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Abstract: Wireless charging technologies are widely used in electric vehicles (EVs) due to their
advantages of convenience and safety. Conventional wireless charging systems often use planar
circular or square spiral windings, which tend to produce strong electric fields (E-fields), leading to
electromagnetic interference (EMI) and potential health risks. These standard coil configurations,
while efficient in energy transfer, often fail to address the critical balance between E-field emission
reduction and power transfer effectiveness. This study presents an “Alternating Voltage Phase Coil”
(AVPC), an innovative coil design that can address these limitations. The AVPC retains the standard
dimensions of traditional square coils (400 mm in length and width, with a 2.5 mm wire diameter
and 22 turns), but introduces a novel current flow pattern called Sequential Inversion Winding (SIW).
This configuration of the winding significantly reduces E-field emissions by altering the sequence of
current through its loops. Rigorous simulations and experimental evaluations have demonstrated
the AVPC’s ability to lower E-field emissions by effectively up to 85% while maintaining charging
power. Meeting stringent regulatory standards, this advancement in the proposed coil design
method provides a way for WPT systems to meet stringent regulatory standards requirements while
maintaining transmission capability.

Keywords: electric vehicles (EVs); electromagnetic field exposure; wireless power transfer; Alternating
Voltage Phase Coil (AVPC); E-field mitigation in charging systems; coil designs

1. Introduction

Wireless charging technology, characterized by its non-contact method of energy trans-
fer, has revolutionized the convenience and safety of powering devices across various
applications [1]. This technology facilitates the transfer of power without physical connec-
tions [2], finding use in diverse fields such as biomedical devices for remote healthcare
monitoring [3], logistic optimization through unmanned warehousing [4], and advanced
navigation systems for expansive marine exploration [5]. Originating over a century ago
with basic inductive charging methods [6], wireless charging has progressively evolved
into sophisticated forms like resonant inductive coupling and capacitive coupling [7,8],
broadening its applicability. Despite these advancements, the technology faces significant
challenges that hinder its wider adoption, particularly in high-power applications such as
electric vehicles (EVs) [9]. These challenges include electromagnetic interference (EMI) and
electromagnetic field (EMF) leakage, especially the electric field (E-field) component, which
poses safety risks and reduces system efficiency [10,11]. Innovative solutions are needed
to offer high performance and environmental compatibility [12], focusing on mitigating
E-field emissions while maintaining efficient power transfer [13].
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Previous research efforts in wireless charging coil design have focused on optimizing
coil geometry [14], investigating novel materials, and developing advanced control strate-
gies [15] to enhance coupling efficiency, reduce EMF leakage, and minimize EMI [16,17].
However, existing approaches, such as the distributed compensation topology [18], have
limitations in coil design flexibility and overall system performance [19,20]. Most state-
of-the-art wireless charging systems rely on passive shielding techniques [21], like metal
plates near the coils or the implementation of alternative coil geometries, to mitigate EMF
exposure risks [15,22]. While these methods effectively shield EMFs [23], they increase
the charging units’ size and complexity, introducing challenges such as enhanced para-
sitic capacitance [24], which can exacerbate conductive common mode noise issues and
complicate compliance with stringent EMC standards [25,26].

In addition to shielding, optimized coil design, and active field cancelation techniques,
the spread spectrum technique has emerged as another effective approach for reducing
leakage fields and EMI in wireless charging systems. This technique, based on either
random or periodic modulations, has been explored in recent studies [27]. The spread
spectrum approach works by distributing the energy of the electromagnetic fields over a
wider frequency range, thereby reducing the peak field strengths and minimizing potential
interference with other electronic devices. While this technique has shown promise in
mitigating leakage fields and EMI, it often requires more complex control systems and may
introduce challenges in terms of power transfer efficiency and compatibility with existing
wireless charging standards [28], as well as compliance with the ICNIRP guidelines and the
European Directive limit for public human exposure to EMF at 85 kHz, set at 87 V/m [29].
Nonetheless, the spread spectrum technique represents a valuable addition to the arsenal
of methods available for addressing the critical issues of electromagnetic compatibility and
safety in wireless charging applications.

