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Abstract: Saturated nonlinear affine systems are widely encountered in many engineering fields.
Currently, most control methods on saturated nonlinear affine systems are not specifically designed
based on sparsity-based control methodologies, and they might require sparse identification at the
beginning stage and applying tracking control afterwards. In this paper, a sparse neural network
(SNN)-based control method from an lp-norm (1 ≤ p < 2) optimization perspective is proposed
for saturated nonlinear affine systems by taking advantage of the nice properties of primal dual
neural networks for optimization. In particular, when p = 1, a new alternative controller based on
SNN is derived, encountering computational difficulties distinct from those of another solution set
in the basic dual neural network. The convergence properties of such SNN-based controllers are
investigated and analyzed to find a control solution. Five illustrative examples further are shown
to demonstrate the efficiency of the proposed SNN-based control method for tracking the desired
references of saturated nonlinear affine systems. In the practical application scenario involving the
UR5 robot control, the trajectory’s average errors are consistently confined to a minimal magnitude
of 10−4 m. These findings substantiate the efficacy of the SNN-based control approach proposed for
precise tracking control in saturated nonlinear affine systems.

Keywords: saturation system; nonlinear affine system; sparse neural network; redundant manipulator

1. Introduction

Affine control systems have recently risen to prominence in both science and engi-
neering, making the development of their control strategies a key research area. These
nonlinear affine systems are prevalent across various domains, such as formation control of
multi-agents [1], wind power transfer [2], motion planning, and control of kinematically
redundant manipulators [3,4]. Addressing the control challenges of these systems has been
central to nonlinear affine control research, leading to diverse strategies for different appli-
cations. Notable examples include self-triggering model predictive control [5], adaptive
PID controllers for uncertain environments [6], and output regulation for switched affine
systems in the circuit model [7].

However, in real physical systems and engineering, due to inherent physical properties
or the establishment of safety thresholds, the system’s response exhibits an upper or lower
limit. The input or output of the system ceases to show any further increase or decrease
upon reaching a specific threshold. This also causes the input of the nonlinear affine system
to reach saturation [8,9], e.g., trajectory tracking control for surface ships [10], modulation
control of power converters [11], spacecraft fly tracking control [12,13], vibration control
of flexible strings [14]. Saturated nonlinear control systems have important research sig-
nificance. However, they often have complex mathematical models. The utilization of
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sparsity-based control techniques in saturated nonlinear affine systems can significantly
enhance the performance of the control system. The main challenge is to address the issue
of sparse identification in dynamic systems [15,16]. To achieve computational efficiency,
Selesnick et al. introduced a technique for implementing sparse regularization using con-
vex analysis [17]. Babazadeh et al. propose a new method to construct optimal sparse
control structures that are guaranteed to have a prescribed number of zero elements [18].
The effectiveness of the approach is evaluated through synthetic and real-life case studies.
Torres et al. proposed sparse controls for network spread processes [19]. Wensing et al.
proposed the sparse control of dynamic movement primitive systems by introducing a
sparsely inhibited rhythmic alternative [20]. Kaheman et al. developed SINDy-PI (sparse
identification of nonlinear dynamics—parallel, implicit), which is an enhanced iteration
of the SINDy algorithm [21]. This version has the ability to detect underlying dynamics
and logical non-linearities. To address the trajectory tracking problem of industrial ma-
nipulator systems with modeling uncertainties, varying loads, and unknown dead-band
characteristics, Zhao et al. proposed a compensation-based adaptive switching control
solution [22].

At the same time, neural network control methods based on affine systems are also
constantly developing. Meng et al. studied a group of high-order nonaffine nonlinear
models whose dynamics are entirely unknown in relation to adaptive neural network (NN)
regulation [23]. Lin et al. designed a data-fault-tolerant controller based on a particle swarm
neural network for nonlinear affine systems [24]. Kim et al. achieved optimal control
over nonlinear affine systems through the application of deep reinforcement learning
methods [25]. Li et al. used adaptive reinforcement learning to improve the robustness
of nonlinear affine systems [26]. Although complex, intelligent neural networks provide
benefits, they also introduce new problems. These neural network methods are often
large and consume excessive control resources. Researchers such as Louizos et al. [27]
and Srinivas et al. [28] have been working on the problem of analyzing the sparsity of
neural networks. This has been a topic of interest. Therefore, studying the sparsity of
neural networks is highly significant. Tang et al. studied the automatic sparseness of neural
networks [29]. Nonlinear affine systems often present intricate dynamics, with nonlinear
and interconnected relationships between states and inputs. Traditional control methods
may struggle to handle such complexity efficiently, requiring extensive parameter tuning
and computational resources, particularly for large-scale systems. Sparse control methods
offer a solution by leveraging the sparsity or locality properties of system dynamics. To
address such a problem, Reiners et al. studied and verified the efficiency of sparse neural
networks (SNNs) [30]. By focusing control inputs on key aspects of the system dynamics,
sparse control methods achieve more efficient control. In nonlinear affine systems, sparsity
may manifest in localized linearizations of system dynamics or the relevance of a few
critical states/inputs. Thus, adopting sparse control methods can effectively exploit the
system’s structural properties, simplifying controller design while improving performance.

