actuators

Article

A SAC-Bi-RRT Two-Layer Real-Time Motion Planning Approach
for Robot Assembly Tasks in Unstructured Environments

Qinglei Zhang !, Siyao Hu ¥, Jianguo Duan !, Jiyun Qin ! and Ying Zhou **

check for
updates

Academic Editor: Zhuming Bi

Received: 23 December 2024
Revised: 22 January 2025
Accepted: 23 January 2025
Published: 26 January 2025

Citation: Zhang, Q.;Hu,S.; Duan,J;
Qin, J.; Zhou, Y. A SAC-Bi-RRT
Two-Layer Real-Time Motion Planning
Approach for Robot Assembly Tasks in
Unstructured Environments. Actuators
2025, 14, 59. https:/ /doi.org/10.3390/
act14020059

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

Logistics Engineering College, Shanghai Maritime University, Pudong, Shanghai 201306, China;
qlzhang@shmtu.edu.cn (Q.Z.); hsy1483293225@163.com (S.H.); jgduan@shmtu.edu.cn (J.D.);
jyqin@shmtu.edu.cn (J.Q.)

2 China Institute of FTZ Supply Chain, Shanghai Maritime University, Pudong, Shanghai 201306, China
Correspondence: zhouying@shmtu.edu.cn

Abstract: Due to the uncertainty and complexity of the assembly process, the trajectory
planning of a robot needs to consider the real-time obstacle avoidance problem when it
completes the assembly in the unstructured workspace. To realize the safe assembly of
assembly robots in dynamic and complex environments, a dynamic obstacle avoidance
trajectory planning method for robots combining traditional planning algorithms and deep
reinforcement learning algorithms is proposed to improve the robot’s agent and obstacle
avoidance ability in dynamic and complex environments. The Bidirectional Rapidly-
exploring Random Tree (Bi-RRT) method is utilized as a global planner to plan the global
optimal path quickly; considering the real-time nature of the assembly process, the Soft
Actor-Critic (SAC) is used as a local obstacle avoider to avoid obstacles more accurately
and to find the nearest node generated by the Bi-RRT during the planning process, which is
regarded as the goal during the local obstacle avoidance to reduce the model’s complexity.
By training and testing in the simulation engine and comparing with SAC, DDPG and
DON algorithms, the method can avoid obstacles in dynamic and complex environments
more efficiently, which verifies that the proposed hybrid method can accomplish the high-
precision planning task with a high success rate.

Keywords: Soft Actor-Critic; Bidirectional Rapidly-exploring Random Trees; dynamic
obstacle avoidance; motion planning; robot

1. Introduction

In modern manufacturing, intelligent assembly and the advancement of Industry
5.0 are driving a comprehensive upgrade of production methods. Intelligent assembly
realizes efficient, precise and flexible production by integrating automation and informa-
tion technology. Industry 5.0 emphasizes the deep collaboration between humans and
intelligent robots, combining the creativity of workers with the efficient production capacity
of intelligent machines to achieve a more personalized and humanized production model.
As the core equipment of intelligent assembly, the performance of the robot directly affects
the efficiency and reliability of the whole production system. In complex and dynamic
environments, robots face many obstacles and uncertainties, so real-time obstacle avoidance
motion planning becomes a key technology. By integrating multiple sensors and advanced
path planning algorithms, the robot can sense environmental changes in real-time and dy-
namically calculate the optimal obstacle avoidance path to ensure the safety and continuity
of the assembly process. Therefore, how to realize efficient and safe motion planning in the
robot assembly process has become an urgent problem to be solved.

Actuators 2025, 14, 59

https:/ /doi.org/10.3390/act14020059

https://doi.org/10.3390/act14020059
https://doi.org/10.3390/act14020059
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0009-0001-8708-4379
https://doi.org/10.3390/act14020059
https://www.mdpi.com/article/10.3390/act14020059?type=check_update&version=1

Actuators 2025, 14, 59

2 0f 23

Although the motion planning problem for robots has been studied for many years,
most of the traditional motion planning methods target static obstacles. For example, Qi [1]
et al. implemented probabilistic-based optimal path planning for robot obstacle avoidance
for robots. Kong [2] et al. proposed an adaptive Fuzzy Neural Network (FNN) and
impedance learning-based control strategy for coordinated multi-robot operation under the
conditions of an unknown environment and time-varying constraints in the work interval.
However, for environments with cluttered static and dynamic obstacles, the computation
of path search increases dramatically with the number of obstacles and spatial dimensions,
and the traditional algorithms need to go through a large number of computations in order
to find an effective path, meaning they are unable to meet the real-time requirements in
practical applications.

