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Abstract: This study addresses the completely distributed consensus control problem for
the heterogeneous nonlinear multi-agent system (MAS) with disturbances under switching
topology. First, a global sliding mode manifold (GSMM) is designed for the overall MAS
dynamic, which maintains stability without oscillations during topology switching after
achieving the sliding mode. Subsequently, a consensus sliding mode control protocol
(SMCP) is proposed, adopting the common sliding mode control (SMC) format and en-
suring the finite-time reachability of the GSMM under topology switching. Finally, the
proposed GSMM and SMCP are applied to the formation control of multiple-wheeled
mobile robots (WMRs), and simulation results confirm their feasibility and effectiveness.
The proposed SMCP design demonstrates key advantages, including a simple control
structure, complete robustness to matched disturbance, and reduced-order dynamics under
the sliding mode.

Keywords: multi-agent system; consensus; distributed; sliding mode control; wheeled
mobile robot

1. Introduction
Completely distributed cooperative control of multi-agent systems (MASs) has

emerged as a significant research domain in recent years [1–3]. Cooperative control de-
sign has been successfully applied to various fields, including UAV formation control [4],
multi-robot system (MRS) trajectory tracking [5] and satellite cluster attitude alignment [6].
Within multi-agent systems, cooperative control enables the execution of more complex
and challenging control tasks, making significant contributions to humanity. Among these
efforts, the consensus problem [7–9] is a fundamental objective in the cooperative control
of MASs.

For the consensus problem, MASs can be categorized into two types: systems with
leaders [10] and systems without leaders [11–13]. Research on consensus problems for
MASs with linear structures has already been extensively developed. For instance, Rezaee
and Abdollahi proposed a consensus control protocol that relies solely on relative posi-
tions in high-order MASs under undirected networks [14]. Chen et al. investigated the
completely distributed consensus control problem for general linear MASs via a dynamic
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event-triggered scheme [15]. Some scholars have focused on finite-time stability and fixed-
time stability in the context of the consensus problem for MASs [16–20]. For example,
Wang et al. introduced a new distributed finite-time optimization algorithm for agents
under directed graphs [21], while He et al. explored the fast finite-time tracking consensus
problem for first-order nonlinear MASs [22]. In practical applications, methods based on
the leader-following consensus framework are widely adopted.

In recent decades, sliding mode control (SMC) has undergone significant development,
including methods such as the nonsingular terminal sliding mode [23] and the global
sliding mode [24]. SMC methods have been applied to many industrial applications,
including typical MASs, due to their simplicity and robustness. Cai et al. implemented
sliding mode control for singular switched MASs by presenting a general integral-type
sliding mode control rule based on mode-dependent average dwell time [25]. Ma et al.
addressed the finite-time consensus problem for heterogeneous MASs with second-order
linear and nonlinear agents, where communication between agents was described by
directed graphs [26]. Nie et al. examined the finite-time consensus tracking problem
of MASs with unknown follower states under SMC control in the presence of actuator
attacks [27]. Jin et al. investigated predefined-time consensus for a class of second-order
nonlinear MASs using a sliding mode technique [28]. Song et al. proposed an optimized
leader-follower consensus control for multiple robot manipulator systems by combining
sliding mode control with reinforcement learning [29].

Despite the significant progress in the research on various MASs, many of these
studies have limitations. Some fail to provide a completely distributed control protocol.
For instance, in tracking consensus control problems, the control protocol often relies on
the leader’s control input information. Others neglect the nonlinear dynamic model of
the followers. Numerous studies on switching topology cases focus on single or double-
integrator systems or linear dynamic MASs without addressing the heterogeneous nature
of MASs. Specifically, few studies tackle the tracking consensus control problem for
both heterogeneous and high-order nonlinear dynamic MASs under switching topology.
Moreover, only a limited number of results offer a completely distributed sliding mode
control protocol that eliminates the need for the leader’s control input in such MASs.

This paper investigates the completely distributed consensus control problem for
heterogeneous nonlinear MASs with disturbances under switching topology. To develop a
sliding mode control protocol with a simple structure similar to common SMC, a global slid-
ing mode manifold (GSMM) is designed for the overall MAS dynamic. The GSMM remains
stable without oscillation during topology switching once the sliding mode is achieved.
A corresponding consensus SMCP is proposed, guaranteeing finite-time reachability re-
gardless of topology changes. The proposed SMCP design offers complete robustness
to matched disturbances, similar to conventional SMC, and results in a reduced-order
dynamic under the sliding mode. Finally, the proposed SMCP design is applied to the
formation control of multiple-wheeled mobile robots (WMRs), validating its feasibility and
effectiveness.

The contributions of the paper are summarized as follows.

(a). A GSMM for MASs is proposed, which remains unaffected by topology switching.
The consensus performance under the sliding mode is determined by the design of
the sliding mode manifold parameters. Moreover, order reduction is realized.

(b). A completely distributed control protocol based on the GSMM is proposed. It
features a sliding mode control format, a simple structure, and strong robustness. The
control protocol and its parameters depend solely on information from neighboring
agents.

(c). The proposed cooperative control protocol is applied to WMRs.



Actuators 2025, 14, 57 3 of 19

The remainder of the paper is organized as follows. Section 2 describes the problem.
Section 3 introduces the design of the GSMM surface and analyzes its ideal sliding mode
dynamics. Section 4 presents the control protocol design based on the GSMM and examines
the finite-time reachability of the GSMM. Section 5 provides the application of the presented
tracking consensus SMCP. Sections 6 verifies the control protocol design through simulation
results for WMRs. Finally, Section 7 concludes the paper.

2. Preliminary and Problem Formulation
2.1. Graph Theory

The communication topology among the M agents is characterized by an undirected
switching graph. In particular, it is assumed that the topology switches within a given
graph set Ĝ, where Ĝ =

{
G1,G2, ...,Gκ

}
, κ ∈ N, κ ⩾ 1.