In response to these challenges, this paper introduces the Alternating Voltage Phase
Coil (AVPC), a novel coil design optimized for EV wireless charging systems. The AVPC
addresses key issues in traditional wireless charging systems by significantly reducing EMI
and the E-field component of EMF leakage [22,30]. This study prioritizes the reduction in
E-field emissions over leakage magnetic fields because E-fields are the primary contributor
to potential health risks [31] and electromagnetic compatibility issues in wireless charging
systems [32,33], in line with the ICNIRP guidelines and the European Directive limit for
public human exposure to EMF [29]. By focusing on E-field mitigation, the AVPC aims
to address the most pressing safety concerns while maintaining efficient power transfer
through the intentional preservation of the H-field [24]. This unique approach to mitigating
E-field emissions sets the AVPC apart from other state-of-the-art solutions. While existing
techniques, such as the use of ferrite shields [23,34] or the implementation of metamateri-
als [35], have shown promise in reducing electromagnetic interference, they often come
with trade-offs in terms of system complexity, cost, and power transfer efficiency [25]. In
contrast, the AVPC’s innovative design achieves significant E-field reduction through its
unique coil geometry and current flow pattern, without compromising on power transfer
efficiency or requiring additional complex components [15]. This sets the AVPC apart as a
potentially game-changing solution for the wireless charging industry, offering a simpler,
more efficient, and more effective approach to addressing the essential challenges of elec-
tromagnetic compatibility and safety in high-power wireless charging applications [26].
Its superiority lies in its innovative geometry, which minimizes electromagnetic emissions
while maintaining high power transfer, similar to traditional coils [36]. Additionally, by its
unique coil structure, the AVPC does not need the additional capacitors for maintaining
a uniform magnetic field (H-field) distribution similar to traditional coil designs, as has
been carried out in the distributed compensation topologies [37], which is essential for the
reduction in E-field and optimal energy transmission. The AVPC’s innovative Sequential In-
version Winding (SIW) technique creates an alternating high and low voltage arrangement
across adjacent turns, ensuring effectively out-of-phase voltages that lead to opposing and
canceling electric fields, significantly reducing overall E-field emissions. The development
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of the AVPC offers practical advantages for wireless charging systems and contributes to
the fundamental understanding of electromagnetic field behavior in these systems.

This study provides new insights into the relationship between coil geometry, current
flow patterns, and the resulting electromagnetic field characteristics through the design
and analysis of the AVPC. The architecture of EV wireless charging systems, as illustrated
in Figure 1, involves several essential components, including grid frequency rectifiers,
inverters, coupling coils, and network compensation, which must function cohesively to
achieve efficient and safe power transmission. The coupling coil plays a central role in the
wireless transfer of energy, and has been the focus of substantial research and development
efforts aimed at enhancing its performance and safety features.
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To address the limitations of traditional wireless charging systems, particularly high
EMI and E-field leakage, our study proposes the AVPC, which incorporates several innova-
tive features. First, the AVPC’s innovative coil configuration significantly reduces E-field
emissions while maintaining the same power transfer as traditional coils, enhancing the
system’s operational reliability. Second, the AVPC’s enhanced safety protocols primarily
focus on minimizing EMI and E-field leakage, the main contributors to potential health
risks associated with electromagnetic emissions. While the AVPC effectively reduces the
E-field, it intentionally maintains the H-field (magnetic field) necessary for efficient power
transfer, as the leakage magnetic field is not the primary concern in this study. The AVPC’s
ability to selectively reduce the E-field while maintaining the H-field is a key aspect of this
research. Third, the AVPC demonstrates exceptional versatility and broad adaptability
for various device applications, including EVs, mobile devices, and medical equipment,
showcasing its potential beyond traditional applications.

Table 1 presents a detailed comparison of the AVPC and traditional coil designs,
emphasizing the AVPC’s significant improvements in E-field emission reduction [38], inno-
vative current flow sequence, and broad adaptability to various devices while maintaining
comparable energy transfer efficiency. Our experimental and simulation results demon-
strate that the AVPC achieves an 85% reduction in E-field emissions compared to traditional
coil designs while maintaining the same power transfer efficiency as traditional coils. These
quantitative findings underscore the effectiveness of the AVPC in addressing the limitations
of conventional wireless charging systems, positioning it as a superior solution for various
wireless charging applications.
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Table 1. Comparison of traditional coil and AVPC configuration.

Feature Conventional Coil AVPC

E-field emission reduction Limited Significantly improved

Energy transfer efficiency High Comparable to
conventional coils

E-field neutralization method Capacitors (complex) Design configuration
Innovative current flow sequence No Yes

Sequential turn progression Turns in sequence Not applicable

Adaptability to various devices Limited Broad (EVs, mobiles,
medical equipment)

The key objectives of this study are as follows:

1. Primary objective: Develop and validate the AVPC design, demonstrating its effec-
tiveness in reducing EMI and E-field emissions while maintaining efficient power
transfer, thus addressing the most pressing safety and performance issues in tradi-
tional wireless charging systems.

2. Experimental validation: Conduct comprehensive testing to measure the EMF emis-
sions of the AVPC under various operating conditions and compare the results with
those of traditional coil systems to quantify improvements in field management.

3. Safety and efficiency metrics: Assess the safety improvements brought by the AVPC,
particularly through reduced EMF exposure, and analyze the system’s efficiency in
terms of power transfer and energy loss.

4. Design optimization: Explore new design variations of the AVPC based on the findings
from the previous objectives, aimed at further enhancing its performance, safety, and
compatibility with high-power wireless charging applications.

To experimentally validate the AVPC’s enhanced capabilities, comprehensive testing
will be conducted using advanced measurement techniques to assess the coil’s efficiency
and EMF emissions across various operational conditions. Additionally, simulations will
be performed to investigate the impact of the AVPC’s design on the system’s performance
and explore potential design optimizations.