When a collision-free path needs to be planned in an environment with complex
obstacles, global path planning methods are more suitable for generating avoidance routes
and calculating the optimal path for the robot based on the environmental information.
The Rapidly-exploring Random Tree (RRT) proposed by LaValle [3] et al. is a powerful
tool for finding collision-free paths in cluttered environments. The RRT algorithm has
always been the focus of research on global motion planning techniques for robots in the
past, and many researchers have proposed a series of improved algorithms that have been
extended in several directions. Shen [4] et al. proposed an adaptive maneuverability-based
path-planning strategy for industrial robot manipulators. The method utilizes an improved
RRT algorithm that combines path length and maneuverability metrics to construct a bi-
objective cost function to find the optimal path from the starting point to the goal point. To
improve the path planning efficiency and assembly accuracy of the robotic arm during the
assembly process, Li [5] et al. proposed a multi-objective point motion planning method
for the assembly robotic arm based on the Improved Potential Quick Rapidly-exploring
Random Tree (IPQ-RRT*) algorithm. Ferguson [6] et al. proposed an improved RRT
algorithm (D-RRT) for fixing the configuration space when the configuration space has
changed Rapidly-exploring Random Trees (RRTs). Li [7] et al. modified the initial path
when dynamic obstacles blocked the path by using the robot’s deviation angle to replan
the blocked local path. Some other researchers have also proposed other methods. Han [8]
et al. proposed a dynamic obstacle avoidance method based on distance computation
and discrete detection, which realized dynamic obstacle avoidance for the manipulator
by acquiring dynamic obstacles of arbitrary shapes captured by the Kinect-V2 camera in
real-time and converting them into convex packets to compute the distances. Chen [9]
et al. designed a dynamic obstacle avoidance based on the improved D* algorithm path
planning method to generate collision hazard areas in dynamic environments and apply a
real-time path adjustment strategy to accomplish the task. Mukadam [10] et al. proposed a
continuous-time Gaussian process motion planning method for robot path optimization
through probabilistic reasoning. Zhu [11] et al. proposed a dynamic window to change the
speed of the robot to avoid unexpected dynamic obstacles.

Although the above algorithms have obvious advantages in avoiding collisions and
generating effective paths, they still face limitations in dynamic and complex environments.
First of all, the above algorithms have high computational complexity, especially in high
dimensional spaces where the time overhead of path search is large. Although some
improved algorithms can reduce the search time by bidirectional search, they are still
prone to fall into local optimal solutions in complex environments. Secondly, the above
algorithms are slow to react to dynamic obstacles, leading to a decrease in the reliability of
path planning when obstacles change rapidly. In addition, these methods are usually used
for global paths and lack the ability to adapt to real-time changes in dynamic environments,
and thus often fail to effectively respond to real-time obstacle avoidance requirements

Actuators 2025, 14, 59

30f23

in practical applications. In recent years, deep reinforcement learning has had a great
advantage in handling large amounts of data, which provides ideas for some complex
environment planning and can achieve high online planning speed at the cost of long
training time. Wang [12] proposed an approach that combines global path planning and
local obstacle avoidance. First, a global path planning algorithm is used to plan the optimal
path; during the movement of the mobile robot, a local RL-based planner utilizes the
surrounding environment information to avoid the moving obstacles. Yin et al. [13] used
the structure of deep Q-network architecture to design a comprehensive reward function for
planning the unmanned vessel’s paths in unknown dynamic environments with obstacle
avoidance, target approach, attitude correction, etc., as a part of the reward function.
Bing [14] et al. proposed an algorithm called Bbox-HGG, which combines Hindsight Goal
Generation (HGG) and Bounding box Encoder (Bbox-Encoder) that is used to implement
robot manipulation in dynamic environments. Abdi [15] and others used a hybrid path
planning approach for a 2D workspace, integrating Q-learning and neural networks. In
addition, they extended their research to cover more complex scenarios such as a 3D
workspace [16]. Zhang [17] et al. introduced 3D bounding boxes to represent obstacles
and target objects and optimized the control strategy using the Soft Actor-Critic (SAC)
algorithm to achieve efficient obstacle avoidance and path planning in dynamic scenarios.
Zhang [18] et al. achieved efficient obstacle avoidance and path planning in dynamic
scenarios by introducing a multi-objective optimization strategy, combining forward and
inverse kinematic models, and utilizing the Soft Actor-Critic (SAC) algorithm to achieve
optimal trajectory planning of the robotic arm under the premise of ensuring trajectory
accuracy, smoothness, and minimizing energy consumption.