For analytical convenience consider an infinite sequence of non-overlapping time
intervals [tk, tk+1), k ∈ N, with t1 = 0, τ1 ⩾ tk+1 − tk ⩾ τ0 where τ1 > τ0 > 0. During
each interval, the communication topology is fixed. In this context, the positive constant
τ0 is referred to as the dwell time. The time sequence t1, t2, ..., is defined as the switching
sequence along which the communication topology changes. Based on this description,
let Gσ be the communication topology of the considered MAS at time t, where t ⩾ 0. The
piecewise constant function σ(t) : [0,+ ∝) → {1, 2, ..., κ} serves as the switching signal.
Notably, Gσ ∈ Ĝ, for all t ⩾ 0.

Directed graphs are used to model the information interaction among agents. Let
Gσ = (V , E) be a directed graph, where V = {1, 2, ..., M} is a finite, nonempty set of nodes,
and E ⊆ V × V is the edge set. An edge of Gσ is denoted by (i, j), which starts from i and
ends at node j, indicating that node i can directly receive information from node j. The
set of all neighbors of node i is denoted as Ni := {j|(i, j) ∈ E}. A graph Gσ is called an
undirected graph if and only if (i, j) ∈ E implies (j, i) ∈ E , otherwise, it is considered a
directed graph. An undirected path in an undirected graph is defined analogously. The
weighted adjacency matrix Aσ =

[
aσ

ij

]
∈ RM×M of the graph Gσ is defined such that aσ

ij > 0
if (i, j) ∈ E , and aσ

ij = 0, otherwise. For an undirected graph, we assume that aσ
ij = aσ

ji. The

Laplacian matrix Lσ =
[
lσ
ij

]
∈ RM×M of Gσ is defined as lσ

ii = ∑M
j=1 aσ

ij and lσ
ij = −aσ

ij, ∀i ̸= j.
Obviously, the Laplacian matrix and the weighted adjacency matrix are both symmetric for
an undirected graph.

Consider a group consisting of M followers, labeled as agents 1 to M, and N(N = 1)
leaders, labeled as agent M + 1. The communication topology among the M + 1 agents,
denoted as Gσ, is assumed to remain fixed during the interval [tk, tk+1) when the switching
signal σ(t) = i, i ∈ {1, 2, ..., κ}. Let Aσ =

[
aσ

ij

]
∈ R(M+1)×(M+1) be the weighted adjacency

matrix, and Lσ =
[
lσ
ij

]
∈ R(M+1)×(M+1) be the Laplacian matrix of the M+1 agents. Then,

the following holds.

Lσ =

(
Lσ

1 Lσ
2

01×M 0

)
(1)

where Lσ
1 ∈ RM×M, Lσ

2 ∈ RM×1.

2.2. The Consensus Control Problem

Consider multiple followers of general nonlinear systems

ẋi = fi + giui + di, i = 1, 2, ..., M, (2)
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where xi ∈ Rn represents the agent state, ui ∈ Rm is the control input, di ∈ Rn denotes the
unknown disturbance, fi = fi(xi) ∈ Rn is the nonlinear vector field, and gi ∈ Rn×m is the
control matrix.

The leader is described as:

ẋi(t) = f 0(xi, t), i = M+1, (3)

where f 0 : Rn ×R → Rn is a nonlinear vector function.
To facilitate the analysis, the following assumptions are made.

Assumption 1. The nonlinear vector field fi(xi) is piecewise Lipschitz continuous, satisfying∥∥ fi
(

xj
)
− fi(xi)

∥∥ ⩽ λi
∥∥xj − xi

∥∥ where λi > 0 is a positive scalar. Furthermore, fi(0) = 0.

Assumption 2. The nonlinear vector function f 0 is Lipschitz continuous and satisfies∥∥ f 0(xM+1, t1)− f 0(xM+1, t2)
∥∥ ⩽ λ̄0∥xM+1∥+ λ0 where λ̄0 and λ0 are positive scalars.

Assumption 3. The control matrix gi is full-rank, i.e., rank(gi) = min(m, n) ensuring the
controllability of the agent.

Assumption 4. The unknown disturbance di = di(t) is bounded, satisfying ∥di∥ ≤ d̄i, where d̄i

is positive scalar.

Assumption 5. The unknown disturbance di does not affect the equilibrium of the nonlinear
dynamic in (2).

Assumption 6. For each i ∈ {1, 2, ..., κ}, the directed graph G i contains a directed spanning tree
with node M+1 as the root.

3. The Global Sliding Mode Surface Design for the Multi-Agent System
The sliding mode surface for the MAS is designed as follows,

S = (Lσ
1 ⊗ C)e

= (Lσ
1 ⊗ Im)

[
(Ce1)

T , (Ce2)
T , · · · , (CeM)T

]
, (4)

where e =
[
eT

1 , eT
2 , ..., eT

M
]T , and ei = xi − xM+1 is the consensus error of the i-th follower.

The matrix C ∈ Rm×n is the sliding mode parameter that satisfies rank(C) = m and ensures
that matrix Cgi is nonsingular and positive definite. The consensus error dynamics of the
i-th follower are written as:

ėi = ẋi − ẋM+1

= fi + giui + di − f 0(xM+1, t). (5)

The following stacked vectors are defined for future use,

xF =
[

xT
1 , xT

2 , ..., xT
M

]T
,

F =
[

f T
1 (x1), f T

2 (x2), ..., f T
M(xM)

]T
,

d =
[
dT

1 , dT
2 , ..., dT

M

]T
. (6)
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By Assumption 6 and the properties of the Laplacian matrix, the following equality holds

Lσ
1 1M + Lσ

2 = L1σ
M+1 = 0 (7)

which implies Lσ
1 1M = −Lσ

2 . According to (5), (6) and (7), the sliding mode surface in (4)
can be written as:

S =(Lσ
1 ⊗ C)(xF − 1M ⊗ xM+1)

=(Lσ
1 ⊗ C)xF + (Lσ

2 ⊗ CxM+1)

=(Lσ
1 ⊗ Im)

[
(Cx1)

T, · · · , (CxM)T
]T
+Lσ

2 ⊗ CxM+1

=


C ∑M+1

j=1 aσ
1j
(
xi − xj

)
C ∑M+1

j=1 aσ
2j
(
xi − xj

)
...