Among the many sparse control studies, few have combined sparse control with
neural networks. However, we argue that combining SNN with control systems is of great
significance for intelligent control methods. Tian et al. introduced a neural-network-based
approach for solving large-scale sparse optimization problems with many objectives [31].
Zhu et al. introduced a method for collaboration between an SNN design and a hardware
design [32]. Moreover, control methods based on SNN also have specific applications, e.g.,
application in hypersonic aircraft [33]; application in vehicle anti-lock braking systems,
etc., [34].

In the realm of robotics, researchers have advocated using redundant robots to include
sparse optimization into recurrent neural networks for kinematic control. This approach
aims to reduce kinetic energy and address failures in joints with zero velocity. Examples
of such work include studies by Li et al. [35] and Li et al. [36]. To tackle the challenge of
saturated nonlinear control in redundant robotic manipulators, Zhang et al. introduced and
applied a novel varying-parameter convergent-differential neural network (VP-CDNN) [37].
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Zhao et al. developed a unique control strategy for managing saturated nonlinear systems,
merging projection-based operational space control with a neural network-based adaptive
controller, and implemented it for the manipulation and grasping tasks of mobile robotic
arms [38]. Bilal et al. employed neural networks with sparse regression to enhance the
precision of robot posture processing [39]. Shukla et al. used SNN for robot grasping
motion [40]. Sayar et al. developed a two-timescale recurrent neural network (TNN)
optimization strategy that employs the infinity norm as the objective function and uses slack
variables to circumvent situations where optimization fails to meet equality constraints,
thereby enhancing the smoothness and precision of motion for a 9-degree-of-freedom robot
end-effector [41]. Pan et al. applied generalized SNN to force observations [42]. Utilizing
SNN to control saturated nonlinear affine systems provides novel perspectives for tackling
numerous challenges in nonlinear system control [43].

In this study, inspired by prior studies, we propose a control strategy for nonlinear
affine systems based on sparse neural network (SNN). Our proposed sparse norm-based
neurodynamic optimization control strategy utilizes neural networks and sparse norms to
enforce sparsity constraints on control inputs, and it can also solve the saturation constraint
problem of control inputs. This approach enables us to achieve control input sparsity while
maintaining control performance, simplifying controller implementation and computation.
Initially, we formulated optimal constraint conditions, converting the control issue of
saturated nonlinear systems into an optimization problem. Subsequently, we developed
an SNN control strategy with an lp-norm (1 ≤ p < 2) optimization, which is solved using
a novel primal dual neural network. The convergence properties of such an SNN-based
control method are analyzed and substantiated. Furthermore, we engineered an lp-norm,
enhancing system input smoothness and reducing end-effector jitter by adjusting the
p norm. Additionally, the efficacy of the proposed approach for a variety of saturated
nonlinear affine systems was demonstrated through five examples.

The remainder of the paper is as follows. In Section 2, the basic principles and problem
formulation of the nonlinear affine system are introduced. Section 3 discusses the suggested
strategy for SNN and presents its theoretical results within the relevant optimization
framework. The control results via five examples are demonstrated in Section 4. Section 5
presents the conclusion and observations.

2. Problem Formulation

This study focuses on analyzing a complex nonlinear system with multiple inputs and
outputs, known as an affine-dynamic system.

.
x = f (x) + g(x)u (1)

where x ∈ Rn is the nonlinear affine system’s state variable vector, f (x) ∈ Rn is the
numerical array of nonlinear mapping functions with vector values, and g(x) ∈ Rn×m

denotes the matrix-valued nonlinear mapping function array, and u ∈ Rm denotes the
control input variable vector with saturation u− ≤ u ≤ u+. The nonlinear affine system
should be guaranteed to be globally stable under the suitable control input u within the
boundary [u−u+].

