̂(ωi)

∑s
i=1 W(ωi)

,

where W(ωi) is the spectral weighting explained in Section 3.1. and ϑ̂(ωi) is the
estimated values of the unknown elements of ÂT

j (ωi).

Remark 1. Welch’s technique has a small variance in the estimated periodogram by satisfying
the wide-sense stationary assumption of the signal. This is achieved by overlapping the separated
segments of the signal time series, augmented with a Hamming window.

3.5. Spectral Mean Estimation

As pointed out in [17] and shown in Step 7 of Algorithm 1, the unknown coefficients
of the known analytical nonlinear functions are obtained in the frequency domain. Ad-
ditionally, the coefficient spectra are severely distorted at frequencies close to a natural
frequency, which significantly reduces the estimation quality. Moreover, the coefficient
spectra are obtained as a complex value. The biased estimation of the coefficients can be
reduced by using the weighting function W(ωi), and as recalled from [24], this weight-
ing can be selected as W1(ωi) = 1/

∣∣imag
(
ϑ̂(ωi)

)∣∣, where imag(.) is the imaginary part
of the spectrum borrowed from MATLAB notation and |.| indicates absolute value. This
weighting is justified by pointing out that the imaginary part of the estimation spectrum
must be set to zero due to a lack of physical sense. Although the improvements in the
estimation performance using the weighting in [24] are undeniable, we have observed that
if the bandwidth of interest encompasses several close natural frequencies, the fluctuations
of the imaginary part can be high and wide-band. Additionally, if the imaginary part of the
estimated spectra is zero for some frequencies, then W1(ωi) is undefined. Consequently,
not only the data around the natural frequencies are unreliable in the estimation, but also
a wider frequency range should be weighted. More importantly, if the oscillation of the
imaginary part is so high that it passes the zero axis, then the calculated mean value based
on W1(ωi) is wrongly weighted (in addition to the problem of one over zero). In order to
solve this issue, we propose using an alternative weighting obtained from Algorithm 2.
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Algorithm 2 Enhanced weighting procedure

Step 1. Signal envelope: Calculate the analytic signal for the imaginary part of the estimation
spectrum of ϑ̂(ωi). This operation is performed by filtering imag

(
ϑ̂
)

with the use of a
Hilbert finite impulse filter. Then, the envelope is obtained from the magnitude of the
analytical signal.

Step 2. Detrending the calculated envelope: Bring the calculated envelope to the positive
amplitude range to prevent any wrong weighting. This operation can be easily performed
by adding the absolute value of the minimum of the envelope to the envelope itself.

Step 3. Envelope normalization: Because of Step 2 of Algorithm 2, the problem of zero-passing
in [24] will be solved. However, wide-band distortion can only be addressed if a broader
band of distortion is weighted less. To this end, the detrended envelope is normalized
between zero and one, referred to as Wnenv(ωi).

Step 4. Weighting step: Calculate the final weighting for Step 7 of Algorithm 1 as

W2(ωi) = (1 − Wnenv(ωi))
δ,

where the integer δ ≥ 1 is used to reduce the effect of the imaginary part even more.

4. Implementation of the OBCRP Method

The OBCRP method is implemented using the example of a multi-DoF mass–spring–
damper system shown in Figure 2. The system consists of five masses mi connected
with stiffness elements ki and damping elements ci, where index i = 1, . . . , 5 serves as a
placeholder for the number of each component, which denotes the location in the system.
Nonlinear stiffness elements are added for the nonlinear description of the system.
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Figure 2. A substitute lumped mass discrete model with multi-degree-of-freedom.

In this example, the total DoF is N = 5.
..
x(t),

.
x(t), and x(t) are the acceleration,

velocity, and displacement vectors of the masses, respectively. As shown in Figure 2, only
mass m1 is excited, and the exciting vector f may not be fully populated. It is clear from
the controllability criteria that having a non-fully populated input should be justifiable. In
other words, if the excitation signal in the nonlinear system identification phase is unable
to entreat some of the dynamics of the system in the bandwidth of interest, then it is trivial
not to be able to capture the associated nonlinearities for those specific DoFs. So, the design
of an appropriate excitation signal is an essential part of the ASM. System parameters are
shown in Table 1.