C ∑M+1
j=1 aσ

Mj
(

xi − xj
)


=
[
ST

1 , ST
2 , · · · , ST

M

]T
, (8)

where

Si = C
M+1

∑
j=1

aσ
ij
(
xi − xj

)
, ∀i = 1, 2, · · · , M. (9)

The time derivative of the sliding mode is expressed as:

Ṡ =(Lσ
1 ⊗ C)(ẋF − 1M ⊗ ẋM+1)

=(Lσ
1 ⊗ C)[F + d + diag{g1, g2, ..., gM}u]− (Lσ

1 ⊗ C)
(

1M ⊗ f 0(xM+1, t)
)

, (10)

where u = [uT
1 , uT

2 , · · · , uT
M]T .

Remark 1. The sliding mode in (4) remains piecewise continuous during each topology switching
dwell time interval τ0. Specifically, within the time interval [tk, tk+1), k ∈ N, the sliding mode is
continuous. However, when the topology switches, the coefficient in the sliding mode (4) undergoes
a jump.

Remark 2. When the sliding mode S = 0 is reached and maintained, topology switching does
not affect its stability and continuity. This is due to the property of the Laplacian matrix, where
Lσ

1 > 0, implying
(

Lσ
1 ⊗ IM

)
> 0. Consequently, when the sliding mode is reached S = 0, Cei = 0

according to (4), and Si = 0 according to (8). Therefore, the sliding mode equation S = 0 remains
unaffected, as Cei = 0, although the positive definite coefficient Lσ

1 transitions to another positive
definite matrix during topology switching.

If the sliding mode S = 0 is reached and maintained, Ṡ = 0, from (10), the equivalent
control can be resolved as:

ueq =−[(Lσ
1 ⊗ C)diag{g1, g2, ..., gM}]−1(Lσ

1 ⊗ C)
[

F + d − 1M ⊗ f 0(xM+1, t)
]
. (11)
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In (11), the term is deduced as follows:

[(Lσ
1 ⊗ C)diag{g1, g2, ..., gM}]−1(Lσ

1 ⊗ C)

= [(Lσ
1 ⊗ Im)diag{Cg1, Cg2, ..., CgM}]−1(Lσ

1 ⊗ C)

= diag
{
(Cg1)

−1, (Cg2)
−1, ..., (CgM)−1

}
(Lσ

1 ⊗ Im)
−1(Lσ

1 ⊗ C)

= diag
{
(Cg1)

−1, (Cg2)
−1, ..., (CgM)−1

}
(Im ⊗ C)

= diag
{
(Cg1)

−1C, (Cg2)
−1C, ..., (CgM)−1C

}
. (12)

Substituting (12) into (11), the equivalent control can be obtained as:

ui,eq = −(Cgi)
−1C

[
fi + di − f 0(xM+1, t)

]
. (13)

Then, the i-th agent’s following error ei is partitioned as:

ei =
[
(e1

i )
T , (e2

i )
T
]T

,

e1
i = [ei,1, · · · , en−m]

T , e2
i = [ei,n−m+1, · · · , en]

T ,

and the following equality holds,

Cei = [C1, C2]ei = C1e1
i + C2e2

i ,

where C = [C1, C2], C1 ∈ Rm×(n−m),and C2 ∈ Rm×m. When the sliding mode is reached,
Si = 0and Cei = 0. It follows that e2

i = −C−1
2 C1e1

i . (For simplicity, C2 may be selected as
C2 = Im.)

Consequently, the sliding mode equation of the i-th agent, based on the equivalent
control (13), is given by:{

e2
i = −C−1

2 C1e1
i ,

ėi = [In − gi(Cgi)
−1C]( fi + di − f 0(xM+1, t)).

(14)

Define g+i as the left P-inverse of the control matrix gi, namely:

g+i =
(

gT
i gi

)−1
gT

i ,

and let g⊥i ∈ Rn×(n−m) denote the orthocomplement of the control matrix gi with
rank

(
g⊥i
)
= n − m. Then, the following equality holds,

gig+i + g⊥i g⊥+
i = In,

where g⊥+
i is the left P-inverse matrix of g⊥i , satisfying g⊥+

i g⊥i = I(n−m).
One possible choice for the sliding mode surface parameter C is:

Cgi = G(i.e., C = Gg+i ), ∀i = 1, 2, · · · , M, (15)

where G ∈ Rm×m is an arbitrary full-rank matrix. Substituting the parameter (15) into (14),
the sliding mode dynamic can be written as:e2

i = −C−1
2 C1e1

i ,

ėi = g⊥i g⊥+
i
[

fi + di − f 0(xM+1, t)
]
.

(16)
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Corollary 1. For the MASs (2), (3), when the sliding mode (4), (8), (9) is reached and maintained,
(i.e., S = 0), the stability (or convergence) of the consensus error of the i-th follower to the leader
depends on the reduced-order error dynamics (14) or (16).