To obtain a suitable control input for the nonlinear affine system, we need to first
rewrite (1) as:

g(x)u =
.
x − f (x) (2)

Therefore, when n = m, the following statement can be used to analytically solve for
the control input u.

u = g−1(x)[
.
x − f (x)] (3)

where g(·) is the original mapping function array, g−1(·) ∈ Rn×m denotes the inverse
mapping function array of g(·). However, it is usually not necessary or convenient to find
the inverse mapping of g(·) with input saturation directly in an analytical manner, and
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it may yield additional computational cost to formulate a suitable control input u as the
control law for the nonlinear affine system in real time.

To achieve the required global and exponential convergence of the state vector x to
the desired state xd, in this work we propose to make the following equation hold between
the state variable and the desired one during the control process at the first-order time
derivative level:

.
x − .

xd = −k(x − xd) (4)

where the control parameter k > 0 denotes the convergence scaling parameter that can
be used to scale or accelerate the convergence of the controller, which is reflected in the
exponential decay rate. A larger k results in faster convergence. From (4), one can evidently
obtain:

x − xd = e−kt[x(0)− xd(0)] (5)

which suggests that x has the potential for exponential convergence towards the target
state xd from their initial conditions at x(0) and xd(0). As a result, the reformulation of
Equation (1) into Equation (6) becomes feasible.

g(x)u = −k(x − xd) +
.
xd − f (x) (6)

As u is difficult to solve in an algebraic manner and cannot contain any sparsity
information, solving u within a dynamic equation might be another feasible routine. Our
proposed SNN-based control strategy is developed based on the specific nonlinear affine
system to achieve exponential convergence for the state variable, which will be described
in detail in subsequent sections.

3. Methodology

To achieve the tracking control task, we propose an SNN control paradigm for the
aforementioned saturated nonlinear affine system from an lp(1 ≤ p < 2) norm-based
optimization perspective, as follows:

minimize ∥u∥p
subject to g(x)u = −k(x − xd) +

.
xd − f (x), u− ≤ u ≤ u+ (7)

where ∥u∥p =
(

∑m
i=1 up

i

) 1
p . The rationale for such an optimization is to utilize the con-

strained convex paradigm to formulate the saturated control input variable. Employing the
lp(1 ≤ p < 2) norm, we ensure convexity in the objective function, relying solely on the

engagement of the control input u and the preservation of sparsity. Other types of convex
variants of the objective function on the control input u may be possible, but ||u||pp can be a
concise form. To further develop the SNN-based controller according to the lp-norm based
optimization paradigm, it is necessary to formulate the Lagrange function in the following
manner:

L(u, λ) = ∥u∥p/p + λT[g(x)u + k(x − xd)−
.
xd + f (x)

]
(8)

where λ ∈ Rn refers to the Lagrangian coefficient vector. Inspired by the construction
methodology of neural networks following primal-dual principles and feasible solution
sets [44], the subsequent SNN-based controller with the lp optimization paradigm is further
developed: {

ϵ
.
u = −u + PΩp

(
u − ∂L(u,λ)

∂u

)
ϵ

.
λ = g(x)u + k(x − xd)−

.
xd + f (x)

(9)
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where ϵ > 0 represents the parameter scaling the convergence of dynamics, along with the
array operator PΩp(·) denotes a piecewise linear projection with a feasible solution set Ωp
and an input vector z, which is:

PΩp(z) =


z+, z > z+

z, z− ≤ z ≤ z+

z−, z < z−
(10)

where z− and z+ constrain the input z as the lower and upper bounds, respectively.
Figure 1 shows the block diagram of the proposed SNN controller. Unlike traditional

artificial neural networks (ANNs), which typically rely on dense layers of neurons and
require extensive data for training, our SNN is designed to exploit sparsity in both its struc-
ture and operation. As illustrated in Figure 1a, SNN is implemented using a dual-neuron
configuration. In contrast, the control framework based on ANN, as shown in Figure 1b,
comprises an input layer, hidden layers, and an output layer composed of multiple neurons.
This approach significantly reduces the network’s complexity and the need for training
data, making it particularly suited for control tasks where computational efficiency and
adaptability are critical. The SNN operates based on a principle that selectively activates
a minimal number of neurons for any given input, thereby achieving a balance between
control performance and computational load. The process of solving the parameters of
the SNN is analogous to that of the zeroing neural network (ZNN), both of which are
referred to as neural dynamic solving. Initially, it is necessary to design an error function to
measure the solving error. Subsequently, a derivative of this time-based error function with
respect to time is taken, ensuring that all terms within the error function converge to zero.
This error function is then substituted into the differential equation to solve for the neural
network parameters. Unlike traditional ANNs (artificial neural networks) and CNNs
(convolutional neural networks), which require extensive data for parameter training, the
SNN does not necessitate such extensive data training.
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The designed controller, employing SNN within the optimization paradigm, can be
segmented into the following two conditions:

Condition 1. For 1 < p < 2, The derivative of the Lagrange function’s control input u can be
expressed as:

∂L(u,λ)
∂u =

∂∥u∥p/p
∂u + ∂λT [g(x)u+k(x−xd)−

.
xd+ f (x)]

∂u

= psgn(p−1)(u) + gT(x)λn
(11)

where sgn(p−1)(·) denotes the sign function array Rn → Rn with its form being:

sgn(p−1)(u) =



|u1|(p−1)sgn(u1)

|u2|(p−1)sgn(u2)
...

|ui|(p−1)sgn(u2)
...

|un|(p−1)sgn(un)


(12)

and its each entry is

sgn(ui) =


1, if ui > 0
0, if ui = 0
−1, if ui < 0

(13)

Thus, the based controller (9) further becomes{
ϵ

.
u = −u + PΩp

(
u − psgn(p−1)(u) + gT(x)λ

)
ϵ

.
λ = g(x)u + k(x − xd)−

.
xd + f (x)

(14)

Condition 2. Especially, for p = 1, the SNN-based controller (9) is{
ϵ

.
u = −u + PΩ1

(
u − sgn(0)(u) + gT(x)λ

)
ϵ

.
λ = g(x)u + k(x − xd)−

.
xd + f (x)

(15)

However, the sign operator sgn(0)(u) involves term 00 when u = 0 appears, which is mean-
ingless or indefinite, the SNN-based controller may fall into certain unstable conditions. To remedy
this drawback, we devise an alternative formulation for the SNN-based controller by leveraging the
subsequent optimization paradigm,

minimizeaTv
subject to g(x)u = −k(x − xd) +

.
xd − f (x)

(16)

where u− ≤ u ≤ u+, −u ≤ v ≤ u, a = [c, c, ···, c]T ∈ Rn denotes the coefficient vector with a
constant entry c > 0, and v ∈ Rn denotes the newly involved unknown variable for optimization.
Under such circumstance, by redefining the Lagrange function:

L(w, λ) = aTv + λT[g(x)u + k(x − xd)−
.
xd + f (x)

]
(17)

The new SNN-based controller becomes{
ϵ

.
w = −w + PΩ̃1

(
w − ∂L(w,λ)

∂w

)
ϵ

.
λ = g(x)u + k(x − xd)−

.
xd + f (x)

(18)
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where w =
[
uT vT]T denotes the newly combined control input,

∼
Ω1 denotes a new solution

set for a new projector P∼
Ω1

(w) that is composed as

PΩ̃1
(w) = ∪PΩ̃1,i

(wi) (19)

with

PΩ̃1,i
(wi) =



wi,
∣∣ui

∣∣≤ u+
i and

∣∣ui
∣∣≤ vi[

u+
i

vi

]
, ui ≥ u+

i and vi ≥ u+
i[

u−
i

vi

]
, ui ≤ u−

i and vi ≥ u+
i[

u+
i

u+
i

]
, vi ≤ u+

i and ui ≥ −vi + 2u+
i[

u−
i

u+
i

]
, vi ≤ u+

i and ui ≤ vi + 2u−
i[ ui+vi

2
ui+vi

2

]
,

∣∣vi
∣∣≤ ui ≤ −vi + 2u+

i[ ui−vi
2

vi−ui
2

]
, vi + 2u−

i ≤ ui ≤ −
∣∣vi

∣∣
0, |ui|≤ −vi

(20)

Therefore, the specific form of the new SNN-based controller with p = 1 is ϵ
.

w = −w + PΩ̃1

(
w −

[
gT(x)λ
a

])
ϵ

.
λ = g(x)u + k(x − xd)−

.
xd + f (x)

(21)

The newly derived SNN-based controller has new dynamic constraints v, and a
compound control variable w is generated. Such a method of processing may increase the
sparsity as the new dynamic constraints limit the original control input variable u, but
might increase oscillations in its solution process.

Concerning the convergence properties of controllers based on SNN, we present the
following theoretical analysis theorem.

Theorem 1. To track the desired/reference state variable xd for nonlinear affine system (1) with
input saturation u− ≤ u ≤ u+. The nonlinear affine system synthesized through the utilization
of the proposed controllers based on SNN guarantees that the tracking error e = x − xd globally
converge to zero.