For the application and performance of the OBCRP method, mass m1 of the system
is excited by a multi-sine excitation denoted as a red arrow in Figure 2. The reasons
for selecting this excitation signal and the principles of multi-sine signals are explained
in Section 3.2. In this example, the displacement, velocity, and acceleration of masses
m1 and m5 are acquired as output values, which are shown as green arrows in Figure 2.
Kinematical values of the masses m2, m3, and m4, denoted as black arrows, are estimated
with the Kalman filter as a part of the OBCRP method, detailed in Appendix A.
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Table 1. Parameters of the system in Figure 2.

Parameter m1 m2 m3 m4 m5
value [kg] 228 90 209 218 230

Parameter k1 k2 k3 k4 k5 k6 k7 k8
value

[N/m] 88,418 80,838 142,189 177,635 303,036 555,131 139,294 224,214

Parameter c1 c2 c3 c4 c5 c6 c7 c8
value

[Ns/m] 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.2

Parameter
unit

α1
[MN/m2]

α2
[MN/m2]

β1
[MN/m3]

β2
[MN/m3]

γ1
[MN/m5]

value −0.5 0.1 3 −0.2 4

4.1. Time-Frequency Analysis

The nonlinearity detection starts with performing the time–frequency analysis based
on Morlet wavelet transformation. For the mechanical system in Figure 2, the input/output
data is first obtained from the single-reference excitation over m1, while the measurements
are collected from m1 and m5. Assuming that knowledge regarding the presence of nonlin-
earity is unavailable, two sets of simulations based on two excitation levels are performed.
For this purpose, the system is excited by a chirp signal that sweeps

[
0.1 14

]
Hz at a

0.2085 Hz/min rate. For the sake of briefness, the time history of the excitation and system
response is suppressed here.

Figure 3 represents the time–frequency analysis of the system presented in Figure 2.
At a lower excitation level, it can be observed that the spectrum of the output signal (m1) is
almost uniform, indicating the negligible effect of the nonlinearity. Here, the result for the
DoF of m5 is suppressed since it does not provide additional insight into the nonlinearity
behavior. However, if the operational range of the system is at a high excitation level, it
is clear from the second column of Figure 3 that the nonlinearities are invoked. To make
the contribution of each mode clear, the frequency response function of the ULM (black
line in the left part of the figures) is augmented with wavelet-transformed data from the
output. Based on the output of m1 for high excitation level, three main distortions are
detected at the three fundamental natural frequencies of the system. However, some shifts
can be seen between the center of the distortion and the natural frequency value due to the
hardening behavior. Additionally, the presence of multiple harmonics of the fundamental
natural frequencies is observed by looking at the time–frequency analysis performed for
output m1 in dB scale for a broader frequency range of

[
0 100

]
Hz. The distributed

spectrum of the signal energy content in this subplot indicates energy transfer from the
lower frequencies to the higher ones. It is trivial that mode interaction may happen in this
case if the simulation model has natural frequencies at those high frequencies. This kind of
interaction in real-time experiments is thoroughly investigated in terms of nonlinear normal
modes (NNMs) by Kerschen et al. and Peeters et al. [46,47]. The presence of distortions
emphasizes the necessity of using nonlinear approaches such as the OBCRP method to
extract the dynamics of the system. Comparing the results of the transformed data in
Figure 3 for m1 and m5, it can be concluded that the nonlinear contribution associated with
the fundamental natural frequency propagates over the DoFs of the system; for instance,
looking at the time–frequency content of m5 while noting that it is not directly connected
to any nonlinear function. Moreover, compared to the literature results for nonsmooth
nonlinearities, e.g., SmallSat spacecraft in [48], it is clear that the nature of the nonlinearities
is smooth.
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Figure 3. Wavelet-transformed output signal on a non-logarithmic scale, obtained for different values
of excitation amplitudes measured at different mass positions.

4.2. Implementation of the Acceleration Surface Method

Although the presence of nonlinearities and their smoothness are detected in
time–frequency plots, it is difficult to interpret any spatial information from the analy-
sis of the IO data in Figure 3. In the scope of this paper, any damping nonlinearities
associated with the observed modal velocity terms are neglected due to the complexity
of the problem. Assuming that the nonlinearity information is unknown, the ASM is
employed to qualify the nonlinear interactions within the structure.