4. The Sliding Mode Control Protocol Design
4.1. The Control Protocol Design

The consensus control protocol is designed as follows:

ui = −αηiSi − βkisgn(Si)− g+i fi, (17)

where α, β ∈ R, α, β > 0 are arbitrary positive scalars, sgn(Si)= [sgn(Si,1), · · · , sgn(Si,m)]
T ,

and ηi, ki ∈ Rm×m, ηi, ki > 0 are parameter matrices to be determined.
Substituting the control protocol (17) into the consensus error dynamics (5), the fol-

lowing is obtained:

ėi = fi − f 0(xM+1, t) + di + giui

=g⊥i g⊥+
i fi− f 0+di−αgiηiSi−βgikisgn(Si), (18)

and the overall consensus error dynamics are expressed as follows:

ė=ẋF − 1M ⊗ f 0(xM+1, t)

=F̄ − 1M ⊗ f 0+d−αdiag{g1η1, ..., gMηM}S−βdiag{g1k1, ..., gMkM}sgn(S), (19)

where

F̄ =
[
(g⊥1 g⊥+

1 f1)
T , · · · , (g⊥Mg⊥+

M fM)T
]T

,

sgn(S) =
[
sgnT(S1), · · · , sgnT(SM)

]T
.

4.2. Reachability of the Sliding Mode

The following results are obtained.

Theorem 1. For the MAS (2), (3), the sliding mode (4), (8), (9) is achieved in finite time and
maintained under the control protocol (17) if the parameter matrices satisfy

Lσ
1 ⊗ Im > β−1 ImM,

ki ≥ [µ0+(µi+µ′
i+µ̄i)∥C∥]Im, (20)

where µ0 > 0 is an arbitrary positive scalar,

µi =|aσ
i(M+1)|(λ̄0∥xM+1∥+λ0),

µ′
i =

M

∑
j=1

|lσ
ij|d̄j,

µ̄i =
M

∑
j=1

λj∥lσ
ijg

⊥
j g⊥+

j ∥·∥xj∥. (21)



Actuators 2025, 14, 57 8 of 19

Proof. Consider the common Lyapunov function for the sliding mode surface dynamics
(10) as V = 0.5STS. Its time derivative along the overall consensus error dynamics (19) is:

V̇ =ST(Lσ
1 ⊗ C)ė

=ST(Lσ
1 ⊗ C)

{
F̄ − 1M ⊗ f 0 + d

}
− αST(Lσ

1 ⊗ C)diag{g1η1, ..., gMηM}S

− βST(Lσ
1 ⊗ C)diag{g1k1, ..., g1kM}sgn(S)

=ST
[
(Lσ

1 ⊗ C)F̄−(Lσ
1 1M)⊗

(
C f 0

)]
+ST(Lσ

1 ⊗ C)d

− βST(Lσ
1 ⊗ Im)diag{Cg1k1, ..., CgMkM}sgn(S)

−αST(Lσ
1 ⊗ Im)diag{Cg1η1, ..., CgMηM}S. (22)

On the right-hand side of (22), the first, second, and third terms satisfy the following
inequalities based on the properties of the Laplacian matrix Lσ

1 and Assumption 1,

ST(Lσ
1 ⊗ C)F̄ ⩽

M

∑
i=1

M

∑
j=1

∥∥∥lσ
ijCg⊥j g⊥+

j f j

∥∥∥∥Si∥ ⩽ ∥C∥
M

∑
i=1

µ̄i∥Si∥, (23)

ST(Lσ
1 ⊗ C)d ⩽

M

∑
i=1

M

∑
j=1

∥∥∥lσ
ijCdj

∥∥∥∥Si∥ ⩽ ∥C∥
M

∑
i=1

µ′
i∥Si∥, (24)

ST
[
(Lσ

1 1M)⊗
(

C f 0
)]

⩽
M

∑
i=1

(∥∥∥aσ
i(M+1)C f 0

∥∥∥)∥Si∥ ⩽ ∥C∥
M

∑
i=1

µi∥Si∥. (25)

Combining (23), (24) and (25), the following inequality is obtained:

V̇ ⩽∥C∥
M

∑
i=1

(µi+µ′
i+µ̄i)∥Si∥−αST(Lσ

1 ⊗ Im)diag{Cg1η1, ..., CgMηM}S

− βST(Lσ
1 ⊗ Im)diag{Cg1k1, ..., CgMkM}sgn(S). (26)

By the properties of the Laplacian matrix Lσ
1 > 0, if the parameter matrix satisfies

Cgi > 0, the matrix inequalities

(Lσ
1 ⊗ Im)diag{Cg1η1, ..., CgMηM} > 0,

(Lσ
1 ⊗ Im)diag{Cg1k1, ..., CgMkM} > 0

easily hold. Therefore, under conditions (20) and (21), the following inequality is derived
from (26),

V̇⩽∥C∥STdiag
{
(µ1+µ′

1+µ̄1)Im, ..., (µM+µ′
M+µ̄M)Im

}
sgn(S)

− STdiag{Cg1k1, ..., CgMkM}sgn(S)

⩽− STdiag{µ0 Im, ..., µ0 Im}sgn(S)

⩽− µ0

M

∑
i=1

∥Si∥1. (27)

According to the Lyapunov stability theory, it is evident that the sliding mode S = 0 is
achieved in finite time.
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Lemma 1. For the MAS (2), (3), the sliding mode (4), (8), (9), (15) is achieved in finite time and
maintained under the control protocol (17) if the parameter matrices satisfy

Lσ
1 ⊗ Im > β−1 ImM,

ki ≥ [µ0+(µ1+µ′
i)∥C∥]Im, ∀i = 1, 2, · · · , M, (28)

where µ0 > 0 is an arbitrary positive scalar.

Proof. If the sliding mode surface parameter C = Gg+i , then the item Cg⊥i g⊥+
i = 0 in (22).

The proof directly follows the steps outlined in Theorem 1.

Remark 3. The control protocol (17) represents a completely distributed control in the SMC format
for the MASs (2), (3) because its sliding mode (4), (8), (9) and its parameter conditions (20), (21),
(28) rely solely on the information of the neighboring agents.