Proof. Due to the convexity of the lp (1 ≤ p < 2) norm, and according to the widely
recognized Karush–Kuhn–Tucker (KKT) condition [45,46], we have

−∂L(u, λ)

∂u
∈ NΩp(u),

∂L(u, λ)

∂λ
= 0 (22)

and

−∂L(w, λ)

∂w
∈ NΩ̃1

(w),
∂L(w, λ)

∂λ
= 0 (23)

where NΩp(u) and N∼
Ω1

(w) denote, respectively, the normal cones of solution sets Ωp and
∼
Ω1 for the sparse controllers. In the steady state of a nonlinear affine system using the
SNN-based controllers that make projections to normal cones, we have PΩp

(
u − ∂L(u,λ)

∂u

)
= u

PΩ̃1

(
w − ∂L(w,λ)

∂w

)
= w

(24)
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All these derivations indicate that
.
λ → 0 can be achieved during the steady state

as
.
u → 0 and

.
w → 0 are satisfied via the projection to normal cones. In this situation,

.
λ = g(x)u + k(x − xd)−

.
xd + f (x) → 0 can be guaranteed to let x → xd .

Let us define tentative variables ξ1 = −u + PΩp

(
u − ∂L(u,λ)

∂u

)
and ξ2 = −w+

P∼
Ω1

(
w − ∂L(w,λ)

∂w

)
for the two sparse neural networks based controllers, and then we

have ϵ
.
u = ξ1 and ϵ

.
w = ξ2.

Next, Lyapunov functions V1 = uTu/2 ≥ 0 and V2 = wTw/2 ≥ 0 for nonlinear affine
system synthesized by the two sparse neural network-based controllers are defined and
positive-definite, and their time derivatives are, respectively,

.
V1 = uT .

u = uTξ1/ϵ = uT
[
−u + PΩp

(
u − ∂L(u, λ)

∂u

)]
/ϵ (25)

and
.

V2 = wT .
w = wTξ2/ϵ = wT

[
−w + PΩ̃1

(
w − ∂L(w, λ)

∂w

)]
/ϵ (26)

Based on the properties of piecewise linear projection [47], we have

uT
(

PΩp(v1)− u
)
≤ −uTu (27)

and
wT

(
PΩ̃1

(v2)− w
)
≤ −wTw (28)

where v1 = u − ∂L(u,λ)
∂u and v2 = u − ∂L(w,λ)

∂w . As a result, we have

.
V1 = −uT(u − PΩ(v1))/ϵ ≤ −1

ϵ
uTu ≤ 0 (29)

and
.

V2 = −wT
(

w − PΩ̃1
(v2)

)
/ϵ ≤ −1

ϵ
wTw ≤ 0 (30)

which shows that the time derivative of the Lyapunov functions V1 and V2 are negative-
definite. This indicates that the nonlinear affine systems synthesized by SNN-based con-
trollers are stable to guarantee global convergence with saturated control input solved via
the lp-norm optimization. All of these steps make the proof thus complete. □

4. Results

This section presents the validation of the proposed SNN-based method for saturated
nonlinear affine systems through four representative use cases. Parameters ϵ = 0.01, k = 10
and randomly generated initial states x(0) are configured for the SNN-based controllers
in all examples. Additionally, we evaluate the method’s applicability in real-world use
cases by deploying it to a real-world UR5 robot’s motion control and then quantitatively
analyzing the control error.

For underactuated nonlinear systems, the system model can be transformed using
methods such as differential flatness. By applying appropriate state transformations or in-
troducing virtual control inputs, we can increase the system’s control freedom, ensuring that
the dimension of the controlled state matches the dimension of the inputs [48,49]. For third-
order and higher-order nonlinear underactuated control systems with non-decomposable
input variables, we can transform the system model using approaches similar to higher-
order decoupling sliding mode observers [50]. After transforming the system model and
appropriately introducing virtual control inputs, we can then utilize the SNN controller to
achieve control.
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A. Use Case 1: A Second-Order Nonlinear Control System

The second-order nonlinear control system’s dynamics is described as:{ .
x1 = x2 + u1.
x2 = − cos x1 − sin x2 + sin(cos x1)u2

(31)

A nonlinear affine system has an equal number of state variables as the control input
variables. Our goal of control is to eventually make the state variable x = [x1 x2]T of
the nonlinear control system in Equation (31) follow the specified trajectory xd = [x1,d
x2,d]T, where x1,d = sin 2t and x2,d = cos 3t under the input saturation u−

1 ≤ u1 ≤ u+
1 and

u−
2 ≤ u2 ≤ u+

2 where u−
1 = u−

2 = −8, and u+
1 = u+

2 = 8. The resultant SNN-based
controller is then designed using Equation (10), which can be represented as dynamic
equations instead of algebraic equations.