After solving the linear eigenvalue problem for the system in Figure 2 for the known
ULM and extracting the mode shapes, it is observed that the dominant frequency range for
high vibration amplitudes appears in the range of

[
3.1 4.2

]
Hz. Therefore, a sine sweep

excitation with an amplitude of 2500 N is applied to the structure, which is 500 s long.
The resulting acceleration surface of the masses around the first junction is visualized in
Figure 4.
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The choice of excitation frequency range for the chirp signal is a process that is per-
formed by examining the normalized eigenvectors of the ULM. The excitation frequency
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range should encompass the natural frequency associated with the eigenvector that in-
duces the maximum relative displacement in the case of stiffness nonlinearity. However,
some fine tuning should be performed on the excitation frequency since, due to the hard-
ening/softening phenomena, the maximum relative displacement/velocity may shift to
higher/lower frequencies, respectively. The amplitude of the excitation signal is to be
selected so that the nonlinearities in the system are invoked.

A cross-section along the velocity direction is created to obtain the local nonlinear
stiffness curve shown in Figure 5a. In this subplot, the relative velocity range in the ASM is
limited to 0.9 m/s in magnitude. Since linear and quadratic functions cannot approximate
the obtained stiffness curve, it is fitted by a cubic, a quartic, a quintic, and a septic function,
as shown in Figure 5a.
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Figure 5. Corresponding side-view (acceleration vs. relative displacement) of the acceleration surface
used for nonparametric modeling of nonlinearity at (a) mass m1 and the (b) junction between masses
m1 and m2.

To determine the best-fitted function, a comparison of the coefficients of the four fitted
polynomials in Figure 5a is provided in Table 2.

For example, the cubic row represents the approximated stiffness curve with a cubic
function of 7835.11x3

1 + 10.21x2
1 − 491.31x1 − 3.36 =

..
x1. x1 represents the relative displace-

ment of the mass m1 towards the fixed base, and
..
x1 stands for the acceleration of mass m1.

It is worth mentioning that since the system in Figure 2 with the parameters in Table 1 is
a so-called stiff system, the variable-step ode23tb solver in SIMULINK is selected for the
simulation in this section. Table 2 is extended to the values of the norm of residuals to gain
insight into the goodness of fit. The mathematical method behind the norm of residuals is
based on the L2-Norm. Any interested reader is referred to [49].

Table 2. Coefficients of the characterized nonlinearity for m1 in Figure 2.

Coefficients of the Polynomial in the Form of
p1xn+p2xn−1+. . .+pn+1

Norm of
Residuals

p1 p2 p3 p4 p5 p6 p7

Cubic 7835.11 10.21 −491.31 −3.36 N.A. N.A. N.A. 19, 572.86
Quartic −246.31 7836.51 98.86 −491.79 −6.73 N.A. N.A. 19, 567.80
Quintic 19, 544.89 118.81 −2198.64 −46.85 468.44 3.09 N.A. 13, 200.854
Septic −255.75 19, 537.84 292.82 −2195.63 −74.79 468.28 3.71 13, 200.621

The following observations are reportable. Comparing the norm of the residuals
in Table 2, there is no improvement by increasing the polynomial order from quintic to
septic. Looking at the coefficients of the polynomials for both quintic and septic, it can
be observed that the coefficient of the term x5 is greater than all others with some order
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of magnitudes, which indicates that the dominant nonlinearity is of order five nature.
Additionally, comparing p1 in the quintic case and p2 in the septic case, it is trivial that the
correct order of nonlinearity can be acceptably estimated as five.

The characterization of the nature of the interaction between m1 and m2 is shown in
Figure 5b under the same excitation conditions and relative velocity limitations. To keep
the results concise, the ASM analyses of the connection between m4 and m5 are suppressed
since they present similar behavior as in Figure 5b.

The local nonlinear stiffness curve resulting from the junction between m2 and m3
is obtained by exciting the system through the input channel with a chirp signal be-
tween

[
10.1 11.3

]
Hz within a 600 s time window with an excitation amplitude of 10 kN.

This stiffness curve of the obtained time samples for small relative velocities is shown
in Figure 6a. Considering the illustrated figure and the fitted polynomial coefficients in
Table 3, the following remarks are made: While noting once again that the nonlinearity
is smooth, in Figure 6a, the subplot is non-symmetric. After the quadratic estimation,
the other three candidates for the nonlinear function have significantly lower residuals.
However, the improvement due to the additional term in the quartic function is negli-
gible. Both the quantic and cubic estimations of the nonlinearity function preserve the
non-symmetricity. The quantic form brings a four percent improvement in fitting the data.
Since the nonlinearity is assumed to be unknown, performing the OBCRP method with the
cubic case is recommended unless the required match in the validation phase is not met.
It is correctly noted that, as highlighted in Table 3 and unlike the results in Table 2 for m1,
here the dominant terms are both x3 and x2.
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Consequently, in the characterization step, the localization of the nonlinearity takes 
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 𝐴𝑦ୀଷ
ୀଵ = ⎣⎢⎢⎢

⎡𝛾ଵ0000 ⎦⎥⎥⎥
⎤ ሾ𝑥ଵହሿ + ⎣⎢⎢⎢

⎡ 0 0𝛼ଵ 0−𝛼ଵ 𝛼ଶ0 −𝛼ଶ0 0 ⎦⎥⎥⎥
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Figure 6. Corresponding side-view (acceleration vs. relative displacement) of the acceleration surface
used for nonparametric modeling of nonlinearity at the (a) junction between masses m2 and m3 and
the (b) junction between masses m3 and m4.