The paper is structured as follows: Section 2, Proposed Coil Structure Compared to the
Traditional Coil, presents the design methodology and developmental insights of the AVPC,
contrasting it with traditional coil structures. Section 3, Simulation Analysis of the Coil,
delves into comprehensive simulation studies to validate the performance of the AVPC.
In Section 4, the paper transitions into the experimental validation, providing a detailed
analysis of the experimental setup and discussing the results obtained from real-world
testing scenarios. The paper culminates in Section 5, the conclusion, summarizing the key
findings, drawing conclusions from both the simulated and experimental investigations,
and offering perspectives for future research in EV wireless charging systems.

2. Proposed Coil Structure Compared to the Traditional Coil
2.1. Structural Design and Development of AVPC

This section elucidates the innovative design principles and structural characteristics
of the AVPC, an innovative advancement in EV wireless charging technology. The AVPC’s
revolutionary design departs from conventional coil configurations by employing a unique
turn sequencing pattern. In traditional coils, as shown in Figure 2a, the current flows
sequentially through the turns in the order of L1, L2, L3, L4, L5, and L6. In contrast, the
AVPC’s electrical current follows a different path while maintaining the same direction of
current flow. In the AVPC design depicted in Figure 2b, the current first flows through the
odd-numbered turns L1, L3, and L5 and then through the even-numbered turns L2, L4, and
L6. Similarly, in the AVPC design shown in Figure 2c, the current flows through L1, L3, and
L5, and then L6, L4, and L2, maintaining the same direction of current flow throughout the
coil. This innovative sequencing creates an alternating voltage pattern across the coil, with
higher voltage differences between adjacent turns compared to traditional coils.
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LTSpice simulations and mathematical analyses of the voltage distributions in the
AVPC and traditional coil reveal a significant difference in their voltage patterns. In the
AVPC, the voltage waveforms of adjacent turns exhibit a phase difference, when compared
to the average voltage of the coil, which is used as the reference. This phase difference
indicates substantial voltage differences between neighboring turns, resulting in alternating
high and low voltage points along the coil. In contrast, the voltage waveforms of adjacent
turns in the traditional coil are in-phase, suggesting a more uniform voltage difference
distribution and smaller voltage differences between neighboring turns. The alternating
voltage pattern created by the innovative sequencing in the AVPC design contributes to
reduced field intensity in the vicinity of the coil, ultimately leading to a reduction in E-field
emissions compared to traditional coil designs.

The design of the AVPC involves careful consideration of its geometry and parameters
to optimize its performance. The key parameters that define the coil’s geometry include
the outer diameter Dout, inner diameter Din, wire diameter dw, and spacing between turns
(s). These parameters are related to the number of turns (N) in the coil, as described by
Equation (1):

N =
(DOut − DIn)

(2 × dw + 2 × S)
(1)

Equation (1) governs the relationship between the geometrical parameters and the
number of turns in the coil. By carefully selecting these parameters, the geometry can be
optimized while maintaining the same power transfer as traditional coils and achieving
reduced E-field emissions, particularly in the case of AVPC.

The inductance of the coil (L) is calculated using Equation (2), where µ0 is the perme-
ability of free space (4π× 10−7 H/m), N is the number of turns, A is the cross-sectional area
of the coil

(
m2), and l is the length of the coil (m) [39]. The mutual inductance between

adjacent turns (M) is given by Equation (3):

L =
(µ0 × N2 × A)

l
(2)
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M =
(µ0 × N1 × N2 × Am)

Lm
(3)

where N1 and N2 are the number of turns in adjacent coil segments, Am is the effective
cross-sectional area of the region where the magnetic fields of the adjacent segments interact,
contributing to the mutual inductance effect, and Lm is the effective length of the mutual
inductance path, representing the average distance between the adjacent coil segments
contributing to the mutual inductance effect. The coupling coefficient between adjacent
turns (k) is calculated using Equation (4), where M is the mutual inductance between
adjacent turns and L1 and L2 are the self-inductances of the adjacent turns. The quality
factor of the coil (Q) is given by Equation (5), where ω is the angular frequency (2π × f ),
L is the inductance of the coil, and R is the resistance of the coil. The skin depth of the wire
(δ) is calculated using Equation (6), where ρ is the resistivity of the wire material (Ω·m), f
is the frequency of the alternating current (Hz), and µ is the magnetic permeability of the
wire material (H/m).

