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Abstract: This paper investigates an L1 adaptive fault-tolerant control scheme for nonlinear systems
with input constraint, external disturbances, and multiple faults, which include actuator faults
and sensor faults. Faults and input constraint are important factors that affect the stability and
performance of a control system. Actuators and sensors are the most vulnerable components, with
the former receiving more attention in comparison. In this paper, sensor faults are first transformed
into pseudo-actuator faults through the augmented matrix approach, which facilitates their handling
together with actuator faults. Saturation constraints on the control signal are not conducive to the
design of the controller. The conversion of an input-saturated function to a time-varying linear system
is completed based on function approximation and Lagrange’s mean value theorem. Moreover, a
nonlinear system with unknown input gain and uncertainties is constructed using these methods.
Next, an L1 adaptive fault-tolerant controller is designed to cope with uncertainties, including system
uncertainties, external disturbances, faults, and approximation errors. In the L1 adaptive controller,
the online estimation of the time-varying parameters allows for updating of the system state, while
the combination of the two is transmitted to the control law such that it can compensate for the
effects of the uncertainties. The stability and performance boundaries are further derived using the
Lyapunov theory and the L1 reference system. Finally, simulations are carried out to demonstrate the

check for effectiveness of the proposed controller.
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1. Introduction

Actuators and sensors are the essential bridge to understanding how a control system

Academic Editors: Guangtao Ran, works and are also the most fault-prone components. Actuators implement control instruc-
Yanning Guo and Chuan-jiang Li tions, and their faults may have serious impacts on the system, such as control deviation,
Received: 29 May 2024 disturbance, or even system destabilization. Sensors are used to measure parameters that
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actuator faults and sensor faults concurrently; therefore, a fault-tolerant control system that

takes into account actuator and sensor faults is preferable.
al Fault-tolerant control based on fault detection, diagnosis, and isolation (FDI) tech-
Copyright: © 2024 by the authors.  njgues is one of the most important branches of control system design, especially observer-
Licensee MDPI, Basel, Switzerland. - haged fault detection and isolation, such as optimal observer [7], Kalman filter [8,9], and
adaptive observer [10]. In [11], a distributed fault detection observer and an estimation ob-
server based on sliding mode technology were designed. Based on the concept of switching,
adaptive fault-tolerant consensus control with a hierarchical structure has been realized
to compensate for system nonlinearities, uncertainties, and actuator faults [12]. In [13],
the amplitude and rate faults in actuators were investigated using adaptive observers.
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Observer-based FDI techniques are widely used not only for actuator faults but also for
sensor faults [1,14-18]. In addition, fault-tolerant control strategies based on fault values
from fault estimators are also an effective approach. For an aircraft attitude control system
with actuator faults and sensor faults, a fault-tolerant controller based on estimates of actu-
ator faults and sensor faults from two extended state observers has been discussed in [19].
A sliding mode fault-tolerant controller with dynamic event-triggered fault estimation for
networked control systems was implemented in [20]. Moreover, in [21], a fault-tolerant
controller for interval type-2 polynomial fuzzy systems subject to sensor faults and actuator
faults was presented through fault estimation. Throughout most of the current research
results, fault-tolerant controllers mainly rely on fault detection or estimation, which carry
certain limitations and involve complicated algorithms. However, a new fault-tolerant
control scheme that does not require fault information has been developed over the past
few years.

Input saturation is a kind of nonlinear constraint that actually exists in actuators, which
may affect the stability and reliability of the control system. The problem of input constraint
has always been a hot topic, and various control methods have been explored, such as con-
structing auxiliary systems [22-24] and directly designing anti-saturation controllers [25,26].
It is also recommended to build a variety of valid controllers based on the practice of ap-
proximating the saturation function with some nonlinear smooth functions, such as the
hyperbolic tangent function [27,28] and the sigmoid function [29]. In real systems, input
constraint, multiple faults, and external disturbances often occur, even simultaneously. The
interaction of these factors aggravates the system uncertainties and makes the detection
or estimation of faults more difficult; thus, the performance of the fault-tolerant controller
is likely to be degraded. Therefore, the successful design of an effective fault-tolerant
controller under the influence of system uncertainties, faults, input constraint, and external
disturbances remains a challenge.

A novel fault-tolerant control method based on adaptive online estimation has been
developed [30-34]. Viewing faults, input constraint, and external disturbances as a lumped
uncertainty, this method does not need to detect or estimate faults and can effectively
simplify the structure of the fault-tolerant controller. Motivated by the above-mentioned
analyses, in this paper, a nonlinear system model with input constraint and external
disturbances is developed, while considering both actuator and sensor faults. Through a
series of transformations and reorganizations, system uncertainties, multiple faults, input
constraint, and external disturbances contained in the nonlinear system are eventually
constructed as unknown input gains and a lumped uncertainty. To compensate for the
effects of these uncertainties, an L1 adaptive fault-tolerant controller is studied, including
state predictor, adaptive law, and control law components. The L1 adaptive algorithm is a
variant of the model reference adaptive control (MRAC) scheme with fast adaptation ability
and excellent robustness, which is widely used in various control systems [35-37]. The state
predictor is equivalent to a reference model to estimate the system state. The adaptive law
updates each adaptive parameter and passes estimations of adaptive parameters to the state
predictor and the control law. The control law with low-pass filters is designed to counteract
the effects of uncertainties and reduce the high-frequency oscillations associated with high
adaptive gains. In comparison with the existing research results, the main contributions of
this paper are summarized as follows:

(1) Unlike most previous research, which addressed only one or a few scenarios, the
fault-tolerant control discussed in this paper covers actuator faults, sensor faults,
input constraint, and external disturbances, which are frequently experienced in
control systems.