However, the long training time is a non-negligible problem. In order to obtain effi-
cient path planning strategies, DRL usually requires a large amount of interaction data,
which leads to a very time-consuming training process. Especially in complex dynamic
environments, the training process requires a large number of iterative computations,
which can seriously affect the response time of the system. Secondly, DRL is trained by
historical data, but due to the dynamic changes in the environment, the trained model may
not perform stably in new environments, resulting in large performance fluctuations. In
addition, high consumption of computational resources is also a real problem faced by
DRL in global path planning. Deep reinforcement learning alone is still not enough to
overcome the difficulty of training high-precision tasks, and traditional motion planning
algorithms can be utilized to compensate for the shortcomings of deep reinforcement
learning algorithms by combining deep reinforcement learning with traditional motion
planning to improve the performance. B. Sangiovanni [19] et al. proposed a hybrid con-
trol approach combining traditional motion planning algorithms and deep reinforcement
learning (DRL) that enables robots to adaptively avoid obstacles and complete tasks in
dynamic environments. Xia [20] et al. proposed a new framework, ReLMoGen, that
combines motion generation and reinforcement learning (RL), which is a better solution
for complex, long-term tasks by elevating the action space to subgoals. J. Yamada [21]
et al. proposed a hybrid approach called MoPA-RL, which combines a motion planner
with reinforcement learning (RL) to augment the action space of RL agents with long-term
planning capabilities. The method smoothly transitions between directly executing actions
and invoking the motion planner depending on the size of the action. G.P. Kontoudis [22]
et al. obtained a continuous-time Q-learning based dynamics motion planning frame-
work by combining the asymptotically optimal Rapidly Exploring Random Tree (RRT¥)
algorithm and model-free Q-learning to optimize the robot’s motion paths in a dynamic
environment online.

Actuators 2025, 14, 59

40f23

Although the previous methods can compensate for their respective shortcomings in
some respects, they face a series of challenges. It is difficult to balance the advantages of
both dynamic environments and easy to fall into local optimality. Algorithm coordination
is a major challenge in hybrid methods, and in this paper, we combine the Soft Actor-Critic
(SAC) algorithm with Bidirectional Rapidly-exploring Random Trees (Bi-RRTs) to achieve
safer and more reliable real-time obstacle avoidance in dynamic and high-dimensional
environments. Unlike existing hybrid approaches, we encourage exploration by introduc-
ing the SAC algorithm, which enhances the flexibility and adaptivity of the algorithm,
while greatly improving the planning efficiency and real-time responsiveness through the
bidirectional fast exploration of Bi-RRT.

Specifically, Bi-RRT is used as a global planner, which is responsible for planning
the global path between the robot’s current position and the grasping target, and quickly
re-planning a new trajectory when needed. Meanwhile, SAC is used as a local obstacle
avoider and targets a close node in the planned path of Bi-RRT to handle the robot’s obstacle
avoidance in real-time environments and task execution in dynamic environments. An
integrated reward function modeling of dynamic obstacle avoidance and goal approach is
developed for avoiding moving obstacles in the environment and for real-time planning.
Compared with existing research, our contribution to this combined approach is that it
effectively balances the advantages of deep reinforcement learning and traditional motion
planning and solves the problems of local optimality and computational inefficiency of
traditional methods in dynamic environments, which allows for more flexible, safe, and
reliable real-time obstacle avoidance and task execution for robotic arms in dynamic and
complex environments.

In summary, the contributions and highlights of the present study are as follows:

1. The proposed joint motion planning method based on SAC-Bi-RRT can quickly plan a
collision-free trajectory in a randomized dynamic environment and can be re-planned
in real-time when obstacles appear to finally reach the target position;

2. A collision detection algorithm is designed for the detection of a collision between two
irregular objects—a high degree of freedom robot and an obstacle—and the method
greatly reduces the amount of computation and improves the real-time performance;

3. The robot’s DRL-based control module is specially designed to use the nodes of the
Bi-RRT global planning as the targets of the local obstacle avoider with comprehensive
reward functions so that the gripper jaws can approach objects and avoid moving
obstacles in real-time according to the results of global planning;

4. The global camera can be used, as a visual servo to guide the robot in the workspace,
to avoid the existence of the dead angle of the global camera, when there is a moving
obstacle in the workspace and the depth camera mounted on the hand of the robotic
arm can be activated and assist the robot in obstacle avoidance and trajectory planning
through the visual servo.

2. A Logical Framework for Dynamic Obstacle Avoidance Based on Soft
Actor-Critic and Bidirectional Rapidly-Exploring Random Tree
Joint Planning

The general framework of the SAC-Bi-RRT motion planning method proposed in the
present study is shown in Figure 1. In the present study, a hybrid strategy combining Bi-
RRT global path planning and SAC local obstacle avoidance is adopted. The RRT algorithm
adopts a tree structure to store the robot configuration nodes obtained by random expansion,
and the paths between neighboring nodes satisfy the requirements of robotic arm dynamics,
kinematics, and collision avoidance, so RRT is suitable for global motion planning in the
dynamic obstacle avoidance process of the robot. Bi-RRT adopts a bidirectional searching

Actuators 2025, 14, 59

50f23

strategy relative to RRT and expands from both the starting point and the target point,
which can find the path faster. Therefore, the Bi-RRT algorithm was chosen as the global
planner in the motion planning process in the present study.