Table 3. Coefficients of the characterized nonlinearity for the interaction between m2 and m3.

Coefficients of the Polynomial in the Form of
p1xn+p2xn−1+. . .+pn+1

Norm of
Residuals

p1 p2 p3 p4 p5 p6

Quadratic 3320.1 −3027.9 19.98 N.A. N.A. N.A. 16,987
Cubic −31, 985 5465.4 −2197 0.0264 N.A. N.A. 3941

Quartic −73, 26.4 −31, 354 5737.2 −2208.4 −1.347 N.A. 3921.4
Quintic −181, 130 13, 366 −23, 148 5126.1 −2284.7 0.87185 3775.6

For nonparametric modeling of the nonlinear interaction between m3 and m4, the
system is excited with a chirp between

[
10.1 11.3

]
Hz at a duration of 600 s. The cross-

section of the acceleration surface along the direction of the relative velocity between m3
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and m4 is presented in Figure 6b, and for polynomial parameterizations of the data, the
coefficients of the polynomial functions are sorted in Table 4.

Table 4. Coefficients of the characterized nonlinearity for the interaction between m3 and m4.

Coefficients of the Polynomial in the Form of
p1xn+p2xn−1+. . .+pn+1

Norm of
Residuals

p1 p2 p3 p4 p5 p6

Quadratic 471.53 1889.1 0.4596 N.A. N.A. N.A. 7836
Cubic 35, 251 591.45 1415.7 −0.4648 N.A. N.A. 2877.8

Quartic 12, 036 35, 308 361.19 1415.2 −0.0875 N.A. 2871.4
Quintic 1, 004, 500 18, 729 10, 054 258.14 1542.3 0.3366 2571.6

The significant reduction in the norm of the residuals for the cubic function compared
to the quadratic case and the 0.02% improvement by changing to the quartic function
indicate that the cubic estimation in Figure 6b is the correct candidate. However, we have
also evaluated the nonlinearity of the 5th order with a 10% lower residual. Assuming that
knowledge of nonlinearity is unavailable, it is a challenging task to resolutely decide if the
cubic or quintic function should be imported for the OBCRP scheme. It is certainly possible
that if the recovery of the FRF after the OBCRP method for the cubic case is not satisfactory,
the quantic case should be tested as well.

Consequently, in the characterization step, the localization of the nonlinearity takes
place, and the analytical form of the nonlinearity for m1 is quintic, while the analytical form
between m2 and m3 and m3 and m4 is cubic and quadratic, respectively. The nonlinear term
of Equation (1) can be concretized as:

n=3

∑
j=1

Ajyj =


γ1
0
0
0
0


[

x5
1

]
+


0 0
α1 0
−α1 α2

0 −α2
0 0


[
(x2 − x3)

2

(x3 − x4)
2

]
+


0 0
β1 0
−β1 β2

0 −β2
0 0


[
(x2 − x3)

3

(x3 − x4)
3

]
(11)

Since the mathematical function for nonlinear modeling of the system is clear, the deter-
mination of the unknown coefficients is performed using the algorithms of the CRP/OBCRB
method. But therefore, the displacement, velocity, and acceleration of the m2, m3, and m4
are needed since they are assumed to be unknown.

4.3. Implementation Results of the OBCRP Method

For the investigated system in Figure 2, first, the sampling time is selected as 50 µs
with 221 frequency samples, with a maximum excitation frequency of 20 Hz, and 60 periods
of the random-phase multi-sine excitation are measured for seven independent realizations.
The amplitude of the active lines in the frequency domain is set to 300 N. The reason for
selecting such a high number for periods is the low structural damping and, consequently,
the induced dominant transient noise contribution, as shown in Figure 7a.