(2) In this paper, multiple faults, approximation errors and external disturbances are
converted into a lumped uncertainty and estimated using adaptive laws in the
L1 adaptive controller. In contrast to the methods in [19,21], the L1 adaptive con-
troller does not require the design of additional fault observers or estimators, and
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the control algorithm is more concise. Moreover, a more detailed description of
the L1 adaptive controller’s stability and dynamic performance is provided.

(3) Compared with the nonlinear function approximation of input constraint in [27-29],
this paper further transforms the input constraint into a time-varying system with
unknown parameters and disturbances, which is more conducive to the design of
fault-tolerant controllers.

The remainder of this paper is organized as follows: The problem formulation is
shown in Section 2. The design of the L1 adaptive fault-tolerant controller is described in
Section 3. In Section 4, the performance analysis of the fault-tolerant controller is presented.
In Section 5, some simulation examples are provided to demonstrate the effectiveness of
the proposed controller. Finally, our conclusions are drawn in Section 6.

2. Problem Formulation

Consider the following nonlinear system with input constraint, faults, and external
disturbances:

Ax(t) + B(wu(o(t)) +u(t)) + f(x,t) +d(t) 1)
Cx(t) + Gfs(t)

—N
= R
—~~
e
——
I

where x(t) € R" and y(t) € RP are state variables and measurement outputs; u(v(t)) € R™
and v(t) are input signals with saturated nonlinearity and actual control inputs; f(x, t) is
an unknown smooth nonlinear function; d(t) denotes the external disturbances; and 7(t)
and w = diag(wy,ws, ..., wy) represent the additive and multiplicative actuator faults,
respectively. Additive and multiplicative faults are the most common types of actuator
faults and can indicate most of the actual actuator faults, such as loss of effectiveness,
stuck, and float. fs(t) € RY denotes the unknown sensor faults, and only bias sensor
faults are considered in this paper, including constant deviation faults and drift faults.
A e R"™" BeR"™Mm CeRP" and G € RP*7 are known constant matrices.
The saturation function u(v(t)) is described as follows:

—Um, U <~
u(o(t)) =sat(v(t)) =< v, —um < v < Uy ()
Um, 0 2 U

where u,, is the known boundary of the saturation function u(v(t)), which is, the physical
limit of the actuator’s output.

Following convention, some basic definitions and assumptions are recalled or intro-
duced for the purpose of the latter presentation [38—40].

Definition 1. For a signal r(t),t > 0,r € R™, its co-norm and Le-norm are defined as follows:

Il = max Jri, el = max (0331 tn(T)I)-

Definition 2. For a given m-input and n-output linear time-invariant system H(s), its L1-norm

m
is defined as follows: ||H(s)||, = max <Z [Hij(s)ll; . |-
1 i=1,..n j=1 1

Definition 3. Consider a convex compact set with a smooth boundary provided by
Q. ={0€R"|f(0) <c},0<c<1,where f:R" — R is the smooth convex function
as follows:

1 Tp _ p2

f(9) _ (€9+ )929 Gmax,
899

max
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With Oy is the norm bound of the vector 0, and ey > 0 is the projection perturbation bound
selected according to the accuracy requirements of the parameters. The projection operator is defined
as follows:
Y, f6) <0
proj(0,y) = { ¥ f(6) > 0and VfTy <0

y— 1 (v )F), £(6) = 0and YTy > 0

where NV f(-) is the gradient of f(-), % denotes the unitization of the vector Vf(-), and
<%, y> is the inner product of two vectors % and y.

Assumption 1. Let w € Q = [w;, wy,], where w; and wy, are the known boundaries of the
multiplicative actuator fault w.

Assumption 2. There exists B; > 0(i = 1,...,4) such that

1500, )llee < B, Ifs(B)llco < B2, [1d(8) oo < Bs, [[#(£) ]| < Ba-

Remark 1. Assumptions 1 and 2 indicate that faults, system uncertainties, and external distur-
bances are all bounded. In the actual control system, it is possible for these assumptions to be
satisfied. Taking the attitude control system of an aircraft as an example, the system uncertainty
f(x,t) is a nonlinear function related to the aerodynamic parameters. When the aircraft is flying
normally within the flight envelope, all parameters within the control system are bounded; therefore,
the system uncertainty is also bounded, as are sensor faults and external disturbances. Whether the
faults are multiplicative or additive, time-varying or constant, the actuator outputs are subject to
physical constraints due to the presence of input saturation. Therefore, the actuator fault factors w
and w(t) are both bounded.