Global planning
process
i)) 9 Dynamic Reaching the
L m’lfgaeca Bi-RRT Global paths v obstaclesin the workpiece
position person v 53
workspace position
E o False
peessve Reach the nearest
deviation from d Depth camera Perform a crawl
the global path node
RGB-Dimage l l
Local obstacle avoidance process AABB bounding Planning
box assembly paths
Simulation obstacle avoidance
pp— W
P g
| \‘ -viii Target Action
State Reward " . workpieces
Randomly moving lis
el enes ‘ | obstacles Col 1=on Perform
Store samples and | de[m.uon assembly tasks
update weights agorithm b
SAC

Prioritized
Experience
Replay Memory

Sampling

Network training

Figure 1. SAC-Bi-RRT motion planning framework (a logical framework for dynamic obstacle
avoidance based on the Soft Actor-Critic algorithm with bidirectional fast exploratory random tree
joint planning is shown in the figure. The information in the assembly environment is obtained from
global and local cameras, and the robotic arm is planned to accomplish the assembly task in the
complex environment using a hybrid strategy combining Bi-RRT global path planning and SAC local
obstacle avoidance).

Since most of the current robot motion planning algorithms are traditional trajectory
planning algorithms and generally target static obstacle avoidance in the work area, motion
planning based on the SAC reinforcement learning algorithm proposed by Pei [23] et al. is
an approach that is not limited by the planning dimensions and can achieve high online
planning speed at the cost of long offline training time. SAC, as a localized obstacle
avoidance device, can learn the optimal motion strategy based on the state of the real-time
environment and feedback signals. By interacting with different environments, it adjusts
the robot’s actions in real-time to avoid obstacles and replan the path, which is highly
adaptive. Compared with other reinforcement learning algorithms, the SAC algorithm is
relatively simple, easy to implement and debug, and suitable for application in practice.
Therefore, the SAC algorithm is chosen as the local obstacle avoider in present study.

In present study, the global camera is first used as a guide to determine the location
of the artifact, and the Bi-RRT algorithm generates two RRTs in free space based on the
environmental information acquired by the camera, which is extended in both directions
to find the global path from the start point to the target point. The generated paths are
subsequently smoothed to eliminate redundant nodes and make the paths smoother and
more efficient. When a moving obstacle is detected in the operation area, the depth camera
on the robot is turned on to capture the depth information of the local environment in
real-time and simplify it with an AABB (Axis-Aligned Bounding Box) bounding box. The
collision detection algorithm is utilized and the obstacle avoidance action is generated
based on the real-time updated environment information to adjust the trajectory of the

Actuators 2025, 14, 59

60f23

robot arm to ensure that it safely avoids obstacles. In obstacle avoidance, the robot always
searches for the nearest global path node as a local target point and moves toward it. If
the robot deviates too far from the global path during this process, global path planning is
retriggered. At this point, the current robot position is used as a new starting point, and
the Bi-RRT algorithm is used to recalculate to generate a new global path and continue
the above process. In this case, the robot, the global camera, and the depth camera are
communicated through the computer.

3. Methods

The first part of this section explains the global planning method used in the motion
planning approach of this paper; the second part transforms the collision detection problem
into a problem of determining whether a line segment intersects with a space cube by
simplifying the linkage of the robotic arm into a spatial line segment and utilizing the
AABB bounding box; the third part describes the local planner of the robotic arm for the
dynamic obstacle avoidance path planning on the basis of the previous section, and in the
last part, it is attached to the pseudo-code of the SAC-Bi-RRT motion planning method in
this paper.

3.1. Global Planner

The Bi-RRT algorithm improves the RRT algorithm, inherits the advantages of the RRT
algorithm and the idea of dual-tree improves the efficiency of the search tree expansion
to a certain extent, accelerating the convergence of the algorithm. Bi-RRT expands the
randomized tree T; and T at the same time for the initial point g; and the target point
qq, so that the two trees grow in the direction of each other to carry out a rapid search
and improve the efficiency. The specific algorithm flow is as follows: take the initial point
g; and the target point g, as the two root nodes, construct the random tree T; and T,
respectively, where the random expansion point of the tree T; is noted as g;,4,,4 and the
random expansion point of the tree T is noted as g¢/4,,4, randomly select a posture point
irand in the free space Crye,, select the closest point gnear t0 Girgng from the tree T;, and carry
out the collision detection algorithm by the step size p to find the closest point uew t0 Girand,
and if gpey is in the middle of C freer the tree T; is increased with a new node gy,¢,; and then,
thinking of the target point g,.», expand the tree Tg according to the g,.w. If the distance
between the new nodes of the two trees is small enough, the two trees are considered to be
connected and a path is found. Otherwise, repeat the above process until the two trees are
connected and a path is found. Figure 2 shows the schematic diagram of the search process
of the Bi-RRT algorithm.