K =
M√

L1 − L2
(4)

Q =
(ω × L)

R
(5)

δ =

√
ρ

π × f × µ
(6)

The AVPC’s structural uniqueness lies in its strategic arrangement of the turn sequence,
which harnesses the principle of electric field opposition. This design involves an innovative
Sequential Inversion Winding (SIW) technique where the current flows through the turns in
a specific sequence that creates an alternating voltage pattern across adjacent turns. Unlike
traditional coil designs, where the voltage phases of adjacent turns are the same, leading to
additive electric fields, the AVPC design arranges the turns such that the voltage potentials
between adjacent turns are effectively out-of-phase. While direct measurements of the
voltages (e.g., V1 and V2) at each turn might show them as in-phase due to the same AC
source, the relative voltage differences between adjacent turns in the AVPC design create
effective phase shifts. These phase shifts are determined by using the average voltage
of the coil and extracting the voltages of individual nodes from this average voltage. By
comparing the extracted node voltages, the phase shifts between adjacent turns can be
clearly identified. Although each turn receives the same AC signal, the spatial arrangement
and alternating voltage patterns cause adjacent turns to have voltages that effectively cancel
each other out corresponding to the average voltage of the coil. This phase opposition
results from the specific sequencing of the turns and the inherent geometric configuration
of the coil. The cancelation effect can be described by the principle of superposition of
electric fields. If E1 and E2 are the electric fields generated by adjacent turns with opposing
voltages, the resultant electric field ETotal is given by the following:

ETotal = E1 + (−E2) (7)

where E1 is the electric field generated by one turn and −E2 is the electric field generated
by the adjacent turn with an opposite voltage polarity, effectively canceling out E1. By
optimizing the AVPC’s design parameters, such as the number of turns, spacing between
turns, and coil dimensions, this ingenious design feature enables the AVPC to significantly
mitigate electromagnetic interference without relying on complex shielding or extensive
modifications, ultimately simplifying the coil’s architecture while enhancing its performance.

The AVPC’s superior characteristics, as outlined in Table 1, position it as an environ-
mentally friendly and user-safe solution, surpassing the limitations of conventional coil
designs. The development of the AVPC represents a significant stride in addressing the
pressing need for safer and more efficient wireless charging solutions. By reimagining the
fundamental structure and voltage pattern of the coil, this innovative design paves the
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way for overcoming persistent challenges in the field, setting a new paradigm for future
advancements in EV wireless charging technology.

2.2. Simulation Setup and Preliminary Results

The simulation parameters and outcomes, depicted in Figures 3 and 4, play a vital
role in validating the operational advantages of the AVPC design. The coil parameters
(inductance and coupling coefficients) presented in Figure 4 and Table 2 are derived from the
ANSYS FEM simulation of the coil pad structure shown in Figure 3a. LTSpice simulations
were conducted using these data for both the AVPC (Figure 3c) and the traditional coil
(Figure 3b), focusing on a six-turn configuration to simplify the analysis and understand
the reason behind the E-field reduction.

To maintain accuracy while simplifying the analysis, assumptions such as ideal com-
ponent behavior were made in the SPICE simulations. These assumptions allow for a
focused study on the fundamental behavior of the AVPC design compared to the tradi-
tional coil structure.

Table 2. Coil inductance and system parameters.

Coil Inductance (uH) Parameter Value

L1 0.120 Input AC current I 5 A
L2 0.087469 Resonant frequency 85 KHz
L3 0.060760 Shielding plate 74 mm × 74 mm × 1 mm
L4 0.043119 Ferrite core 1 72 mm × 72 mm × 2 mm
L5 0.030174 Coil dimension 70 mm × 70 mm × 3 mm
L6 0.019673 Coil turn to turn spacing 1.5 mm
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As illustrated in Figure 3b,c, the traditional coil features a sequential arrangement,
while the AVPC design employs an alternating coil arrangement to strategically reduce E-
field emissions. The LTSpice simulations, measuring average voltage waveforms at different
nodes, highlight the role of phase differences in the AVPC’s E-field reduction capability.
This comprehensive analysis of the voltage distribution and phase differences between the
two designs demonstrates the AVPC’s superior ability to suppress E-field emissions. The
AVPC’s unique configuration enhances E-field mitigation through phase differences and
field cancelation, resulting in superior performance compared to the traditional coil while
maintaining comparable power transfer.

2.3. Waveform Analysis and E-Field Mitigation through Spice Simulation

The voltage waveforms of the traditional and AVPC coil designs, obtained from
SPICE simulations and presented in Figure 5a,b, are essential for understanding their
electrical characteristics and inferring potential E-field emissions. The simplified equation
E = (Vtotal/2πε0r) demonstrates how the total voltage across the coil correlates with
the E-field strength. In the traditional coil design, the in-phase voltage waveforms across
inductors L1 to L6, described by the relationship Vi = JωLi Ii, enhance magnetic field
generation, but also increase the potential for E-field emission due to the higher total voltage
across the coil, which can be expressed as the sum of the voltages across each inductor.
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Vtotal = V1 + V2 + · · ·+ Vn (8)
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In contrast, the AVPC design introduces a strategic phase shift to mitigate E-field
emissions. The modified equation Vi = JωLi Ii − JωMik Ik, where Mik represents the
mutual inductance between adjacent turns, leads to a phase shift between the voltages
across adjacent turns, promoting phase opposition and reducing the total voltage and,
consequently, the E-field emissions. The total voltage across the coil in the AVPC design can
be expressed as the sum of the voltages across each inductor, considering the phase shift.