Next, the equivalent transformation of sensor faults is realized using low-pass filters
and expansion of state variables. The following low-pass filter is considered:

z(t) = Apz(t) + Biy(t) )

where z(t) € R¥ represents the state variables of the filters. A; € R**k, B; € RF*P are two
matrices to be designed.
Substituting the output equation of (1) into (3), leads to the following expression:

z(t) = Ajz(t) + BiCx(t) + B;Gfs(t) (4)
Combining Equations (1) and (4), the following expression is obtained:
50] <[ S0 ]o 2 Jemesmon 5]
[ 4]

Let

Further, the following augmented system is obtained:

{ x(t) = Ax(t) + Bowu(o(t)) + {f(%, 1) ©)
y(t) = Cx(t)
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where (¢(X,t) = f(%,t) + Bu(t) + Gfs(t) + d(t) is a lumped uncertainty that includes
system uncertainty f(x,t), external disturbance d(t), and faults including an additive
actuator fault Bu(t) and a sensor fault Gf;(t). Based on Assumption 2, it is clear that
{r(x,t) is also bounded; that is, ||(£(0,¢)|| , < Bo, Vt > 0,%(0) = Xo.

The sensor faults in the original system (1) are transformed into pseudo-actuator faults
by introducing the low-pass filter (3). The advantage of this transformation is that the
system only needs to deal with a single actuator fault, and numerous effective fault-tolerant
control methods for actuator faults can be selected.

Remark 2. The filter parameters A; and B are important factors to ensure the stability of the
augmented system (6), so far there is no systematic design method. A first-order low-pass filter of
z(t) = —Az(t) + Ajy(t) was design in [1,17] to realize the equivalent transformation of sensor
faults, where — A is a Hurwitz matrix. In this paper, the filter parameter A; is selected similarly
to the work of References 1 and 17, while parameter By is obtained by fine-tuning to achieve better
tracking performance.

The input constraint is a common and important nonlinear saturation limitation, which
should be dealt with properly in the design of the controller. Here, the following hyperbolic
tangent function is constructed to approximate the saturation function (2):

v/t _ =0/ Um
h(o(1)) = tty-tanh(—=) = 1y ¢

U m ev/um + efv/um

(7)

Figure 1 shows the actual output curves of sat(v(t)) and h(v(t)). From Figure 1, it can
be observed that the hyperbolic tangent function &(v(f)) can approximate the saturation
function sat(v(t)) very well and eliminate its nonlinearity. We define e, = sat(v(t)) — h(v(t)),
where ¢, is the approximation error. Considering Equations (2) and (7), the bound of e, is
derived as follows:

o] < (1 — tanh(1)) )

05

— sat{v(1))
- = = h{v(1))

Actual output
=
T

0.5 -

Time(s)

Figure 1. The output curves of saturation function and hyperbolic tangent function.

According to Lagrange’s mean value theorem, let v*(t) = av(t),0 < a < 1, so there
must be v*(#) in the interval (0, v) such that:

H(o(1)) = h(0) + o2 —ero(t) ©)

It is obvious that #(0) = 0 based on (7). Furthermore, we define h* = % lo=0v+;
therefore, h(v(t)) can be rewritten as follows:

h(o(t)) =k o(t) (10)
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Further, the saturation function of u(v(t)) yields the following expression:

u(o(t)) =sat(v(t)) = h*o(t) + ey (11)

Remark 3. It can be observed in (7) that the approximation of the hyperbolic tangent function
transforms the saturation function sat(v(t)) into a differentiable continuous function h(v(t)). The
application of Lagrange’s mean value theorem further decouples the continuous function into a
time-varying linear system in (11), in order to simplify the system model in the next step.

Substituting (11) into the state equation of (6), the following system is obtained:

%(t) = Ax(t) + Bywo(t) + e
{ g =Cx(t) (12

where Bj, = Bi* is an unknown bounded matrix to be designed. {, = Bwe, + {(X, t) is
a lumped uncertainty, which is composed of system uncertainty, actuator faults, sensor
faults, external disturbances, and approximation errors of the saturation function.

Assumption 3. For arbitrary § > 0, there exist dg, (8) > 0, dg,,(6) > 0, such that for arbitrary
%o < 6, the partial derivatives of {(x, t) are piecewise-continuous and bounded,

e (x, 1) 0 (x, 1)
H ox

< g, (6), || %<

Leo

< dg, (9)
Leo

Remark 4. Notice that the lumped uncertainty {, is also bounded based on the boundedness of
w, ey and (. For the convenience of the later formulation, the upper boundary of C. is defined as:

[ellee < Bs.

Remark 5. It is obvious in (12) that input constraint is used to reconstruct the input matrix of
the system, and the additive actuator faults, external disturbances and approximation errors are
organized as a lumped uncertainty. Therefore, neither faults nor disturbances can be estimated
separately in this paper.

Next, a linear parameterization method for nonlinear systems is presented. Subject
to Assumptions 1 to 3, the following lemma indicates that a nonlinear function can be
transformed into a linear system with unknown parameters and disturbances.