Figure 2 shows the control performance results based on the SNN controllers with
different p values chosen (i.e., p = 1.0, 1.1, 1.2, 1.3, 1.5, 1.8). We can evidently observe that,
the proposed SNN-based method is capable of making the nonlinear control system’s state
vector converge to the specified trajectory elegantly with different parameters p. When
the parameter p increases, fewer oscillations occur in the controller curves, which may
reveal that lp optimization with a larger p can produce smoother control inputs as the
convexity situation might be different. As p ranges from close to 1 to 2 within the lp norm,
where 1 ≤ p ≤ 2, the convexity and sparsity of the norm undergo transformations. As
p approaches 1, the convexity of the lp norm becomes more ronounced. As p gradually
increases towards 2, the norm function’s convexity diminishes. The norm function becomes
less inclined to promote sparsity as p approaches 2, indicating a decrease in sparsity. In
summary, as p varies from close to 1 to 2 within the lp norm, the convexity gradually
diminishes while the sparsity decreases.
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Figure 2. Convergence results of Equation (32) with the SNN control method: (a) t = 10 s; (b) t = 10 s;
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B. Use Case 2: A Nonlinear Control System with Third-Order Over-Determination

This subsection examines the subsequent nonlinear control system with the third-order
over-determination: 

.
x1 = sin2 x2 + cos2 x3 + u1 + u4.
x2 = x4

1 + x3
3 + u2 + u3.

x3 = sin(cos x1) + cos(sin x2) + u3 + u4

(32)

The dynamic system has more control input variables than state variables, i.e., the
number of control inputs is four, but the number of state variables is three. The specified tra-
jectories of the state variables are set as xd = [x1,d x2,d x3,d]

T with x1,d = sin3t, x2,d = cos4t
and x3,d = sintcos2t, and the saturated control input is u−

1 ≤ u1 ≤ u+
1 , u−

2 ≤ u2 ≤ u+
2 and

u−
3 ≤ u3 ≤ u+

3 where u−
1 = u−

2 = u−
3 = −10 and u+

1 = u+
2 = u+

3 = 10. Figure 3 shows that
the results synthesized by the proposed SNN-based controllers with different parameters
p can guarantee that the state of the plant converges to the reference as expected, and the
controller with larger parameter p also has fewer oscillation profiles. A typical variant or
extended version of such an over-determined nonlinear affine system can be the differential
kinematic models of redundant robots when the number of active joints is greater than
that of motion degree of freedom in the end-effector level [51]. Such over-determined
nonlinear systems can be fault tolerant, while some input(s) fail to be the correct solution,
and one canonical example of application scenarios involves addressing the challenge of
fault-tolerant motion control in redundant robots. This indicates that such over-determined
nonlinear affine systems could be good alternatives for objective plants in sparsity-based
control schemes.
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Figure 3. Convergence results of Equation (33) with the implemented SNN control approach:
(a) t = 10 s; (b) t = 10 s; (c) t = 10 s; (d) t = 10 s; (e) t = 10 s; (f) t = 10 s; (g) t = 10 s;
(h)t = 10 s.

C. Use Case 3: Lü’s Attractor System

Consider the following famous Lü’s attractor system [52] with three additional control
input variables: 

.
x1 = σx2 − σx1 + u1.
x2 = ρx1 − x1x3 − x2 + u2.
x3 = x1x2 − βx3 + u3

(33)
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with the parameters configured as σ = 36, ρ = 3 and β = 20. Such a nonlinear affine
system is a chaotic dynamic system that can be reformulated in a nonlinear affine form.
For the control task setting, the desired trajectories xd = [x1,d x2,d x3,d]