Using the robust LPM in [39], the total variance of the nonlinear distortion is obtained,
as is the best linear approximation (BLA) of the ULM in Figure 7b. The BLA extracted from
the IO data is shown in the blue line in Figure 7b. It is notable that even with the robust
LPM, it is severely distorted due to the non-negligible effect of nonlinearity compared
to the analytical FRF obtained from the freqresp(.) function of MATLAB. This behavior
should not be mistaken for a small signal-to-noise ratio (SNR). Although this analysis
provides crucial information for process noise covariance used for Kalman filter design, it
fails to provide substantial insight into the nature of nonlinearity, its smoothness, and its
even/odd behavior.
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Figure 7. (a) The transient contribution. (b) The robust LPM used to obtain the noise/nonlinearity
covariance and BLA.

The Kalman filter is designed based on the obtained covariance data on process noise
from the LPM, and the consequent poles of the observer at a steady state are shown in
Figure 8. The results are obtained for 70 consecutive periods of the random-phase multi-sine
with a crest factor of 4.0612 applied through the disturbance channel [40]. The envelope
of the state observation error as a percentage is shown in Figure 9 instead of the output
observation error. This representation can only be produced in the simulation example,
and it is exploited to provide insight into the expected performance of the observer when
estimating each displacement state separately. Consequently, the effect of observation error
is expected to distort the estimation of the coefficients of analytical nonlinearities in the
OBCRP method scheme as well as in the absence of measurement noise.
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Figure 8. The poles of the simulation system (×) in comparison to the poles of the steady-state
Kalman state observer (×).
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Next, Algorithm 1 is applied to extract the coefficients of the characterized nonlinear
functions based on the estimated states. Accordingly, employing the methodology from
Appendix A, the frequency-dependent spectra of the unknown coefficients are obtained
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as shown in Figure 10, where the unknown variables are compared against the actual
value in the simulation problem. Although the imaginary parts of the estimated spectra
of the coefficients are nonzero, they are smaller by some order of magnitude than the real
part. In order to pinpoint a scalar representing each coefficient, spectral mean values and
weighted spectral mean values are compared following [24] and the proposed weighting in
Algorithm 2. For the sake of brevity, only the weighting for the unknown coefficient of the
quantic nonlinearity (β2) is presented here in Figure 11.
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The estimation quality for the unknown coefficients of different weighting schemes in
the spectral mean value is compared in Table 5. In this table, except for γ1, the proposed
weighting scheme in Algorithm 2 represents superior performance in extracting the correct
value from the coefficient spectrum of the complex estimate with respect to unweighted. It
should be noted that unlike the methods available in the literature, where system states
are assumed to be known as a result of the generalization regarding the state estimation,
the calculated scalar estimates are indeed more erroneous than those in [17,24]. This
emphasizes the importance of suppressing the observation error in order to have less bias.

Table 5. Error of the estimation associated with different weighting schemes.

Coefficients True Value
Error (%)

Unweighted Mean Weighted: Muhamad et al. [24] Weighted: Present

α1
α2

−500 kN/m2 23.38 21.42 4.02
100 kN/m2 48.1 2.39 13.58

β1 3 MN/m3 22.32 74.74 1.09
β2 −0.2 MN/m3 407.22 8.96 0.79
γ1 4 MN/m5 18.72 12.70 27.4

Remark 2. It is also noted that the state estimation error covariance in standard Kalman filtering
converges to zero in a short period, which limits the state observation performance in the vicinity of
dynamic nonlinearities. Consequently, the results in Figures 10 and 11, and Table 5 are obtained by
covariance resetting every ten seconds. The idea of covariance resetting in adaptive control dates
back to the fundamental works of Goodwin et al. [50]. Since then, several intelligent algorithms
have also been brought into Kalman filter covariance resetting, e.g., the adaptive Kalman filter by
Yu et al. [51], which mostly differs over the resetting time and resetting factor. Additionally, the
adaptive fuzzy observer and intelligent algorithms augmented with a Kalman filter, which may
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improve the estimation performance, can significantly contribute to the quantification accuracy of
the OBCRP method [2,52,53]. However, such alternations are out of the scope of this paper and will
be the subject of further investigations.