Vtotal = V1 + V2e(jθ2) + · · ·+ Vne(jθn) (9)

The 180 degree phase shift is achieved through the specific arrangement and sequenc-
ing of the turns in the AVPC design, where the strategic placement of turns with respect
to each other promotes the desired phase opposition. The formula used in the SPICE
simulation is shown in Equation (12) and demonstrates how the voltages at different nodes
are averaged, leading to an effective phase shift. This analysis reveals the phase difference
in the voltage in the AVPC compared to the traditional coil, as shown in Figure 5a,b.

The average voltage across the turn is calculated as follows:

Vavg =
1
N ∑N

i = 1 Vi (10)
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The effective voltage at a specific turn, say Vi, is given by the following:

Ve f f ective = V1 − Vavg (11)

The generalized form of the voltage at any turn Vturn is as follows:

Vturn = Vturn −
1
N ∑N

i = 1 Vall turns (12)

Figure 5 illustrates the voltage waveforms for the traditional coil and the AVPC.
In the traditional coil design (Figure 5a), the in-phase voltage waveforms V1 and V2
have positive peaks reaching approximately 2.8V, leading to higher overall voltage and
potentially increased E-field emissions. Conversely, the AVPC design (Figure 5b) exhibits
an out-of-phase relationship between V1 (positive peaks around 2.4 V) and V2 (negative
peaks around −2.4 V), resulting in lower overall voltage and reduced E-field emissions.
The E-field strength at a distance r from the coil can be approximated using Equation (13).

E =
(Vtotal)

(2πε0r)
(13)

where Vtotal represents the total voltage across the coil and ε0 is the permittivity of free
space (8.85 × 10−12 F/m). This Equation provides a simplified estimation of the E-field
strength based on the total voltage and the distance from the coil [40]. However, as
presented in [41,42], a more detailed analysis of the E-field distribution is necessary to fully
understand the electromagnetic behavior of these coil structures and accurately compare
the E-field mitigation capabilities of the AVPC and traditional coil designs.

The LTSpice circuit model, based on the AVPC design, facilitates the desired phase
cancelation through the innovative arrangement of coil turns, concentrating the magnetic
field for efficient energy transfer while substantially diminishing E-field emissions. The
essential difference between the two designs lies in the phase relationship between the
voltages, with the AVPC demonstrating an out-of-phase relationship that enables E-field
mitigation while maintaining energy transfer. This is achieved by ensuring that the current
through the coil remains consistent, thereby sustaining the magnetic field necessary for
energy transfer. Simulation results confirm the AVPC’s enhanced ability to achieve a
balance between energy transfer efficiency and E-field mitigation by leveraging phase shift
cancelation to reduce E-field emissions while preserving core functionalities, setting a new
standard in wireless charging technology that prioritizes both electromagnetic compatibility
and safety.

3. Simulation Analysis of the Coil
3.1. Simulation Parameters and Setup

Finite Element Method (FEM) simulations, performed using a computational electro-
magnetics software package, were used to analyze the electromagnetic properties of the
traditional coil and AVPC designs in EV wireless charging systems. Table 3 lists the key
simulation parameters, including input current, resonant frequency, and dimensions of
the shielding plate, ferrite core, and coil, which are selected to represent realistic operating
conditions in EV wireless charging applications. While Table 2 focuses on the specific case
of a six-turn coil to simplify the analysis and understand the E-field reduction mechanism,
Table 3 provides a more comprehensive set of simulation parameters to evaluate the per-
formance of the traditional coil and AVPC designs under various operating conditions.
These simulation parameters were then used as a basis for the experimental setup to ensure
consistency between the computational models and the physical prototype.

The FEM simulations discretize the domain using second-order tetrahedral elements
and apply appropriate boundary conditions to represent the wireless charging pad, an
essential component of the EV wireless charging system. The pad is modeled with realistic
dimensions, materials, and operating conditions to accurately capture its electromagnetic
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behavior. The electromagnetic responses, such as magnetic field distribution, electric field
intensity, and power transfer capability, are computed by solving Maxwell’s equations
iteratively. By accurately modeling the pad’s electromagnetic properties, the FEM simula-
tions provide valuable insights into the performance and safety aspects of the EV wireless
charging system.

Table 3. System parameters of pad.

Parameters Values

Input AC current 5 A
Resonant frequency 85 KHz

Shielding plate dimension 420 mm × 420 mm × 4 mm
Ferrite core dimension 404 mm × 404 mm × 5 mm

Coil dimension 400 mm × 400 mm × 2.5 mm
Number of turns 22 Turns
Coil inductance 336.4 uH

Key performance metrics, such as peak magnetic field strength, average electric
field intensity, and power transfer capability, are extracted from the simulation results
and compared between the traditional coil and AVPC designs. Visualizations of field
distributions and current densities provide insights into the electromagnetic behavior of
the coils. The FEM simulations offer a comprehensive assessment of the electromagnetic
performance of AVPC designs compared to traditional coil setups, contributing to the
understanding of their potential in enhancing the safety and capability of EV wireless
charging systems.