Lemma 1 [38]. If ||xc||; < pand |||} < dxfor T >0, wherep > 0,dy > 0, then there exist
6(t) and o (t) such that for all t € [0, 7|

Ge = 0(O)[X(D)]lo +(t) (13)

where [|0(t) oo < 06, 10(t) oo < do, [|0(!) oo < 01, [0(1) o0 < o

Substituting (13) into the augmented system in (12), the following system model is
obtained based on the matched uncertainties:

x(t) = Ax(t) + By (wo(t) +6(1) [ X(t) oo + 0 (£)) (14)
y(t) = Cx(t)

Thus far, the modeling process for a nonlinear system with input constraints, multiple
faults, and external disturbances has been completed. The control objective of this paper is
that the output signal y(#) of the system can track the given input signal () with certain
control performance.
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3. The Design of the L1 Adaptive Fault-Tolerant Controller

An L1 adaptive controller consists of three components: a state predictor, an adaptive
law, and a control law. The state predictor component is a dynamic system with adaptive
parameters that approximate the actual system. The adaptive law component is designed to
update each adaptive parameter. The control law component, based on adaptive parameters
and state variables, is the output of the L1 adaptive controller. Different from the MRAC
scheme, the L1 control law introduces a low-pass filter to eliminate undesirable high-
frequency oscillations and ensure fast adaptation and robustness.

A. State Predictor

Consider the following state predictor:

g =

X(t) + By(@o(t) + 0(1) [7(1) o + &(1)) (15)

where cb,@ and 0 are estimates of the unknown parameters w, 6 and o.
B. Adaptive Law

The adaptive laws of the unknown parameters w, § and ¢ are designed as follows:

&(t) = Tproj(@(t), ~3(1) PBo (1))
(1) = Tproj(B(t), (1) PBy|IF(1)..) (16)
6(t) = Tproj(@(+), ~X(1) PBy)

D>

where X(t) is the error of the state variable; X(t) = X(t) — X(t); T is a positive adaptive
gain; P is a positive symmetric matrix and satisfies the algebraic Lyapunov equation
A'P+PA = —Q,Q = QT > 0; and proj(-) is the projection operator to guarantee the
boundedness of these estimates, which is introduced in Definition 3.

C. Control Law

The following L1 adaptive control law is designed:
v(s) = —C(s)(R(s) —kgr(s)) (17)

where {(s) and r(s) are the Laplace transforms of §(t) = @v(t) + 0(t)||%(t)||, + & (t) and
1
the given reference command r(t); k¢ is chosen as kg = —(CA 1Bh)

Remark 6. The introduction of the low-pass filter C(s) limits the effective bandwidth of the
adaptive system, which means that the L1 adaptive controller compensates for the uncertainties
within the effective bandwidth. Moreover, C(s) must satisfy the following L1-norm condition
to guarantee the stability of the closed-loop system. For a given constant pg, there exists

Or > Pin, Pin = ||s(s] — Z)_l ||, po, such that the L1-norm condition can be verified as follows:

or = [H()C )kl 17l L., = pin
Lo,pr + Bs

IG(s)L, < (18)

where Lg = @d@,x (6(6)),6(8) = & + €, in which € is an arbitrary positive constant; and & is

defined in Assumption 3. G(s) = H(s)(I — C(s)), H(s) = (s — Z)flﬁh, Bs is the boundedness
of e in Remark 4. kg and r(t) are introduced in the control law of (17). If ‘ ‘ % <d,, =L, then

—||H(s)C(s)k r —Pi
. or — [|H(s)C(s)kgll NI7llz,, — oin _1 (19)
S Ly,pr + Bs g
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Therefore, the L1-norm condition of (18) can be rewritten as follows:
1G], L <1 (20)

4. The Analysis of the L1 Adaptive Fault-Tolerant Controller
4.1. L1 Reference System

To verify the stability and performance boundaries of the L1 adaptive system, the
following L1 reference system is introduced:

iref(t) = Zyyef(t) + Eh(wv,ef(t) + ée(yrefr £))
Opef(3) = 557 (kg (5) = Arey(5)) 1)
yref(t) = Cyref(t)

where A,,¢(s) is the Laplace transform of (e (Xyef, t)-
Obviously, the equation of state in (21) can easily be rewritten as follows:

yref(s) = G(S)/\ref(s) + H(S)C(S)kg?’(s) + yrefO(S) (22)
where G(s) and H(s) have been introduced in (18), and X,.fy(s) = (sI — Z)ilfref(O).
Next, in order to verify the stability of the L1 reference system (21), the following

lemma is first introduced:

Lemma 2 [39]. For a stable system H(s) with input signal r(t) and output signal x(t), there
exists Vt > 0; the following inequality holds:

lxtllpy, < TH) Iz 7l (23)

The following lemma verifies the stability of the L1 reference system (21):
Lemma 3. For the L1 reference system (21) subject to the L1-norm condition (20), if ||X(0) ||, < po, then
HfrefHLoo <pr (24)

HvrefHLoo < Por (25)

where pg and py are introduction in L1-norm condition (18),
C(s
Hc(u) ([kg[lI7ll1, + Lo.pr + B1) (26)

1

Por =

Proof of Lemma 3. Based on Lemma 2, it can be observed that (22) satisfies the following
inequality:

refell,, S NG Arepell,  + 1H()C(s)kgllp 7l + Xrepoll (27)

First, assume that (24) does not hold. Consider that X,.¢(t) is a continuous function
and the following relationship holds ||X.¢(0)|| = [[X(0)[|o < po < pr, then:

[Frer (Bl < 07, VE € [0, 7)

_ 28
1T (D = pr (28)

Therefore, the following equation is implied:

||yrefr||LOo = Pr (29)
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Second, the following upper bound is obtained by recalling Assumption 2:
”)‘refTHLoo < Lprpf + By (30)

Meanwhile, considering the definition of p;, in (18), the following expression can
be obtained:

[Xrefoll, . < pin (31)
Substituting inequalities (30) and (31) into (22), and combining with Lemma 2 yields:
[Zrefell,, < 1G()lL, (Lpsor + Br) + [[H(s)C(s)kgll 7]l + Pin (32)

Based on the L1-norm condition (18), the following relationship is obtained:
IG($) I, (Lo,or + B1) + [[H(s)C(s)kg I, [I7ll L., + pin < o (33)

Combining inequalities (32) and (33), ||[X,ef¢[|, < pr is obtained. Obviously, the
conclusion is contrary to (29); therefore, (24) is proven.
Based on Lemma 2, the control law of the L1 reference system (21) can be rewritten

as follows:
- w

(lkglli7lle, + Aregell, ) (34)
1

gl I

Substituting (30) into (34), it is obtained:

C
HS) (|kg |7l + Lo,or + B1) (35)

Ly

HvrefHLoQ <

Therefore, (25) is also proven. [J

4.2. Analysis of Performance Boundaries

Based on (14) and (15), the prediction error equation can be obtained as follows:

%(t) = AR (1) + Bu(@(1)o(t) + 6(1) [T() o, + (1)) (36)

where X(0) = 0,@(t) = @(t) — w(t),0(t) = 8(t) — 6(t), and T (t) = &(t) — o' (t).
The following theorem verifies the performance boundaries of the closed-loop
system (14):

Theorem 1. For the closed-loop system (14), considering the L1 reference system (21) and
the L1 adaptive controller consisting of (15)—(17) subject to the L1-norm condition (20), if
[%(0)[|eo < po, then

I%ll,., < a0 57)

[ (38)

lores —oll,_ < a2 (39)

where g = \/%,061 = %%Jﬁ and oy = H%HL Ly,a1 + HHlT(S) L %o
1 1 1

in which € is an arbitrarily small positive constant, Hy(s) = C(s) %cg, H(s) isintroduced
0

in the L1-norm condition (20) and cy is a vector that ensures the system Hy(s) BIBO stable
and propet,

Amax (P)
)\min(Q)

Om = maé(tr(wTw) + 62+ 02+ (0pdg + 0pdy).
we
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Proof of Theorem 1. To prove (37), the Lyapunov function is chosen as follows:
~T ~ 1, 7. ~ T~
V=% Pi+ T (tr(&T@) + 0704+ 677) (40)

V is derived as follows:

-T

V=% Pi+% PX+ %(tr(&%) 8T+ 575 (41)
Substituting the adaptive laws in (16), (41) can be rewritten as follows:
V< —iTQ§+%(‘tr(@Tw)] +[670] + |74 42)
Considering the boundaries of the unknown parameter 6 and ¢ in Lemma 1, (41) is
further simplified as follows:

V<% Q%+ %(ebdg + 0pdy) (43)

Based on the boundaries of the unknown parameters w, § and o, the following rela-
tionship can be derived:

tr(@ @) + 6076 4+ 575 < 4(maxtr(w’w) + 6% + o?) (44)

weD)

According to the definition of V in (40), assume that the following inequality is true:

4 Amax(P)
V > = |maxtr(w'w) + 6f + 0 + L (6,dg + 03d 45
r [ maprlet ) 0 op gy (o ) w
where Apyin (Q) and Amax (P) represent the minimum and maximum eigenvalues of matrices
Q, P, respectively.
Based on (44) and (45), the following is obtained:
~T ~ 1 ~T ~ STH | ~T~ 4Amax(P>
X Px=V—-(tr(w w)+0°0+0"0) > =5 (0pdp + 0pd 46
Therefore, the following inequality can hold:
=T = Amin(Q):T — 4
X Qx > ———=X Px > —(6,dg + 0pd 47
Q _)\maX(P) F(b 0 b 0’) ( )
Based on (43) and (47), V is derived as follows:
V<0 (48)

According to (44) and (46), the following relation is valid:

we

V(t) <V(0) < % maxtr(w’w) + 67 +U§} (49)

It is obvious that (49) is contrary to the assumption in (45). Therefore, the following
relationship is developed:

4 A P
V < = |maxtr(wTw) + 62 + 0 + max (P)

T [wen Ao (Q) 00 +0bda>} (50)
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Meanwhile, consider the following inequalities:
~2 ~T ~
Amin (P)[[X[|" <X Px <V (51)

Substituting (50) into (51), the following boundary of X is obtained:

= 40,
X <y —= 52
Therefore, (37) is proven.
Based on (36), the L1 adaptive control law in (17) can be rewritten as follows:
v(s) = —C(s)(wo(s) + xo(s) + X(s) — kg7 (s)) (53)

where xo and ¥ are defined as: xo(t) = 8(t)[|%(t)||, + o (t) and X(t) = @o(t) + O(t)|%(t) ||, +T(t).
Equation (53) is further simplified to obtain the following:

o(s) = —o (r5) + £(6) — k() (54

Based on (18) and (54), the state equation in (14) is converted to frequency domain
form as follows:

— -1

X(s) = H(s)C(s)kgr(s) — H(s)C(s)X(s) + G(s)xo(s) + (sI — A) "Xo(s) (55)

Considering the definitions of X, ¢ in (22), x in (53) and X in (36), it is determined that
¥(s) = H(s)X(s). Thus, the subtraction of (22) and (55) is equal to

Tref(s) —X(s) = G(5)(Ares (s) — x0(5)) + C(5)%(s) (56)
Using the Lipschitz continuity [39] and the definition of L,, in (18), one obtains
the following:
H()\ref _XO)T Lo < LPr (yref _Y)T L (57)
Based on the application of Lemma 2 and (57), (56) can be rewritten as follows:
| Gr =30, ||,_ < NGO L |G =00, + €@ |7, 68
Noting the boundary of X in (37), (58) is organized as follows:
IC(s) I
Xpef — X < —1 g (59)
IGres =%) M, < 17— GO, Loy
Based on the definition of a1 in (38), one can write the following:
|Greg ~ )0, <o1—e<m (60)

Therefore, (38) is proven.
Based on the reference control law v, in (21) and (54), the following equation
is derived:
Cls)

vref(s) - ZJ(S) = _T(Aref(s) _XO(S) - X(S)) (61)
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Let Hy(s) = C(s) mcg and ¢ is introduced to guarantee that Hj(s) is a proper and
0
stable system. Thus, the following relationship is obtained:
C(S) ~ 1 =~

= _H 62
B36) = THE)FG) 62)

Based on the application of Lemma 2 and (62), (61) can be rewritten as follows:

C(s) _ _ Hi(s) ~

s =00l || 2| Lo =Bl + |22 I )

Substituting (37) and (38) into (63), (39) is proven. [

Remark 7. The upper boundary of (37) implies that an infinitesimal boundary ag can be obtained
by increasing the adaptive gain I', and a1, ap can also converge to infinitesimal according to (38)
and (39). In practice, the adaptive gain I' cannot be increased indefinitely due to robustness and
hardware limitations, which is considered as a compromise.

5. Simulation Results

To verify the performance of the proposed controller, a nonlinear system model is
used for simulation, subject to input constraint, external disturbances, and the concurrency
of actuator and sensor faults. Considering that the reference signal may be constant or
time-varying, the reference inputs here are chosen as follows: r(t) = 1 and r(t) = sin(5t).
In the process of converting the sensor faults to the pseudo-actuator faults, the selected
parameters of the low-pass filter are A; = —4.499, B; = 12. The control input saturation of
the system is set to u;;, = 5 and h* = 15. The nonlinear system is modeled as shown in (1),
and the relevant parameters are set as follows:

e [—_ziS _1-15?4}3 - m,cz (1 0],d(t) = E’rﬂ

f(x,t) = (x2 cos x1 + cos x3) [ﬂ .

Based on the meaning of the augmented matrices in (6) and (12), the coefficient
matrices of system model (12) can be calculated as follows:

 [-25 15 0o ]  [o]
A=| -1 -14 o0 |B,=[15/,C=[0 0 1].
1199 0 —4.499 0

The main parameters of the L1 adaptive controller are as follows:

09501 0.3275 0.1837
P = 103275 0.708 0.0467 |, k; =0.0834,T = 10°.
0.1837 0.0467 0.1111

The low-pass filter C(s) is set as follows:

0.00055 + 1
Cls) = 0255 11

The simulation experiments described in this section are carried out in the following
four cases:
Case 1. No faults

The simulation results considering only control input constraint and external distur-
bances are presented in Figure 2, where both actuators and sensors are working properly.
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The curves of the tracking performance when r(t) = 1 and r(t) = sin(%t) in Figure 2a,b
show the reference input 7, the system output y, and the deviation between them. As can be
observed in Figure 2a,b, the system output y tracks the reference input  well with minimal
deviation, regardless of whether the reference signal is constant or time-varying. The curve
of the control input in Figure 2c shows that the control input signal can converge to the
equilibrium position in a very short time, which has the advantage of good smoothness and
convergence. Figure 2d illustrates the response curves of the original uncertainty, f, in the
system model (1) and the lumped uncertainty, g, in the transformed system model (12). As
can be observed from the response curves for the two uncertainties in Figure 2d, the lumped
uncertainty is larger than the original uncertainty of the system due to input constraint and
external disturbances, but both are convergent and smooth. The results in Figure 2 show
that the system can well compensate for the influences of system uncertainties, control
input constraint and external disturbances, and achieve fast and stable tracking.
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Figure 2. Simulation results when there is no fault. (a) Output curves of the system when r(t) =
(b) Output curves of the system when r(t) = sin(%t). (c) Curve of the control input when r(t) =
(d) Output curves of uncertainties f and {, when r(t) = 1.