Remark 3. The Kalman gain that is updated based on the matrices of the ULM may take a long
time to converge to the suboptimal solution. This solution is the trivial consequence of tuning
a linear observer on a nonlinear system. In order to have faster convergence, in the results of
Figures 10 and 11, and Table 5, first a steady-state Kalman filter is designed, and the obtained gain
is utilized to initialize the Kalman gain in a non-steady state case. This reduces the transient
behavior of the filter. However, a more systematic approach to moving towards an optimal solution
in the context of the extended Kalman filter would be to perform an iterative design. Accordingly,
the initialization of the observer may be performed on similar lines as in this paper, followed by a
correction step that may be realized by the use of a QR-factorized cubature Kalman filter (CKF)
structure. The CKF operates by incorporating the higher-order derivatives of the nonlinear state
equation as well as the first-order derivatives in the extended Kalman filter scheme in the design
process, where the derivatives are obtained based on the identified system from the OBCRP method.
The QR-factorized CKF is expected to reduce the numerical issues in the covariance matrix updating
and has proven to have superior accuracy compared to the pure Kalman filter [54]. Consequently,
having a lower observation error contributes to the unbiased extraction of the nonlinear coefficients
following the discussion in the paragraph before Remark 2.
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Finally, the ULM, based on the classical H1 function, is compared with regard to the
recovered conditioned FRFs using the OBCRP method, see Figure 12. The magnitude
and phase are shown in Table 5 for the two outputs x1 and x5. As expected, the classical
estimation of the FRFs based on H1 is severely distorted under the effect of invoked
nonlinearity. However, the conditioned spectral analysis based on the OBCRP method
recovers the ULM correctly.
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To do justice to the full performance evaluation of the OBCRP method and Algorithm 2
and simultaneously have a perception of the sensitivity of the proposed combination with
respect to the measurement noise before experimental tests, the estimation process is
performed in the presence of synthetic noise. To this end, the system output signals
are polluted in Simulink with 1% and 3% colored Gaussian noise with the approximate
frequency content shown in Figure 13a (for one realization). Two cases are compared using
the polluted observed states and nonlinearity time history. The colored noise is generated
by filtering a band-limited white noise with a Butterworth high-pass filter of eighth order
with an edge frequency of 100 Hz, mostly the higher frequencies of the measurement
output. The conditioned H1 estimate (Hc1) of the ULM is compared with the analytical FRF
of the system in Figure 13b for the two different noise levels.

Table 6. Error of the estimation for different measurement noise levels.

Coefficients
Error (%)

1% Noise Power 3% Noise Power

α1 11.35 11.76
α2 9.77 5.80
β1 36.55 31.17
β2 32.33 7.76
γ1 15.04 19.34
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The comparison of nonparametric plant models representing the linear part of the
system extracted based on the OBCRP method for various noise levels in Figure 13b shows
that: (1) As the noise power increases, the FRFs are distorted, respectively. Consequently,
in real-time experiments, contactless laser Doppler vibrometers are preferred over piezo-
electric accelerometers due to the higher SNR that they can deliver. (2) Using the weighting
of Algorithm 2, there is no direct connection between the noise level and the accuracy of
the estimated coefficients (see Table 6).

This is an important feature in contrast with the results of [24]. It is justified by
introducing steps 2 and 3 in Algorithm 2, where the effect of frequency ranges with high
fluctuation rates on imaginary parts of the estimated spectrum is largely discarded. In
other words, as the SNR decreases, the normalized envelope of the imaginary part (which
has higher fluctuations, respectively) becomes wider, suppressing the bandwidth with
additional fluctuations in comparison to the case with a better SNR. (3) The distortions in
the estimated FRFs are mostly due to the observation error. In the spectral analysis involved
in the OBCRP method, the effect of noise can be significantly controlled by performing
averaging based on the Hamm window [39].

5. Conclusions and Outlook

The paper presents the OBCRP method as a synergy of the conditioned RP method and
the state estimator, which facilitates the availability of all the system states at all times, even
in cases when not all states are available for measurement or if measurement is not possible.
For the representation of nonlinear systems, the underlying linear model was estimated
using system identification based on the frequency response function, whereas the nonlinear
part of the system model is represented in terms of polynomials of corresponding higher
orders. The type and order of the nonlinearity are determined by applying the ASM.
Finally, the implementation of the OBCRP method has successfully been demonstrated
on the example of a lumped mass system with multi-DoF. For the conditioned spectral
estimation of FRFs, a spectral operation is performed based on the state estimation and
the excitation signal. In the conditioned Hc1 and Hc2 method, the nonlinear coefficients
are recalculated using spectral estimation and subjected to a novel weighting proposed in
the paper. In this latter process, the lost information of the imaginary part is taken into
account. Further research regarding incorporating a disturbance variable into the OBCRP
method is needed. The OBCRP method successfully recovers the FRFs of the ULM and
parametrizes the nonlinearity of the nonlinear system. Again, it is emphasized that the
method was applied only to a simulative example. The method will be investigated on
an experimental test consisting of a clamped-clamped nonlinear beam with two parts of
different thicknesses in the next step.
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Appendix A. State Observer in the Context of the OBCRP Method