However, in the process of the Bi-RRT search, because the selection of g;,,4 and qgrang
is random and not oriented, the search efficiency is low and the convergence speed is
slow. Therefore, the present study improves the Bi-RRT algorithm by applying a heuristic
search approach in the construction process of the random tree. By comparing the distance
between the random expansion point and the target point, the expansion point is screened,
and the random search point closest to the target point is retained and expanded, which in
turn generates a new node. Using this algorithm, the tree expands towards the target point
during the construction of the random tree, increasing goal orientation and improving
search efficiency. The specific implementation process of the improved heuristic Bi-RRT
algorithm is as follows:

Step 1 Initialize the search path, which contains only the g; and g,

Step 2 Calculate the distance between g; and g. If Dy is less than the given threshold,
the target point is considered reached and the path is searched. Otherwise, go to step 4.

Step 3 If T; and T are connected, save the searched path.

Actuators 2025, 14, 59

7 0f 23

Step 4 For random tree T;, when gq; . is selected for the first time, calculate the distance
fromg; . toqg, denoted as D;, and compare it with Dy. If D; < Dy, keep the random point,
calculate the current step and continue to expand to obtain a new node gy, and save D;.
Otherwise, discard the random point, and continue sampling.

Step 5 For random tree Ty, when g . is selected for the first time, calculate the
distance from g, . to q;, denoted as Dy, and compare it with Dy. If D¢ < Dy, keep the
random point and continue to expand it to obtain a new node g,y and save Dg. Otherwise,
discard the random point and continue sampling.

Step 6 T; and T are expanded alternately; during T; expansion, when a new ¢; . is
selected, calculate its distance g, to D;,,, , compare it with D;, and if D;,, < D;, keep the

—

Inew
random point, calculate the direction vector d; from the current node g; to the random point
qi,,,,» normalize it, expand the new node using that direction vector g;,,,, = q; + step_size x
%

d;, and assign the value of D; to D;; otherwise, discard the random point, and continue

sampling; during T; expansion, when a new g, is selected, calculate its distance g; to

Dq,.,, and compare it with Dg. If D, ., < Dg, keep the random point, calculate the direction
—

vector d ¢ from the current node g, to the random point g, ., normalize it, extend the new
—

node using this direction vector qg,,, = g + step_size X d ¢, and assign the value of Dy,
to Dg; otherwise, discard the random point and continue sampling.

Step 7 Return to step 3.

To make the algorithm controllable, the number of cycles is limited in step 7, and if T;
and Ty are still not connected within the limited number of cycles, the algorithm returns a
failure, indicating that the path search has failed.

Dy = dis(qi,qq) is the distance from the starting point to the target point.
D; = dis (qimnd, qg) is the distance between the random point selected for the first time in

the expansion process of T; and the target point go. Dy = dis (ngnd/ q,-) is the distance
between the random point selected for the first time in the expansion process of T, and the
starting point g;. The specific process is shown in Figure 3.

qi

Planning space

g
obstacle

Figure 2. Schematic diagram of Bi-RRT algorithm planning.

Actuators 2025, 14, 59

8 of 23

Initialize and put the initial Initialize and put the initial
configuration into RT1 configuration into RT2

Search the nearest node Search the nearest node
of RT1 and the latest of RT1 and the latest
node of RT2 node of RT1
Expand node Expand node

(ennn enrgu
<Dmin?

RT1 RT2

Take back search to
make the path

.

End

Figure 3. Flowchart of Bi-RRT algorithm.

3.2. Collision Detection

Collision detection can account for up to 90% of the time used in the motion planning
process, so designing an appropriate collision detection method can greatly improve the
planning efficiency. Envelope box detection method is a commonly used method in robotic
arm motion planning, which transforms the collision detection problem into an interference
problem of spatial geometry by enveloping the detected object with a simple geometry.
There are many kinds of collision detection methods based on the envelope box, and the
traditional methods include axis parallel (AABB), enveloping ball, OBB and other envelope
methods. In the present study, the AABB bounding box method is selected according to the
structural form of the robotic arm and the geometry of the obstacle, where (X1, Vinin, Zmin)
denotes the smallest point of the AABB-type envelope in the spatial Cartesian coordinate
system, and (Xyax, Yinax, Zmax) denotes the largest point to define an envelope. For further
simplification, the radial radius r of the robot linkage is enlarged on the original volume of
the obstacle, so as to transform the collision detection into the relative position judgment of
the spatial line and plane. The obstacle is defined under the spatial Cartesian coordinate
system as follows:

Obstacle{ (Xmin — 1, Vypin — L Zmin —) < (X,¥,2) < (Xmax + 1, Vypax T L Zmax + 1)} (1)

As shown in Figure 4, the spatial linear equations of the connecting rods of the
enveloping URS5 robotic arm are {L1, Ly, L3}, and the hexahedron of the enveloping obstacle
is O;. If there exists an intersection point between {Lj, Ly, L3} and the facets of O;, the
robotic arm collides with the obstacle, and the path needs to be re-planned, or else the
robotic arm moves in accordance with the search trajectory.