Remark 4. The sliding surface dynamics (10) represent a switched system dynamic, in which the
switching signal is the topology switching σ(t). According to the stability analysis of switched
systems, the switched dynamics (10) are finite-time stable if the time derivative of the common
Lyapunov function (CLF) V = 0.5STS satisfies (27).

When the sliding mode is reached (Si = 0) and maintained, the consensus control
protocol (17) simplifies to ui = −g+i fi. However, it cannot deal with the cooperative control
requirements under the sliding mode unless the reduced-order system (14) or (16) is already
stabilized. Therefore, an alternative consensus control protocol design, which utilizes the
neighbors’ information more effectively, is proposed in the next section.

5. Application to multiple WMRs
Consider the MAS where each agent is a wheeled mobile robot (WMR) modeled as

in(2), (3), with

fi(xi) =


xi,3 cos xi,4

xi,3 sin xi,4

0
0

, gi =


0 0
0 0
1 0
0 1

, di =


di,1

di,2

di,3

di,4

,

ui =

[
ua,i

uw,i

]
, f 0(xM+1, t) =


vd cos φd

vd sin φd

uF,d

ωd

, (29)

where xM+1 = [px, py, vd, φd]
T represents the leader’s state, px, py denote the position

information in the horizontal and vertical directions, respectively; vd indicates the linear
velocity and φd denotes the direction angle; The inputsuF,d, and ωd are the known control
signals of the leader, while ua,i, and uw,i are the control inputs of the followers.

5.1. Coordinate Transformation

Under the assumption that the agent speed xi,3 ̸= 0(the leader vd ̸= 0), the following
control transformation is given:ua,i = v1,i cos xi,4 + v2,i sin xi,4,

uw,i =
1

xi,3
(v2,i cos xi,4 − v1,i sin xi,4),

(30)



Actuators 2025, 14, 57 10 of 19

where vi = [v1,i, v2,i]
T represents the auxiliary control inputs to be designed.

Define the state transformation vector for the followers as:
zi,1 = xi,1,

zi,2 = xi,2,

zi,3 = xi,3 cos xi,4,

zi,4 = xi,3 sin xi,4.

(31)

The state vector zi = [zi,1, zi,2, zi,3, zi,4]
T is the transformed state vector of the i−th follower.

Based on the transformations (30) and (31), the dynamics of the followers are expressed as:
żi,1 = zi,3 + di,1,
żi,2 = zi,4 + di,2,
żi,3 = v1,i + cos xi,4di,3 − zi,4di,4,
żi,4 = v2,i + sin xi,4di,3 + zi,3di,4.

(32)

Similarly, the leader dynamics are transformed using the state transformation z0 =

[z0,1, z0,2, z0,3, z0,4]
T = [px, py, vd cos φd, vd sin φd]

T , resulting in
ż0,1 = z0,3,

ż0,2 = z0,4,

ż0,3 = v0
1,

ż0,4 = v0
2,

(33)

where {
v0

1 = uF,d cos φd − vdωd sin φd,
v0

2 = uF,d sin φd + vdωd cos φd.

Define the consensus error vector ei = [ei,1, ei,2, ei,3, ei,4]
T , where ei,j = zi,j − z0,j, ∀j =

1, 2, 3, 4. Using(32) and (33), the consensus error dynamics are expressed as:
ėi,1 = ei,3 + di,1,
ėi,2 = ei,4 + di,2,
ėi,3 = v1,i − v0

1 + d′i,3,
ėi,4 = v2,i − v0

2 + d′i,4,

(34)

where d′i,3=cos xi,4di,3−zi,4di,4, d′i,4=sin xi,4di,3+zi,3di,4.
Design the sliding mode surface as in (4), (8), (9) with

C = [C1, C2] =

[
c1 0 1 0
0 c2 0 1

]
, (35)

where c1, c2 > 0 are positive scalars.
As the sliding mode is reached and maintained,

Si = C1e1
i + e2

i = 0,

which implies e2
i = −C1e1

i , where e1
i = [ei,1, ei,2]

T ,e2
i = [ei,3, ei,4]

T .
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5.2. The Control Protocol Design

It is obvious that g+i fi = 0 for the WMRs. Therefore, the consensus control protocol vi

is given by (17), with parameter matrices satisfying the conditions (20) and (21) as stated in
Theorem 1. The sliding mode is achieved in finite time and remains at S = 0.

5.3. The Stability of the Sliding Mode

By substituting (35) and the matrices gi of the WMR dynamics, the consensus error
dynamics (14) become e2

i = −C1e1
i

ė1
i = −C1e1

i + d1
i

(36)

where d1
i = [di,1, di,2]

T .
For the WMRs, it is evident that the consensus error dynamics of the i-th follower

under the sliding mode are order-reduced and linear. If the matrix C1 is Hurwitz, the
consensus error of the i-th follower is boundedly stable.

Theorem 2. For the WMRs (2), (3), (29) under the sliding mode (4), (8), (9), (35), if there exist a
positive definite symmetric matrix P, a positive scalar δ and the designed matrix C1 satisfying the
following linear matrix inequality[

−CT
1 P−PC1+ I P

P −δ2 I

]
<0, (37)

then the consensus error is robustly asymptotically stable when di = 0, and satisfies the L2 gain δ

when di ̸= 0, assuming the same initial state condition or zero initial state conditions between the
leader and followers.

Proof. Consider the Lyapunov function V = (e1
i )

T Pe1
i , and calculate its time derivative

along with the dynamics (36),

V̇=− (e1
i )

T [CT
1 P+PC1]e1

i +2(e1
i )

T P(d1
i ). (38)

Based on the above equation, it can be easily obtained that

V̇+(e1
i )

Te1
i −δ2(d1

i )
Td1

i = ζT

[
−CT

1P−PC1+ I P
P −δ2 I

]
ζ,

where ζ = [(e1
i )

T, (d1
i )

T ]T . If the condition (37) is satisfied, the following inequality can be
obtained.