Appendix A.1. State Estimation Using Kalman Filtering

In relation to the presented discrete lumped mass model (Figure 2), since the displace-
ment, velocity, and acceleration of the masses m2, m3, and m4 are not accessible, an optimal
estimation algorithm, the well-known Kalman filter (KF), is integrated into the OBCRP
method. For the realization of a state observer, first, Equation (1) of the grey-box model is
brought into state-space form by defining an auxiliary state vector x =

[
x

.
x
]

.
x = Ax + Bu (A1)

y = Cz (A2)

where (A1) represents the state equation and (A2) the output equation. The system matrix
in the state equation can be calculated from the mass, stiffness, and damping matrix of the
grey-box model as

A =

[
05×5 I5×5

−M−1K −M−1C

]
(A3)

with 0N×N ∈ RN×N and IN×N ∈ RN×N being zero and identity matrices, respectively. B is
the input vector, and in the case of the investigated system shown in Figure 2, it is given as:

B =
[
01×5

1
m1

01×4

]T
. (A4)

The output matrix C of the output equation is given as

C =

[
1 01×4 01×5

01×4 1 01×5

]
. (A5)

In the discrete time formulation of the Kalman filter, the state and output of Equations (A1)
and (A2) are extended with the disturbances w and v. In the state equation, the rate of

.
x for

a small sampling time is replaced by the following discrete-time equivalent [49]:

.
x =

xk − xk−1
∆t

. (A6)

Solving the equation for xk, the resulting state and output equation of the continuous
Kalman filter are represented as

xk = Fxk−1 + Guk−1 + Λwk−1, (A7)

yk = Hxk + vk, (A8)
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with the process and measurement noise w and v having covariances (0, R) and (0, Q),
respectively. Given the observability of the realization in (A1) and (A2), the resulting state
estimate in the form of a continuous KF is given as:

.
x̂ = Ax̂ + Bu + K(y − Cx̂). (A9)

The discretization of each parameter with a small sampling time is represented in
the following:

F = I + A∆t H = C
G = B∆t Q = Qc∆t
Λ = I∆t R = Rc

∆t

(A10)

For a very small sampling time, it is assumed that ∆t approaches zero, and the discrete
Kalman filter gain obtains the form of (A11), with P being the error covariance estimation
obtained from the solution of a Ricatti equation. A detailed derivation can be found in [55].

K = PCT R−1
c (A11)

In the context of Equation (1), it can be seen that the process noise w in Equation (A7)
and, consequently, the nonlinearity contribution can be directly related to the covariance
matrix Qc. As a result, an accurate estimate of Qc is a key parameter in the state reconstruc-
tion of Equation (1) based on the Kalman filter tuned over the ULM. To accommodate this
requirement, the robust LPM, proposed by Pintelon et al. [11,12], has been employed in this
paper, the technical details of which are out of the scope of this paper. In this method, by
using a periodic excitation signal, it is intended to reduce the effect of the noise transients
in the extracted FRF of the system. This is a crucial feature since it provides the means for
the extraction of Rc. The mathematics behind the method is based on an approximation of
a polynomial function of a predefined order locally for the noise leakage errors. It is worth
mentioning that a non-commercial implementation of the robust LPM is available in [39].

Combining the state propagation and the update equation, the Ricatti equation calcu-
lates the propagation and the update contribution, which influence the prediction uncer-
tainty and the dynamics of the process. So, the Ricatti equation plays an essential role in the
optimal state update gain within the scope of Kalman gain. The Riccati differential equation
is nonlinear, and the behavior of this simultaneous differential equation may be complex.
In the following, the technique of matrix fraction decomposition is introduced, discussing
conditions for receiving a simplified but physically meaningful solution. For systems with
large dimensions, the solution of the Ricatti equation becomes computationally expensive.
In order to avoid laborious integration, the transition matrix and square root filtering are
introduced, which are detailed [55].