T with x1,d = sin6t,
x2,d = cos8t and x3,d = sin5tcos7t were used for the state variable to track. The upper and
lower bounds for the saturated inputs were specified as 80 and −80, respectively. Figure 4
shows the results synthesized by the proposed SNN-based controllers, and we can see that
the state variables of the Lü’s attractor system converge to the specified trajectory with
input saturation satisfied. However, controllers with larger p exhibit small oscillations
in the dynamic process. The control performance results in use cases 1 and 2, combined
with those mentioned above, collectively validate the effectiveness and efficiency of the
proposed SNN-based control method for tracking the states of nonlinear affine systems
under control input saturation.
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D. Use Case 4: Manipulator Control Example 
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sparse neural network [55]-based control methods are adopted for the same tracking task 
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sity ||𝑥ሶ || (𝑙 = 0.5, 0.75, 1) of our proposed method is enhanced, as demonstrated by Fig-
ure 5b. The findings indicate that, at an equivalent level of control precision, the proposed 
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E. Applications in real-world UR5 robotic control 

In this example, our SNN method (with p = 1) was utilized to control the motion 
planning of a real UR5 robot. The joint coordinate system of the UR5 robot is defined, as 
depicted in Figure 6. 
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D. Use Case 4: Manipulator Control Example

In this use case, the proposed SNN with p = 1 was further applied to the kinematic
control of the manipulator, whose dynamics are expressed as a nonlinear affine system,
i.e.,

.
x = J

.
θ [53,54], where x represents the end-effector’s position, J denotes the Jacobian

matrix, and θ denotes the joint angle. A circular trajectory with a radius of 0.15 m is set as
the specified path xd for the end-effector to track. For comparative purposes, non-sparse
neural network [55]-based control methods are adopted for the same tracking task with
the same parameter κ = 1000 and the same initial joint angle θ(0). In Figure 5, we present
a performance comparison between the SNN and the non-sparse neural network-based
control method. Figure 5a shows that the tracking error magnitudes of the position by the
two methods are within the same scale range of 10−3 m; however, the average sparsity∣∣∣∣ .

x
∣∣∣∣

l (l = 0.5, 0.75, 1) of our proposed method is enhanced, as demonstrated by Figure 5b.
The findings indicate that, at an equivalent level of control precision, the proposed method,
SNN, attains more effective sparse solutions.
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Figure 5. Performance comparison between our method and non-sparse neural network-based
control method: (a) t = 30 s; (b) t = 30 s.

E. Applications in real-world UR5 robotic control

In this example, our SNN method (with p = 1) was utilized to control the motion
planning of a real UR5 robot. The joint coordinate system of the UR5 robot is defined, as
depicted in Figure 6.
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We first define the position vector of the manipulator’s end effector as r(t) ∈ Rm and
the joint angle vector as θ(t) ∈ Rn. Then, the forward kinematics equation of the UR5
manipulator can be established as shown in Equation (34).

r(t) = f (θ(t)) (34)

where f (•) : Rn → Rm is used to describe the forward kinematics. The UR5 is a 6-degree-
of-freedom robotic arm that is controlled to operate in a three-dimensional task space.
Therefore, the values of n and m are 6 and 3, respectively.
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The inverse kinematics equation can be derived using Equation (34). By differentiating
the inverse kinematics equation with respect to t, one can obtain:

J
.
θ(t) =

.
r(t) (35)

where J = ∂ f (θ(t))/∂θ(t) ∈ Rm×n denotes the Jacobian matrix of the robotic arm. The
vector

.
r(t) = dr(t)/dt ∈ Rm represents the velocity at the end of the robotic arm’s trajectory,

whereas
.
θ.(t) = dθ(t)/dt ∈ Rn represents the angular velocity of the robotic arm’s joints.

The D-H operating parameter information can be obtained from Table 1.

Table 1. D-H parameters of the UR5 robot.

Kinematics i θ [rad] a [m] d [m] α [rad] Dynamics

1 θ1 0 0.08916 π/2 Link 1
2 θ2 −0.425 0 0 Link 2
3 θ3 −0.39225 0 0 Link 3
4 θ4 0 0.10915 π/2 Link 4
5 θ5 0 0.09465 −π/2 Link 5
6 θ6 0 0.0823 0 Link 6

Note: Table 1, which contains information on DH parameters, is credited to the Universal Robots official website
at the following URL: https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-
for-calculations-of-kinematics-and-dynamics/ (accessed on 20 March 2024).

The D-H parameters are a set of four parameters used to describe the geometry and
kinematics of a robotic manipulator. These parameters include the lengths of the links, the
angles between the links, and the offsets along and around the axes of the joints. They
provide a standardized framework for defining the relationship between consecutive rigid
bodies in a robotic arm.