3.2. Electromagnetic Field Distribution and the Impact of Conductive Materials

A comparative analysis of electromagnetic field distributions, focusing on electric
field (E-field) emissions for both traditional and AVPC designs, demonstrates the AVPC’s
enhanced effectiveness in E-field mitigation. As demonstrated in Figure 6, the E-field
intensity around the traditional coil is noticeably higher compared to the AVPC models,
which exhibit a significant reduction in E-field intensity. This reduction is quantitatively
supported by the data presented in Figure 7, where the AVPC designs consistently show
lower E-field intensities at various measurement points.

The FEM analysis clearly illustrates the AVPC’s ability to reduce E-field emissions,
emphasizing a pivotal advancement in coil technology aimed at safer wireless charging
solutions. This consistent reduction in E-field level underscores the AVPC’s effectiveness in
mitigating electromagnetic emissions across a wide spatial distribution.

Simulations were conducted with a foreign metal object (FMO) positioned 100 mm
above the coils to mimic practical conditions in electric vehicle (EV) charging scenarios.
Figure 8 illustrates the influence of the FMO on the E-field distribution for each coil design.

The presence of the FMO led to an increase in E-field intensity across all designs due to
the metal’s interaction with the electromagnetic fields. However, the AVPC configurations
demonstrated remarkable resilience by suppressing the amplification of E-field levels. The
AVPC 2 design demonstrates exceptional performance, maintaining significantly lower
E-field intensities compared to the traditional coil at all measurement points, even in the
presence of the FMO (Figure 7b).
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Figure 6. Comparative E-field distributions in coil designs without environmental effects. (a) Tra-
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(e) AVPC 1 top view. (f) AVPC 2 top view. (g) Traditional coil side view vector distribution. (h) AVPC
1 side view vector distribution. (i) AVPC 2 side view vector distribution.
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3.3. Evaluating Electric Field Mitigation and Similar Magnetic Field Distribution in Coil Design

Figure 7 presents a detailed comparison of electric field (E-field) intensities measured
at specific points, illustrating the effectiveness of the AVPC designs in managing electro-
magnetic fields under various conditions. The measurement points M1 (X = 0, Y = 120,
Z = 100 mm), M2 (X = 0, Y = 160, Z = 100 mm), M3 (X = 0, Y = −120, Z = 100 mm),
and M4 (X = 0, Y = −160, Z = 100 mm) are strategically located at different coordinates.
Figure 7a provides baseline E-field measurements at a 100 mm distance along the Z-axis in
an environment free from external influences, while Figure 7b reveals the E-field intensities
in the presence of foreign metal objects, demonstrating the robust capability of the AVPC
designs to mitigate E-field disturbances.

The AVPC designs, particularly AVPC 2, demonstrate a significant reduction in E-field
intensities across all measurement points. Under pristine conditions (Figure 7a), the AVPC
2 design exhibits significantly lower E-field intensities compared to the traditional coil
at each measurement point, showcasing its effectiveness in mitigating electromagnetic
emissions across a wide spatial distribution. Moreover, despite the interference caused by
conductive materials, the AVPC configurations, especially AVPC 2, consistently maintain
their superior E-field mitigation performance, as evidenced by the results presented in
Figure 7b. This reduction in E-field levels under both pristine and interfering conditions
underscores the robustness of the AVPC designs in managing electromagnetic emissions.

The comparative analysis of the magnetic field distribution in the traditional coil and
two AVPC designs, as depicted in Figure 9, reveals a similar magnetic field distribution
within each coil design. The consistent color patterns indicate that the magnetic field
intensity and distribution are comparable across all three designs, particularly in the central
regions where the intensity is strongest. This similarity in patterns suggests that the
AVPC designs maintain a magnetic field distribution that closely resembles that of the
traditional coil.
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Figure 8. Comparison E-field distribution with a conductive aluminum plate at 100 mm distance.
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(h) AVPC 1 side view vector distribution. (i) AVPC 2 side view vector distribution.

Observing similar magnetic field distributions across different coil configurations
suggests that the AVPC designs can maintain a magnetic field comparable to the traditional
coil. This analysis indicates that the enhancements made to reduce E-field emissions in
AVPC designs do not significantly alter the magnetic field distribution, which is favorable
for maintaining the effectiveness of power transfer while minimizing electromagnetic
exposure through innovative coil design.
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Figure 9. Comparison of the H-Field in the design coil paid. (a) Traditional coil side view. (b) AVPC
1 side view. (c) AVPC 2 side view. (d) Traditional coil top view. (e) AVPC 1 top view. (f) AVPC 2
top view. (g) Traditional coil side view vector distribution. (h) AVPC 1 side view vector distribution.
(i) AVPC 2 side view vector distribution.