V̇+(e1
i )

Te1
i −δ2(d1

i )
Td1

i < 0.

Integrating over time,

∫ t

0
(e1

i )
Te1

i dt−δ2
∫ t

0
(d1

i )
Td1

i dt < V(0)− V(t). (39)

It follows that

sup
∥e1

i ∥2

∥d1
i ∥2

< δ,
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if the consensus error ei(0) = 0 under the same initial state condition or zero initial state
conditions between the leader and the followers. Otherwise, if di ≡ 0,V̇ < 0, and the
consensus error becomes asymptotically stable.

Remark 5. For the multiple WMRs (2), (3), (29), when the sliding mode (4), (8), (9), (35) is achieved
and maintained, the convergence of the consensus error is independent of topology switching, as
determined by the reduced-order error dynamics (36).

6. Simulation Tests
In this section, MATLAB2022a software was used to verify the proposed control

protocol, and the Simulink module in MATLAB was employed to build and test the WMRs
system. The computer specifications are as follows: CPU: Intel Core i7-12700K; Mainboard:
Intel B660; RAM: DDR5, 5600MHz, 16GB; Graphics Card: NVIDIA GeForce RTX; Hard
Disk: SSD 500GB.

A multiple WMRs system (29) was considered, consisting of one leader labeled as
i = 0 and three followers labeled as i = 1, 2, 3. The sliding mode was designed based on (4),
(8), (9) and (35). The interconnection topology was time-varying with a switching period of
0.8s among four graphs Gσ, as shown in Figure 1, and the corresponding switching signal
σ(t) is depicted in Figure 2. The Laplacian matrices for the four graphs Gκ(κ = 1, 2, 3, 4) are:

L1
1 =

 3 −1 −1
−1 2 −1
−1 −1 2

, L1
2 =

 −1
0
0

,

L2
1 =

 2 −1 0
−1 2 −1
0 −1 2

, L2
2 =

 −1
0
−1

,

L3
1 =

1 0 0
0 1 −1
0 −1 2

, L3
2 =

 −1
0
−1

,

L4
1 =

 2 −1 0
−1 2 −1
0 −1 1

, L4
2 =

 −1
0
0

.

The parameter values of the control protocol were designed as α = 2, β = 0.5, γ = 1,
η1=η2=η3=diag{8, 8}, and

C =

[
10 0 1 0
0 8 0 1

]
,

The parameter ki was designed to satisfy the conditions in (20) and (21).
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(a) (b)

(c) (d)

Figure 1. Communication topologies G1 (a), G2 (b), G3 (c) and G4 (d) in numerical simulations.
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Figure 2. The topology switching signal.

The initial state of the leader was set to [6, 1, 1, 0.5π]T. The initial state of the three follow-
ers (i=1, 2, 3) were set to [5.1, 2.5, 1.25, 0.5π]T, [5, 2.5, 0.85, 0.15π]T, and [4.9, 2.5, 1.15, 0.3π]T,
respectively. To validate the robust effectiveness, the simulation test considered the WMRs
under both matched and unmatched disturbances. The disturbances for the three followers
were assumed as follows:

d1 =
[
0.2 sin 5t 0.2 sin 5t 0.6 sin t 0.8 sin 5t

]T
,

d2 =
[
0.18 sin 5t 0.18 sin 5t 0.5 sin 2t 0.7 sin 6t

]T
,

d3 =
[
0.22 sin 5t 0.22 sin 5t 0.7 sin 1.5t 0.9 sin 4t

]T
.

The L2 gain was selected as δ = 0.02, and the parameters satisfied condition (37). The
position tracking error in the X-Y directions, the linear velocity consensus error, and the
yaw angle tracking error of the three followers are shown in Figures 3–5.

Figure 3 shows that the X-Y position errors of the three followers converged to the
origin at about 0.6 seconds. In the steady state, the position exhibited small oscillations
due to the presence of mismatched disturbance. However, the oscillation amplitudes were
suppressed within ±0.02. Compared with the unmatched disturbance amplitudes of 0.2,
the control protocol displayed a robust suppression effect on the mismatched disturbances,
validating Theorem 2.
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Figure 3. Position errors of the followers (i = 1, 2, 3) in the X and Y directions.

From Figure 4, the line velocity tracking errors of the three followers converged to
the origin at about 0.7 s despite the presence of external disturbances. Similarly, Figure 5
shows that the yaw angle tracking errors of the three followers also converged to the origin
at about 0.7 s under external disturbances. The oscillation amplitudes of the line velocity
and yaw angle tracking errors were greater than those of the position errors, which can be
attributed to the relationship in the first line of (36) and the parameter C1.
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Figure 4. Velocity errors of the followers (i = 1, 2, 3).
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Figure 5. Yaw angle errors of the followers (i = 1, 2, 3).
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Based on the proposed control protocol, the formation control of the MAS can be
achieved by adding a constant relative position vector to the consensus error ei for each
follower. This is expressed as:

ei =zi − z0 − pi

where pi ∈ Rn is the constant relative position vector. For each follower, ei converges to 0
under the control protocol, leading to

zi − z0 = pi.

Each follower’s relative position vector is defined as pi = [pi,x, pi,y, 0, 0]T . Con-
sequently, the velocity of each follower aligns with the leader’s velocity, while posi-
tion maintains a constant relative position value (pi,x, pi,y). Setting p1 = [3, 3, 0, 0]T ,
p2 = [0, 4.24, 0, 0]T ,andp3 = [−3, 3, 0, 0]T , the formation result is shown in Figure 6.

Figure 6 illustrates the motion path of the three followers and the leader. Despite the
presence of external disturbances, the three followers successfully tracked the leader’s mo-
tion under the control protocol (17). Moreover, the motion trajectory tracking demonstrated
strong robustness.