It should be noted that, due to the limitation of the length of this paper, Figure 2 does
not show the output curves of the control input and uncertainties when r(t) = sin(%t).
However, from the tracking curves in Figure 2b, it can be seen that the system achieves
a good tracking when r(t) = sin(5t). It can also be deduced that the system’s output
curves of the control inputs and uncertainties are also convergent and smooth similar to
those at 7(t) = 1. This is true for all of the simulation results shown in Figures 3-7. On
the basis of considering control input constraint and external disturbances, cases 2—4 are
designed to demonstrate the fault tolerance of the system to both actuator and sensor
faults, which include sensor faults, actuator faults, and simultaneous actuator and sensor
faults, regardless of whether faults are constant or time-varying. Meanwhile, comparative
simulation experiments of MRAC under the same parameter conditions are implemented.
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Figure 3. Simulation results when sensors have constant faults. (a) Output curves of the system when
r(t) = 1. (b) Output curves of the system when r(t) = sin(%t). (¢) Curves of the control input when
r(t) = 1. (d) Output curves of uncertainties f and . when r(t) = 1.
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Figure 4. Simulation results when sensors have time-vary faults and constant faults. (a) Output
curves of the system when r(t) = 1. (b) Output curves of the system when r(t) = sin(5t). (c) Curves
of the control input when r(t) = 1. (d) Output curves of uncertainties f and {, when r(f) = 1.
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Figure 5. Simulation results when actuators have multiplicative faults. (a) Output curves of the
system when r(t) = 1. (b) Output curves of the system when r(t) = sin(5t). (c) Curves of the
control input when r(t) = 1. (d) Output curves of uncertainties f and , when r(¢) = 1.
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Figure 6. Simulation results when actuators have multiplicative faults and additive faults. (a) Output
curves of the system when r(t) = 1. (b) Output curves of the system when r(t) = sin(5t). (c) Curves
of the control input when () = 1. (d) Output curves of uncertainties f and {, when r(¢) = 1.
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Figure 7. Simulation results when actuator faults and sensor faults occur simultaneously. (a) Output
curves of the system when r(t) = 1. (b) Output curves of the system when r(t) = sin(5t). (c) Curves
of the control input when r(t) = 1. (d) Output curves of uncertainties f and {, when r(f) = 1.

Case 2. Sensor faults (constant faults and time-varying faults)

The following constant sensor faults are considered:

0.1
<
(M ]esies

Gf, = {0

>
0]

This fault model indicates that the system suffers a constant bias sensor fault with
a magnitude of 0.1 when 0 < t < 5, and the sensors return to normal when t > 5. The
simulation results of the L1 adaptive controller and MRAC are compared in Figure 3.

The simulation results when constant bias sensor faults occur in the system are shown
in Figure 3. From the response curves in Figure 3a,b, it can be seen that the comparative
MRAC responds faster than the L1 adaptive controller; however, the MRAC scheme has a
larger tracking error with either constant or time-varying reference signals. The L1 adaptive
controller possesses a lower overshoot and a smaller steady error. From the simulation
results in Figure 3¢, it can be seen that the control output of MRAC fluctuates more in order
to compensate for the effects of sensor faults, input constraint and external disturbances,
while the control output curve of the L1 adaptive controller fluctuates slightly around
the equilibrium position, except for a very short period of time at the beginning of the
simulation. As can be seen from the output curves of the uncertainties demonstrated in
Figure 3d, there is a transient oscillation in the estimate of the lumped uncertainty when
sensor faults occur at t = 0 as well as when sensors return to normal operation at t = 5;
at other moments, the lumped uncertainty maintains a consistent and bounded estimate.
The L1 adaptive controller shows good stability and fault tolerance performance when the
sensors have constant bias faults.
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The following time-varying and constant sensor faults are considered:

[ 3sint
3sint
Gfs = 0.2

0.2

},0§t<3

E=E

This fault shows that the system has a time-varying sensor fault of sinusoidal form
when 0 < t < 3, and the sensors have constant bias faults with a magnitude of 0.2 when
t > 3. The simulation results of the L1 adaptive controller and MRAC are compared in
Figure 4.

The simulation results considering both time-varying and constant sensor faults are
shown in Figure 4. From Figure 4a,b, it can be observed that the L1 adaptive controller
has superior tracking performance compared with MRAC. This can be clearly seen from
the steady-state error, which reaches 20% for MRAC in Figure 4a and is even higher in
Figure 4b, while the L1 adaptive controller is almost zero. A comparison of the response
curves in both Figure 3c,d and Figure 4c,d shows that the presentation is similar except
that the control signals and uncertainty estimates are somewhat different at the moment
of fault occurrence. This indicates that the L1 adaptive controller outputs smoother and
faster convergence with more stable performance. Combined with Figures 3 and 4, it can
be seen that the L1 adaptive controller can compensate well for the influences of sensor
faults, input constraint and external disturbances; moreover, it can realize accurate and
stable tracking of a given constant or time-varying input signal.

Case 3. Actuator faults (multiplicative faults and additive faults)
The following multiplicative actuator faults are considered:
05 0
w — 0 05
N 1 0
01

],0§t<5
ESE

This fault model shows that actuators have constant multiplicative faults with w = 0.5
when 0 < t < 5, which implies that the actuators lose half of their effectiveness. Fur-
thermore, the actuator faults are eliminated when t > 5. The simulation results of the L1
adaptive controller and MRAC are compared in Figure 5.