4. Experimental Setup of Coil Design and Result Verification
4.1. Methodical Assessment and Verification of Coil Design Performance

The practical performance of the innovative AVPC designs was thoroughly evaluated
in a laboratory setting that closely mimicked real-world conditions to enhance safety and
efficiency in electric vehicle wireless charging applications. Extensive testing simulated
real-world EV charging conditions in a laboratory setting, comparing traditional coils
against AVPC configurations, as shown in Figure 10. The experiments were conducted
using three coils of identical size, number of turns, frequency, and input current for each
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design (traditional, AVPC 1, and AVPC 2). Each coil was tested to ensure the reliability
and reproducibility of the results. The traditional and AVPC coils were energized using an
AC source to mimic typical charging behaviors, with an NF-5035 spectrum sensor placed
100 mm above the coil to closely resemble the spacing in practical EV charging scenarios
for accurate E-field data collection.
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The NF-5035 spectrum sensor was selected for its proficiency in detailed electromag-
netic detection, providing an accurate representation of EV charging scenarios. This enabled
a focused analysis of the coils E-field emissions, specifically isolating the AVPC’s inherent
electromagnetic attributes. The collected data revealed that AVPC 1 and AVPC 2 designs
exhibited a reduction in average E-field emissions as compared to the traditional coil design.
Observations were systematically analyzed to identify the compliance and the distinct
advantages of the AVPC design.

The experimental setup, depicted in Figure 11, maintained a consistent 100 mm
distance between the coil and sensor to generate reliable and comparable data on electric
field emissions from different coil designs. The E-field measurements were recorded at four
different points around each coil, showing the variation but while still being comparable to
the traditional coil, demonstrating the reduction in the E-field in the AVPC designs.

The AVPC employs an LCC compensation network to adjust the phase across the
coil, facilitating optimal electromagnetic field interaction and E-field mitigation. While the
LCC topology is used in experiments to validate the design, it is important to note that
the inherent 180 degree phase shift primarily arises from the coil geometry itself, not the
LCC network. Different topologies, such as series–series, series–parallel, parallel–series,
and parallel–parallel, can be used, as the phase shift depends on the coil geometry rather
than these topologies [43]. The phase shift, calculated using Equation (14), is essential for
neutralizing fields emitted by adjacent turns, enhancing E-field mitigation.

ϕ = arctan
(

Imaginary(z)
Real(z)

)
(14)
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Ensuring that the compensation network resonates at the coil system’s natural fre-
quency, calculated using Equation (15), is essential for efficient energy transfer and preserv-
ing the geometrically induced phase shift.

f0 =
1

2π
√

LC
(15)

The deliberate incorporation of the LCC compensation network was essential in the
experimental methodology, providing precise control over the electric field generated by
the coil. While the experimental setup closely mimics real-world EV charging conditions,
future research should focus on validating the AVPC’s performance in actual EV charging
scenarios to further strengthen this study’s findings.
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4.2. Detailed Analysis of E-Field Emission Findings

The experimental study quantified the E-field emissions of both traditional and AVPC
designs to compare their performance in reducing E-field radiation. The NF-5035 spectran
sensor designed by aaronia AG, a German company in gewerbegebiet aaronia AG was
used to measure E-field levels accurately, replicating typical EV charging scenarios. The
measurement points were located at a height of 100 mm above the coil surface, with
specific coordinates of (x = 0 mm, y = 120 mm, 160 mm, −120 mm, −160 mm) for each
coil design. These locations were selected based on the high E-field intensities observed in
the simulations (Figures 6 and 8), corresponding to regions where the E-field is expected
to be the strongest. This allows for a comprehensive assessment of the AVPC designs’
performance in mitigating E-field radiation. The simulations also guided the experimental
setup by considering the impact of nearby conductive objects, such as an aluminum plate,
on the E-field’s distribution.

Figure 12 illustrates the specific measurement points on each coil design, providing
a visual representation of the locations where E-field data were collected. The arrows in
Figure 12a–c indicates the four strategic points around the traditional coil, AVPC 1, and
AVPC 2, respectively, where the E-field measurements were recorded.

The experiments were conducted in a normal laboratory setting to maintain a realistic
environment. However, variability in E-field readings was observed within specific ranges.
This variability can be attributed to environmental factors, such as the presence of nearby
metallic objects or electromagnetic interference from other devices, which are relevant to
the European Directive limit for public human exposure to EMF at 85 kHz, set at 87 V/m.
The presence of such factors in real-world EV charging scenarios could potentially impact
the performance and safety of the charging system. To mitigate these effects, strategies
such as shielding, adaptive control systems, site planning, and continuous monitoring can
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be implemented. These measures aim to ensure stable and safe charging conditions, even
in the presence of environmental influences. Notably, the AVPC designs exhibited lower
fluctuations compared to the traditional coil, suggesting better environmental adaptability.
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4.3. Quantitative Assessment of E-Field Mitigation in AVPC Designs

The simulation results shown in Figure 7 provided initial insights into the distribu-
tion, which were further supported by the experimental findings illustrated in Figure 13,
demonstrating the strong correlation between the simulated and measured data. Figure 13
presents the corresponding E-field data collected from these measurement points, enabling
a comparative analysis of the E-field intensity across the different coil designs. The graph
clearly demonstrates the significantly lower E-field values observed across all measurement
points for AVPC designs, particularly AVPC 2, compared to the traditional coil, highlighting
the importance of minimizing E-field intensities in wireless charging solutions to reduce the
overall cumulative exposure. This quantitative assessment highlights the effectiveness of
the proposed AVPC designs in reducing E-field radiation. The experimental setup closely
mimicked real-world EV charging conditions; however, measuring E-field values at specific
points within a complete EV body structure can be challenging. Simulations are often used
to obtain these measurements.
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Figure 13. Comparative visualization of E−field intensity reduction across coil designs in EV
charging applications.