UR5 is a redundant manipulator, and its repetitive motion index can be expressed
mathematically as: s = α(θ(t)− θ(0)), where α > 0 is the scalar coefficient of the ma-
nipulator joint offset θ(t)− θ(0), θ(0) represents the starting state of the robot arm joint
angle vector. The repetitive motion index can be represented as an optimization term in
quadratic programming. To achieve feedback management of the robot’s end position
tracking inaccuracy, the feedback coefficient matrix K is introduced.

minimize 1
2∥

.
θ(t) + s∥2

2

subject to J
.
θ(t) =

.
r(t) + K(r(t)− f (θ(t)))

(36)

To guarantee that the generated joint angular and velocity values comply with the
physical limit constraint, i.e., {

θ− ≤ θ ≤ θ+
.
θ
−
≤

.
θ ≤

.
θ
+ (37)

where θ− and θ+ are the joint angle θ’s physical limit parameters.
By utilizing the aforementioned approach, we can manipulate the UR5 robot to execute

several types of trajectories, including linear motion control, circular trajectory motion
control, and sinusoidal trajectory motion control.

(1) When guiding the robot to move in a straight line, we generate a random tra-
jectory and direct the robot to follow this predetermined path. The initial position of
the straight line trajectory in this experiment is Pstart(−0.07049, 0.350504, 0.22019), and
the final position is Pend(−0.07049, 0.75509, 0.22019). (2) We randomly select the cen-
ter point Pc(−0.07049, 0.487504, 0.22019) and set the radius as r = 0.15, when controlling
the robot to move along a circular trajectory. (3) We randomly set the starting point
Pstart(−0.07049, 0.487504, 0.22019), with an amplitude of 0.05 and a unit period of 0.1256, to
drive the robot’s end to travel along a sinusoidal trajectory. The end point of the sinusoidal
trajectory is Pend(−0.07049, 0.613104, 0.22019). The experiment imposed a maximum limit

https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/
https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/
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of 0.1 m/s for the robot’s final velocity and 0.1 m/s2 for its acceleration. Figure 7 shows the
end movement of the robot.
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Figure 8. Position error in real-world UR5 robotic control: (a) the linear trajectory exhibits an average 
error of  5.76 × 10ିସ m; (b) the circular trajectory demonstrates an average error of 5.98 × 10ିସ m; 
(c) the sinusoidal trajectory showcases an average error of 6.15 × 10ିସ m; (d) 𝑡 = 30 s; (e) 𝑡 = 30 s; 
(f) 𝑡 = 30 s. 
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(f) t = 30 s.
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Figure 8a–f corresponds to each other and are consistent in their quantitative data
representation. Based on the information provided in Figure 8a–f, it is evident that the
redundant robot manipulator UR5 is able to accurately follow the desired path. Further-
more, the end effector consistently maintains the intended position throughout the task.
Figure 8d–f shows the positional errors of the end effector. The linear trajectory exhibits
an average error of 5.76 × 10−4 m, the circular trajectory demonstrates an average error of
5.98 × 10−4 m, and the sinusoidal trajectory showcases an average error of 6.15 × 10−4 m.
They were maintained at a minimum magnitude of 10−4 m.

5. Conclusions

In this paper, an SNN-based control method from an lp-norm(1 ≤ p < 2) optimization
perspective is proposed for saturated nonlinear affine systems by taking advantage of the
good properties of primal dual neural networks for optimization. We formulated optimal
constraint conditions, converting the control issue of saturated nonlinear affine systems
into an optimization problem. In particular, when p = 1, a new alternative controller based
on SNN is derived, encountering computational difficulties distinct from those of another
solution set in the basic dual neural network. An analysis is conducted on the theoretical
findings about the control approach based on SNN. Additionally, four concrete instances
(including over-determined nonlinear affine systems, the well-known Lü’s attractor system,
and the manipulator kinematics system) are provided to demonstrate the efficiency of our
approach for the tracking control of saturated nonlinear affine systems. Furthermore, we
evaluate the method’s viability by applying it to real-world UR5 robot motion control and
then quantitatively analyzing the control errors.

Our research primarily involved experimental validation using second-order nonlin-
ear saturated affine systems, and the results have been promising. However, significant
challenges remain for underactuated nonlinear systems and higher-order nonlinear drive
control systems. We have identified that these systems require model transformation and re-
construction, along with the appropriate introduction of virtual control inputs, to effectively
utilize SNN controllers. This insight underscores the need for improvements in current
SNN control methods when dealing with complex nonlinear systems. Therefore, in future
research, we will focus on developing customized solutions for underactuated systems and
higher-order nonlinear underactuated systems. Specifically, we plan to optimize existing
SNN control methods to better accommodate the unique characteristics of these complex
systems, ensuring their effective operation across various nonlinear scenarios.
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