From Figure 5a,b, it can be seen that the tracking error of the L1 adaptive controller
is smaller than that of MRAC, while the overshoot is also smaller. Moreover, Figure 5c
shows that the MRAC has large fluctuations in the control inputs in order to compensate
for the effect of actuator faults, whereas the L1 adaptive controller has very small and
smoother fluctuations and converges more quickly. Figure 5d clearly demonstrates that
the L1 adaptive controller also guarantees a smooth and bounded lumped uncertainty
estimation. Figure 5 shows that the L1 adaptive controller designed in this paper has
a better control performance under the action of constant multiplicative actuator faults,
providing the advantages of strong tracking performance, a smooth and bounded control
input signal, and uncertainty estimation.

The following multiplicative and additive actuator fault model is also considered:

[062 002],0§t<3 0747, 0<t <3
w = 01 0 VU= [SSinZt 0 } 3
. > . 7 —
[0 0.1],1‘_3 0 5sin 2t

This fault model shows that the actuators have constant multiplicative faults with
w = 0.2 when 0 < t < 3, which indicates that actuators lose 80% of their effectiveness.
The actuators endure constant multiplicative faults and time-varying additive faults when
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t > 3. The simulation results of the L1 adaptive controller and MRAC are compared in
Figure 6.

The response curves of the system with multiplicative and additive actuator faults are
shown in Figure 6. From Figure 6¢, it can be seen that when multiplicative and additive
actuator faults occur at the same time, the L1 adaptive controller outputs smoother control
signals to compensate for these faults. It can clearly be observed that the tracking error
of MRAC reaches more than 10% in Figure 6a and even larger in Figure 6b, while the L1
adaptive controller still converges to zero as in the case of a single multiplicative fault.
Figure 6d illustrates that when additive actuator faults are added at t = 3, the estimate
of the lumped uncertainty . presents a larger fluctuation compared with the previous
moments when only a single multiplicative fault is present, but still maintains a bounded
and smooth estimation. A look at Figures 5 and 6 reveals that the L1 adaptive controller
has better tracking performance, stronger stability, and fault tolerance than MRAC.

Case 4. Actuator faults and sensor faults (constant faults and time-varying faults)

The following multiple faults are considered:
Actuator faults:

(02 0
<
0 o02]0=f<3 02.2,0<t<3
(0.1t 0 _ 02 0
= < = <
w 0 0.”],3_:‘,<8,u [0 0'2},3_1‘<8
(0.8 0] O242,t > 8
R
Sensor faults:
01 O 0<t<5
0 01
Gfs:
02t 0 t>5
0 02t —

This fault model shows that the actuators have constant multiplicative faults with
w = 0.2 when 0 < t < 3, which indicates that actuators have only 20% of control effective-
ness. The actuators have time-varying multiplicative faults and constant additive faults
when 3 < t < 8, and there are only constant multiplicative faults in the system when
t > 8. Meanwhile, the sensors have constant bias faults with a magnitude of 0.1 when
0 <t < 5, and have time-varying faults when t > 5. The simulation results of the L1
adaptive controller and MRAC are compared in Figure 7.

From Figure 7a,b, it can be seen that the output signal of MRAC cannot track the
reference input r well and the tracking error keeps increasing from ¢t > 5, due to the
simultaneous effect of actuator and sensor faults. On the other hand, the output signals
of the L1 adaptive controller maintain smooth and stable responses, except for slight
fluctuations at the moment of faults occurrence. The control input curve of the L1 adaptive
controller in Figure 7c shows that at the moments when the faults change, (t = 3,f = 5and
t = 8), the control input signal oscillates slightly in order to counteract the performance
degradation caused by the faults, but quickly returns to the equilibrium position. The
control input signal is stable and converges fast. Meanwhile, the control signal of MRAC
oscillates for a period of time before stabilizing; the same is valid for the lumped uncertainty
estimation curve illustrated in Figure 7d. Synthesizing the response curves in Figures 2-7,
it can be concluded that the L1 adaptive controller exhibits excellent tracking performance,
good stability, and fault tolerance in all four simulation scenarios.

6. Conclusions

In this paper, an L1 adaptive fault-tolerant controller against multiple faults, input
constraint, and external disturbances was designed. Sensor faults and input constraint are
transformed and reorganized through state expansion and nonlinear function approxima-
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tion. Combined with actuator faults, external disturbances, and approximation errors, an
uncertain nonlinear system with unknown parameters and lumped uncertainties was de-
veloped. Moreover, the design of the L1 adaptive fault-tolerant controller compensates for
the effects of uncertainties. With the integrated effect of the state predictor, adaptive laws,
and control law components, the L1 adaptive controller achieves concise and effective con-
trol without additional fault observers or estimators. The comparative simulation results
demonstrate that the designed controller has good stability, fault tolerance, and tracking
performance. The performance of the proposed controller will be further implemented and
validated in the future using nonlinear systems such as unmanned aerial vehicles and un-
manned surface vehicles. Meanwhile, fault-tolerant control for other types of sensor faults,
such as stuck faults and loss of effectiveness faults, is another future research direction.
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