To provide a comprehensive view, Figure 14 presents the average E-field intensities
under different conditions for each coil configuration. The conditions evaluated include
scenarios without an environmental effect (Without FMO), as well as those with an envi-
ronmental effect introduced by the presence of foreign metal objects (With FMO). Practical
experimental results were also considered, providing a triangulated approach to under-
standing E-field behavior in varying environmental contexts, including the presence of
conductive materials like vehicle bodies. This understanding essential for the widespread
adoption and public acceptance of wireless charging technology, particularly in the auto-
motive industry.

In the absence of foreign metal objects, the traditional coil exhibits an E-field intensity
of 680.5 V/m, serving as our reference point. Alternating voltage phase coils show a signif-
icant reduction in E-field intensity, registering at 416.8 V/m and 91.8 V/m, respectively.
AVPC 1 achieved a notable reduction of 38.8%, while AVPC 2 demonstrated an impressive
86.5% reduction compared to the traditional design. Such marked reductions underscore
the efficacy of the novel coil designs in mitigating E-field exposure, an important considera-
tion for maintaining electromagnetic compatibility and ensuring user safety. When foreign
metal objects are introduced, simulating a common environmental effect in electric vehicle
(EV) wireless charging scenarios, we observe an overall increase in E-field intensity across
all coil designs, highlighting the influence of conductive materials in proximity to the coils,
an important variable in the design and deployment of wireless charging infrastructure.
Despite this increase, the AVPCs continue to maintain lower E-field levels than the tra-
ditional coil, with AVPC 2 in particular showing resilience to the environmental change,
increasing to 150.8 V/m but still remaining significantly lower than the traditional coil.

The experimental results validate the trends observed in simulated conditions, with
AVPC1 and AVPC 2 exhibiting reduced E-field intensities of 635.3 V/m and 144.3 V/m,
respectively. The close alignment between the experimental and simulated data affirms the
reliability of our simulation model and reinforces the potential of AVPC designs in real-
world applications. The findings underscore the importance of considering environmental
factors, such as the presence of foreign metal objects and the distance between the trans-
mitter coil and these objects in the design and implementation of wireless power transfer
systems. These factors are particularly relevant in the context of the European Directive
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limit for public human exposure to EMF at 85 kHz, set at 87 V/m. By significantly reducing
E-field emissions, AVPC offers a safer and more environmentally friendly alternative to
traditional coil designs, successfully meeting our central research aim of enhancing the
safety and compatibility of wireless charging systems and propelling advancements in
EV charging technology. The experimental findings demonstrate the AVPC’s potential for
practical implementation in EV wireless charging systems. However, several challenges
need to be addressed for widespread adoption, including the integration with existing
EV charging infrastructure, the development of standardized testing protocols, and the
assessment of long-term reliability and durability under various environmental conditions.
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5. Conclusions

In this paper, we presented the Alternating Voltage Phase Coil (AVPC), a novel coil
design that effectively mitigates electromagnetic interference (EMI) in electric vehicle (EV)
wireless charging systems. The AVPC’s innovative geometry and current flow pattern,
achieved through the Sequential Inversion Winding (SIW) configuration, significantly
reduce E-field emissions by 85% while maintaining efficient power transfer comparable to
traditional coils. The findings of this study clearly demonstrate the efficiency of the AVPC in
reducing electric field intensity, an important factor for safer electromagnetic applications.

Comprehensive simulations and experimental validations establish that the strategic
modifications in AVPC’s turn geometry significantly mitigate E-field exposure, even in
environments with foreign metal objects, enhancing electromagnetic compatibility. These
results validate the AVPC as a promising approach for developing electromagnetic systems
with stringent safety requirements.

The AVPC’s adaptability to various devices underscores its broad applicability across
multiple industries. This research contributes to the fundamental understanding of elec-
tromagnetic field behavior in wireless power transfer systems and opens up new avenues
for optimization and innovation. Future work will focus on further enhancing the AVPC’s
performance, investigating alternative materials, and exploring its scalability for higher
power applications.

The AVPC represents a significant advancement in EV wireless charging technology,
offering a safer, more efficient, and eco-friendly solution. Future research should focus on
validating the AVPC’s performance in actual EV charging scenarios to further strengthen
the study’s findings and support the widespread adoption of this innovative technology.
These findings provide a solid foundation for future research and development in designing
more efficient and safer coil configurations, with the potential for widespread industrial
application and integration. The AVPC is a highly important innovation that plays a vital
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part in ensuring conformity to exacting safety standards in the rapidly evolving field of
electromagnetic technology. With its promising performance and potential for widespread
adoption, the AVPC can contribute to the sustainable development of transportation and
other sectors.
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