Actuators 2025, 14, 59

9o0f23

(Xmax+ I;_Vmax‘l' L Zymaxt+ r)

L;

L;

L[0[

(Xmin - r/ymin = I, Zmin"~ r)

Figure 4. Simplified model of AABB envelope.

Collision detection algorithms are needed in the planning process of the robot. As
can be seen in Figure 4, the obstacle is simplified into an AABB bounding box, and the
three joints of the robot are simplified into spatial line segments L, L, and L3. The
collision detection problem can be transformed into the problem of whether the three line
segments intersect with the spatial cube or not, and the collision detection between the
robot connecting rod and the obstacle is shown in Figure 5. For ease of description, we
assume that the radius of the robot linkage part has been superimposed on the thickness of
the bounding box, and the coordinates on the spatial obstacle are denoted as follows:

ObStaCle{ (xmin/ Ymins Zmin) < (xr Y, Z) < (xmax/ Ymax, Zmax) } ()

P,

/Yfar

(Xmax » Vmax, Zmax)

Plane X= X%

\

(Xmax) ymax) Zmax) E
/ \ v
Plane X= Xyin
P

Figure 5. Collision detection between robot linkage and obstacles.

Actuators 2025, 14, 59

10 of 23

For the link Lj, the intersections of the link L; with the two planes X = x,,;,, and
X = Xuax in the obstacle bounding box are x;,¢;r and x Fars respectively:

)

P14 Avp - (P2 — Py) = [X0in, 0,0]"
P2 +/\xfur : (PZ - P]) = [xmax/O/O]T

where P; and P, are the two ends of the robot linkage, corresponding to the R, and Ry joint
coordinates of the robot, and in calculating their coefficients, only the x-component part is
required, as shown below:

X1 + /\xneur ’ (xz - X]) = Xmin (4)
Xo + /\xfar : (X2 - xl) = Xmax
The results obtained are as follows:
— Xmin—X1
{ Axnear T Xo—xq (5)
A — Xmax—X2
Xfar Xp—Xq
Similarly, for the AABB bounding box, the intersections of the connecting rod with the
two Y-planes and the two Z-planes can be obtained as Ay, Ay,,s Azyeqrs Az, TESPectively.
The definitions are provided below:
An@ll?’ = max</\xnfar’ /\ynear’)Lzm’ar) (6)
/\far = min</\farx/)\fary/)\farz))

IfAear < A fars the link L1 will collide with the bounding box of the obstacle; otherwise,
no collision will occur. Similarly, this method can be used to determine whether L, and L3
will collide with the bounding box of the obstacle, respectively.

In the obstacle avoidance process, in order to ensure that the robot will not collide with
obstacles and can avoid obstacles in real time, it is usually required to maintain a certain
distance between the robot and the obstacles. Therefore, the distance detection between
each linkage and the obstacle is very important.

Assuming that P; and P, are the two endpoints of the connecting rod L;, the lin-
ear equation of the space segment L; can be obtained from P; and P». If m = x; — xy,
n =y —y1,and p = zp — zj, then the equation of the link L; is as follows:

X — X1 :y—yl :Z—Zl
m n p

=t)

where t is a parameter of the equation.
According to Equation (4), the center point of the AABB bounding box is defined
as follows:

©)

O(xO Yo ZO) = O<xmin+xm”x ymi”+ymax Zmin+zmax)

2 ’ 2 ’ 2

The straight line distance from the center point O(xg, yo, z9) of the AABB bounding
box to the linkage L; can be found by calculating the distance from that point to the nearest
point C(x1,¥1,21) on the linkage:

disy = \/(xo —(m-t4x)) + (o — (n-t+y)* + (2o~ (p-t+2))> (10)

Similarly, the distance between the center point of the AABB bounding box and
the connecting rod L, and the distance between the connecting rod L3 can be calculated

Actuators 2025, 14, 59

11 of 23

Extract data

Extract data

separately. Using this method, the distance between each link of the robot and the obstacle
can be judged, thus ensuring that the robot can avoid collision with the obstacle during
its movement.