Figure 7 presents the sliding mode values of the three followers, validating that the
sliding mode convergency and stability were unaffected by both matched and mismatched
disturbances.
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Figure 6. States trajectories of the four agents.
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Figure 7. Sliding mode values of the agents i = 1, 2, 3.
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To explore the merits of the proposed SMC control protocol, a comparison was con-
ducted, and the results are shown in Figures 8–10. A prescribed-time formation tracking
scheme for second-order MASs [30] was adopted for comparison. In [30], the follower
model in the MAS is described as:

ṗi(t) = vi(t),

v̇i(t) = ui(t),

and the control protocol is defined as:

ui = −
(

c + b
µ̇

µ

)
∑

j∈Ni

a∗ij
[
Kp
(

pi − pj
)
+ Kv

(
vi − vj

)]
,

where a∗ij is the weights between agents, Kp and Kv are positive constant gains, c > 0 and
b > 0 are selected parameters, and µ is a designed scaling function.

From the position tracking errors of the followers i = 1, 2, 3 in Figures 8–10, it can
be seen that the response speed of the proposed SMC control protocol is faster than the
compared method. Furthermore, the robustness performance of the proposed SMC control
protocol in the steady state is significantly more efficient than the other method.
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Figure 8. Comparison between the proposed SMC protocol and the other method for agent i = 1.
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Figure 9. Comparison between the proposed SMC protocol and the other method for agent i = 2.
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Figure 10. Comparison between the proposed SMC protocol and the other method for agent i = 3.

Several potential challenges exist in future experimental work. First, the effectiveness
of the control may be influenced by robot hardware due to factors such as communica-
tion delays between actual vehicles, power limitations, or constraints on computational
resources. Second, the path trajectory achieved in the current simulation is limited to a
small range, and its cooperative control effectiveness in larger areas remains uncertain.
Additionally, the designed expected trajectory does not account for the potential forced
collisions between vehicles.

The simulation tests validated the proposed cooperative control scheme. However, the
scheme has certain limitations. For example, the stability of the sliding mode relies on the
dynamics of specific model components, denoted as fi. While the fi is inapplicable, it may
result in unstable sliding mode dynamics. Additionally, the control protocol outlined in this
paper requires sufficient information from neighbor agents. In cases where unconnected
communication typologies exist, parts of the neighbor state information may be unavailable.
A possible solution would involve the use of agent state observers.

7. Conclusions
A completely distributed consensus sliding mode control protocol (SMCP) is proposed

for heterogeneous nonlinear multi-agent systems (MAS) with disturbances under switching
topology. The global sliding mode manifold (GSMM) is designed for the overall MAS
dynamics, which results in reduced-order dynamics for each follower agent. The stability
of these dynamics depends on the reduced-order nonlinear components. A corresponding
consensus SMCP is proposed for the cooperative control of the MAS. The control protocol
features a simple control structure and guarantees the finite-time reachability of the GSMM.
Due to the common sliding mode control structure, the protocol achieves complete robust-
ness against matched disturbances. Additionally, the control protocol realizes completely
distributed cooperative control as the control signal only requires information from neigh-
bor agents. The proposed SMCP design was applied to multiple-wheeled mobile robots
(WMRs) formation and simulation test results confirmed its feasibility and effectiveness.

Author Contributions: Conceptualization, X.Z. and Y.L.; methodology, X.Z. and Y.L.; validation,
X.Z., Y.L. and S.X.; analysis, X.Z. and X.L.; writing—original draft preparation, X.Z., Y.L. and R.G.;
writing—review and editing, S.X.; project administration, S.X. and R.G. All authors have read and
agreed to the submitted version of the manuscript.

Funding: This work was supported financially by the Open Project Fund of the Key Laboratory
of AI and Information Processing (2022GXZDSY005), the National Natural Science Foundation of
China (62371032), and the Cultivation Project Funds for Beijing University of Civil Engineering and
Architecture (X23049).



Actuators 2025, 14, 57 18 of 19

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the Editors and the Reviewers for their works.
Additionally, the authors thank Yu Wang, Zerui Wei, and other graduated students in the team for
their tidying up the materials.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, Y.; Liu, J.; He, Z.; Li, Z.; Zhang, Q.; Ding, Z. A survey of multi-agent systems on distributed formation control. Unmanned

Syst. 2024, 12, 913–926.
2. Shah, M.I.A.; Wahid, A.; Barrett, E.; Mason, K. Multi-agent systems in Peer-to-Peer energy trading: A comprehensive survey. Eng.

Appl. Artif. Intell. 2024, 132, 107847.
3. Jiang, Y.; Liu, L.; Feng, G. Fully distributed adaptive control for output consensus of uncertain discrete-time linear multi-agent

systems. Automatica 2024, 162, 111531.
4. Zhang, Y.; Wang, Q.; Shen, Y.; Dai, N.; He, B. Multi-AUV cooperative control and autonomous obstacle avoidance study. Ocean

Eng. 2024, 304, 117634.
5. Nasir, M.; Maiti, A. Adaptive Sliding Mode Resilient Control of Multi-Robot Systems with a Leader–Follower Model under

Byzantine Attacks in the Context of the Industrial Internet of Things. Machines 2024, 12, 205.
6. Zhao, H.; Liu, M.; Sun, Y.; Chen, Z.; Duan, G.; Cao, X. Automated Design of Fault Diagnosis CNN Network for Satellite Attitude

Control Systems. IEEE Trans. Cybern. 2024, 54, 4028–4038.
7. Zhang, K.; Zhou, B.; Duan, G.R. Leader-following consensus of multi-agent systems with time delays by fully distributed

protocols. Syst. Control Lett. 2023, 178, 105582.
8. Zhou, Y.; Wen, G.; Wan, Y.; Fu, J. Consensus tracking control for a class of general linear hybrid multi-agent systems: A model-free

approach. Automatica 2023, 156, 111198.
9. Wang, J.; Deng, X.; Guo, J.; Zeng, Z. Resilient consensus control for multi-agent systems: A comparative survey. Sensors 2023,