Appendix A.2. Matrix Fraction Decomposition of the Riccati Differential Equation

The idea of the transition matrix approach is to determine two matrices, Λ and Y,
so that the error covariance matrix P can be represented by P = ΛY−1. The goal is to
avoid integrating the differential Ricatti equation by implementing certain mathematical
formulations. With P = ΛY−1, its derivative becomes:

.
P =

.
ΛY−1 + Λ

d
dt

(
Y−1

)
=

.
ΛY−1 + ΛY−1

.
YY−1. (A12)

Post-multiplying (A12) by Y and performing several mathematical manipulations
detailed in [55] results in:

.
Λ = AΛ + QY + ΛY−1

( .
Y + ATY − CT R−1CΛ

)
. (A13)
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The Equation (A13) is fulfilled, if
.

Λ = AΛ + QY and
.

Y = CT R−1CΛ − ATY. Both
equations can be written in a matrix notation as:[ .

Λ
.

Y

]
=

[
A Q

CT R−1C −AT

][
Λ
Y

]
(A14)

The initial conditions on Λ and Y can be chosen to be consistent with the initial
condition on P as follows:

Λ(0) = P(0),
Y(0) = I

(A15)

With the initial condition, the transition matrix for the differential equation for Λ and
Y is computed in the form of:[

Λ(t + T)
Y(t + T)

]
=

[
ϕ11(T) ϕ12(T)
ϕ21(T) ϕ22(T)

][
P(t)Y(t)

Y(t)

]
(A16)

where the individual equations of the matrix equation in developed form read:

Λ(t + T) = ϕ11(T)P(t)Y(t) + ϕ12(T)Y(t), (A17)

Y(t + T) = ϕ21(T)P(t)Y(t) + ϕ22(T)Y(t). (A18)

Inserting Λ(t + T) = P(t + T)Y(t + T) in Equation (A15), the resulting equation reads:

P(t + T)Y(t + T) = ϕ11(T)P(t)Y(t) + ϕ12(T)Y(t). (A19)

Substituting Equation (A16) for Y(t + T) after simple restatement, the final resulting
equation is obtained as:

P(t + T) = [ϕ11(T)P(t) + ϕ12(T)][ϕ21(T)P(t) + ϕ22(T)]
−1. (A20)

Introducing the propagation of Equation (A20) for the error covariance matrix, no inte-
gration steps are needed. Additionally, the straightforward calculation ensures the positive
definiteness of the result in each iteration step. Since Equation (A20) of error covariance
will also be calculated for large (t + T), the precision of the error covariance suffers. In
the following, the square root filter is presented, which formulates the error covariance
matrix in a manageable way and simultaneously reduces the numerical inaccuracy of the
error covariance.

Appendix A.3. The Square Root Filter

In contrast to the transition matrix approach, in the method of the square root filter,
one matrix S is used to determine the propagation of the error covariance by accomplishing
the equation P = SST . Following this equation, S is the mean square of P, and the aim
is to integrate S instead of P to obtain the propagation of the error covariance matrix
for the Kalman gain. In total, this method requires more computational efficiency, but it
enormously increases the precision of the error covariance and thus the Kalman gain and
drastically reduces the numerical problem. The time derivative of P is determined as:

.
P =

.
SST + S

.
S

T
. (A21)

Substituting P = SST and inserting (A21) into the error covariance, the resulting
equation is presented as:

.
SST + S

.
S

T
= ASST + SST AT − SSTCT R−1

c CSST + Qc. (A22)
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By pre-multiplying by S−1 and post-multiplying by S−T on both sides of Equation (A22),
an important equation of the square root Kalman filter is presented:

S−1
.
PS−T = S−1

.
S +

.
S

T
S−T

S−1 AS + ST ATS−T − STCT R−1
c CS + S−1QcS−T

(A23)

where S−1
.
S is the upper triangular matrix denoted by MU and

.
S

T
S−T is the lower triangular

matrix denoted by ML. With this in mind, the continuous-time square root Kalman filter
algorithm is summarized. At first, the matrix S(0) is computed so that the equation fulfills
the condition S(0)ST(0) = P(0). For each time increment, the error covariance

.
P has to

be calculated from the differential Ricatti equation. With S and
.
P, the matrix MU can

be computed. After calculating
.
S = SMU ,

.
S is integrated to obtain S for the next time

increment. The Kalman gain is computed as K = SSTCT R−1.
The described iteration step for calculating Kalman gain is computationally more

expensive than the root-mean-square matrix, although more numerically stable. Concerning
the application of state observation to a real beam construction, two formulations for
calculating the error covariance may be advantageous if the method of the transition
matrix approach produces inaccurate solutions for the error covariance matrix. For the
experimental performance, the variances of the process noise, measurement noise, and
stochastic nonlinear distortion are needed for the Kalman filter.
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