3.3. Localized Obstacle Avoider
3.3.1. Soft Actor-Critic

In the present study, the SAC is implemented to solve the problem of localized motion
planning for robots during assembly tasks. The SAC algorithm proposed by Haarnoja [24]
et al. is a model-free deep reinforcement learning algorithm based on maximum entropy,
which is suitable for real-world robots to learn the skills. The SAC algorithm is very
efficient, and it solves the problem of reinforcement learning in both discrete action space
and continuous action space. Compared with other deep reinforcement learning algorithms,
the SAC algorithm introduces the concept of entropy, which can be understood as the degree
of randomness, chaos or disorder of the action. The higher the entropy value, the more
chaotic the action is, the richer the sampled action information is, and thus the higher
reward value can be obtained. The framework of SAC is shown in Figure 6 below.

Minimum

CoTTTTTTTTTT e

!]

!]

\ 4
Critic-Q R
Networkl » O » TD-error_l }*
Critic-Q R N
Networkl 0, * TD-emor2

Figure 6. SAC framework diagram.

Introducing entropy into reinforcement learning allows the strategy to be more ran-
domized, thus increasing the chance for the robot to explore the state space. This not only
avoids the strategy from falling into local optimal solutions, but also allows the strategy to
find more feasible solutions and improves the robustness of the final strategy. Therefore,
the optimal strategy formulation of SAC is defined as follows:

J(r0) = argmaxEg, 4 (1) | 2o Yr(se, ar) +aH (7 (-|s¢)) (11)
I1 t=0

H(rt(-[st)) = E[~log7e(-|st)] (12)

where 77 is used to update the strategy to find the maximum total reward; « is the entropy
regularization coefficient, which is used to control the importance of entropy; H(7t(-|s¢))
stands for the entropy value. The larger the entropy value, the more the intelligent body
explores the environment, and the more efficient the strategy found, which helps to speed
up the learning of the strategy.

Actuators 2025, 14, 59

12 of 23

The Q-value of SAC can be calculated using Bellman’s equation based on entropy
improvement with the value function defined as follows:

Q(Sf/at) = EsH_lND[T’(St,ﬂt) + an(st-&-l)] (13)

where s_(t+1) is sampled from the empirical playback pool D. The state value function is
defined as follows:

V(st) = Eaqynr[Q(st, at) — alogre(+|st)] = Eaynre[Q(st, ar) + H(7t(+[st))] (14)

V(s¢) denotes the reward that is expected to be received in a given state.

The SAC contains five neural networks: the policy network 7ty (st, a¢), the value
network Vy(s;), the objective value network Vis(st), and two Q-value network numbers
Qp, (st,a¢) and Qy, (s, a¢). In order to find the optimal strategies, stochastic gradient descent
is applied to their objective functions:

Jv (l[J) - EStND

2
% (Vw(st) — Egymorry LT?EQ"" (st,a1) — “log”¢(ﬂt|5t)})] (15)

In addition, using a form similar to a dual-Q network, the soft Q takes the minimum
of two Q-value functions parameterized by 6; and 6,, which helps to avoid overestimating
inappropriate Q-values in order to improve training speed. The soft Q-value function is
updated by minimizing the Bellman error:

Jo(0) = E(s, a)~D B (QG,-:Lz(St/at) - <7’(St, ar) + V4,(St+1)))2:| (16)

The objective function of the strategy network can be rewritten as follows:
J2(¢) = Eqyrms~D [logn¢(st,at) - 1?7:15'”2(29,' (St,at)] (17)

where the parameter values for adjusting the target soft state are ¢ < ¢+ (1 — 1),
Te [0, 1]

The SAC algorithm also supports automatic tuning of the temperature coefficient
entropy «. When the initial temperature coefficient of the algorithm is large, the agents are
encouraged to explore; when the agents are slow to converge, the temperature coefficients
can be adaptively decayed. In addition, since SAC is based on the off-policy approach, we
train the network by sampling from the empirical playback buffer D. The network can be
trained by the off-policy approach, which is based on the off-policy approach.

3.3.2. Prioritized Experience Replay

When drawing samples from the experience replay buffer for training, if random
sampling is used, the probability of drawing high value samples is very low, which leads
to inefficient learning by the agent. The idea of Prioritized Experience Replay (PER) is
to repeat at a higher frequency those experiences that are of higher value to the learning
process, and these high-value experience samples are usually either very successful or very
unsuccessful samples.

In Deep Reinforcement Learning, Temporal Difference Error (TD Error) represents the
degree to which an intelligent body needs to learn. TD Error measures the value of the
experience. The larger the TD Error is, the larger the gap between the current Q value and
the target value, and the more updating is needed. By frequently learning these important
experiences, we can avoid negative behaviors more quickly. By learning these important

Actuators 2025, 14, 59

13 of 23

experiences more often, the agent can learn positive experiences faster and avoid negative
behaviors.TD Error serves as a criterion for distinguishing the importance of experiences,
and our goal is to make the TD Error smaller.