23, 2904–2910.
10. Zhou, D.; Chen, W.H.; Lu, X. Leader-Following Consensus of Linear Multiagent Systems with Aperiodically Sampled Outputs: A

Distributed Impulsive-Observer-Based Approach. IEEE Trans. Cybern. 2024, 55, 161–171.
11. Long, J.; Wang, W.; Wen, C.; Huang, J.; Guo, Y. Output-Feedback-Based Adaptive Leaderless Consensus for Heterogenous

Nonlinear Multiagent Systems With Switching Topologies. IEEE TRansactions Cybern. 2024, 54, 7905–7918.
12. Liu, Y.; Xie, X.; Chadli, M.; Sun, J. Leaderless Consensus Control of Fractional-Order Nonlinear Multi-Agent Systems with Measure-

ment Sensitivity and Actuator Attacks. IEEE Trans. Control Netw. Syst. 2024, 1–10. https://doi.org/10.1109/TCNS.2024.3395721.
13. Zhang, W.; Huang, Q.; Alhudhaif, A. Event-triggered fixed-time bipartite consensus for nonlinear disturbed multi-agent systems

with leader-follower and leaderless controller. Inf. Sci. 2024, 662, 120243.
14. Rezaee, H.; Abdollahi, F. Average consensus over high-order multiagent systems. IEEE Trans. Autom. Control 2015, 60, 3047–3052.
15. Chen, T.; Wang, F.; Feng, M.; Xia, C.; Chen, Z. Fully distributed consensus of linear multi-agent systems via dynamic event-

triggered control. Neurocomputing 2024, 569, 127129.
16. Liu, Y.J.; Shang, X.; Tang, L.; Zhang, S. Finite-Time Consensus Adaptive Neural Network Control for Nonlinear Multiagent

Systems Under PDE Models. IEEE Trans. Neural Netw. Learn. Syst. 2024, 1–11. https://doi.org/10.1109/TNNLS.2024.3386663.
17. Luo, Y.; Huang, W.; Cao, J.; Cao, Z. Finite-time consensus of second-order multi-agent connectivity preserving based on adaptive

sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 2024, 137, 108142.
18. Zhuang, J.; Peng, S.; Peng, H. Finite-time and fixed-time consensus of nonlinear multi-agent systems: A unified two-phase

control. Int. J. Robust Nonlinear Control 2024, 34, 9438–9455.
19. Wang, C.; Zhan, H.; Guo, Q.; Li, T. Distributed Neural Fixed-Time Consensus Control of Uncertain Multiple Euler-Lagrange Sys-

tems with Event-Triggered Mechanism. IEEE/ASME Trans. Mechatron. 2024, 1–12. https://doi.org/10.1109/TMECH.2024.3410299.
20. Li, H.; Niu, G.; Chen, Y. Fixed-time consensus of leader-following multi-agent systems subject to failed follower: Reconstructed

topology approach. Appl. Math. Comput. 2024, 482, 128955.
21. Wang, Q.; Wu, W. A distributed finite-time optimization algorithm for directed networks of continuous-time agents. Int. J. Robust

Nonlinear Control 2024, 34, 4032–4050.
22. He, S.; Wang, H.; Yu, W. Distributed Fast Finite-Time Tracking Consensus of Multi-Agent Systems With a Dynamic Leader. IEEE

Trans. Circuits Syst. II Express Briefs 2022, 69, 2176–2180.



Actuators 2025, 14, 57 19 of 19

23. Razmjooei, H.; Shafiei, M.H. Partial finite-time stabilization of perturbed nonlinear systems based on the novel concept of
nonsingular terminal sliding mode method. J. Comput. Nonlinear Dyn. 2020, 15, 021005.

24. Chu, Y.; Fei, J.; Hou, S. Adaptive neural backstepping PID global sliding mode fuzzy control of MEMS gyroscope. IEEE Access
2019, 7, 37918–37926.

25. Cai, J.; Yi, C.; Wu, Y.; Liu, D.; Zhong, D. Leader-following consensus of nonlinear singular switched multi-agent systems via
sliding mode control. Asian J. Control 2024, 26, 1997–2010.

26. Ma, Y.; Zhan, X.; Yang, Q.; Yan, H. Finite-time Consensus of Heterogeneous Multi-agent Systems by Integral Sliding Mode
Control. Int. J. Control Autom. Syst. 2024, 22, 1819–1826.

27. Nie, R.; Du, W.; Li, Z.; He, S. Sliding mode-based finite-time consensus tracking control for multi-agent systems under actuator
attacks. Inf. Sci. 2023, 640, 118971.

28. Jin, D.; Xiang, Z. Predefined-Time Consensus for Second-Order Nonlinear Multiagent Systems via Sliding Mode Technique. IEEE
Trans. Fuzzy Syst. 2024, 32, 4534–4541.

29. Song, Y.; Li, Z.; Li, B.; Wen, G. Optimized leader-follower consensus control using combination of reinforcement learning and
sliding mode mechanism for multiple robot manipulator system. Int. J. Robust Nonlinear Control 2024, 34, 5212–5228.

30. Li, X.; Zhu, Y.; Zhao, X.; Lu, J. Bearing-Based Prescribed Time Formation Tracking for Second-Order Multi-Agent Systems. IEEE
Trans. Circuits Syst. II Express Briefs 2022, 69, 3259–3263.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Preliminary and Problem Formulation
	Graph Theory
	The Consensus Control Problem

	The Global Sliding Mode Surface Design for the Multi-Agent System
	The Sliding Mode Control Protocol Design
	The Control Protocol Design
	Reachability of the Sliding Mode

	Application to multiple WMRs
	Coordinate Transformation
	The Control Protocol Design
	The Stability of the Sliding Mode

	Simulation Tests
	Conclusions
	References