In order to minimize over-estimation and improve the stability of training, the SAC
algorithm employs two Q-networks and uses smaller Q-values for gradient computation.
In addition, SAC also includes the strategy network 7, so the TD Errors of all three networks
need to be considered simultaneously. The TD Error ¢; is chosen as a metric to evaluate the
empirical value and is calculated as follows:

Gi = |Te(Qu)| + [Te(Q2)| + BI Te(70) | (18)

where £ is a tuning parameter that balances the TD Error weights computed by the policy
network and the Q network. To prevent network overfitting, experiences are extracted
probabilistically to ensure that even experiences with a TD error of 0 are sampled. The
prioritization value for each experience is defined as follows:

_
Y6

where §; = |{;i+¢| and € denotes a very small value that prevents sampling with

P(i) (19)

probability 0.

3.3.3. Reward Function

In order for the robot to avoid the moving obstacles in the environment, the intelligent
body must reward the robot for the process of avoiding the obstacles. During motion
planning, the robot will prioritize the dynamic obstacle avoidance task before the planning
task. When a dynamic obstacle appears in the robot’s workspace and is in a non-safe area,
i.e., the distance between the robot’s linkage and the obstacle is less than the safe distance
ds, the obstacle avoidance operation should be prioritized to ensure that the robot does not
collide with the obstacle.

Ra = nia,)\l : [diSi(t) - diSl‘(i’ - 1)] (20)
i=1

where dis; is the distance between each linkage and the obstacle described in
Equation (12) above and the center point. When dis;(t) is smaller than the previous
dis;(t — 1), it means that the distance between the robot and the dynamic obstacle in the
environment is shrinking, so it receives a negative reward; when dis;(t) is larger than
dis;(t — 1), it means that the distance between the robot and the dynamic obstacle in the
environment is expanding, so it receives a positive reward.

When the robot is in the safe zone, i.e., the distance between the robot’s linkage and
the obstacle is greater than the safe distance d, the reward value for this part is defined
as follows:

Ry = k- dis; (21)

where dis; is the distance between the target node and the end-effector of the robotic arm
in the working interval:

dis = \/ (xg — x1)2 + (yg — 11)2 + (25 — 1) (22)

where (xt,yt, z¢) are the 3D coordinates of the target node location and (xg, y, z¢) are the 3D
coordinates of the end-effector; in this case, the end-effector will be located closer towards
the target node in the safe area.

Actuators 2025, 14, 59 14 of 23

When any of the three linkages collide with a moving obstacle in the environment, a
considerable negative reward R, is generated, and when the robotic arm reaches the target
node, a considerable positive reward Ry is obtained. Therefore, the reward function for the
motion planning task in present study has the following form:

Ry, Getting to the target
Re, Collision
= n=3 23
’ YA - [disi(£) — disi(t—1)], dis; < ds 3)
i=1
Ry, Other

where A; is the corresponding weight. Workflow of the proposed algorithm is shown
in Algorithm 1.

Algorithm 1 Pseudocode of SAC-Bi-RRT Motion Planning

1: Initialize parameter vectors ¢, ¢, ¢, 0 and experience replay buffer D with size S
2: Initialize Xbox camera at global position and depth camera on the robot arm
3: Use camera to get static obstacles and initialize Bi-RRT for global path planning
4: Generate initial global path using Bi-RRT from start to goal
5: for each episode do

6: for each environment step do

7 Use camera to detect dynamic obstacles

8: if dynamic obstacles are detected then

9: Activate depth camera to get precise local obstacle information

10: According to the state s; and the policy 714, sample to get action 4;

11: Execute a; in the environment

12: Obtain next state s;;1, reward 1, and whether done signal d

13: Store sy, ag, 1, s¢y1, d in the experience replay buffer D

14: Calculate the TD-error A for the sample and update the priority P; in D
15: Find the nearest node on the global path to the current position

16: end if

17: if deviation from global path is too large then

18: Replan the global path using Bi-RRT from the current position to the goal
19: end if

20: end for

21: for each gradient step do

22: Sample a minibatch of N experiences from D based on priorities

23: Update Q-network Qg (s, a): 6; < 6; — 1oV]o(6;)

24: Update value network Vi (s): ¢ < ¢ — vy V]y(¢)

25: Update policy network 7y (s,a): ¢ < ¢ — 11V] (¢)

26: Update target value network Viy(s): ¢ < 1+ (1 —1)9

27: Calculate the new TD-error for each sample in the minibatch and update their
priorities in D

28: end for

29: end for

4. Case Studies

This study analyzes an actual robotic arm assembly scenario as shown in Figure 7,
which mainly consists of two robotic arms (UR5 and UR10), a servo-motor-controlled rotor
vane assembly module, a material table for placing a variety of workpieces to be gripped,

Actuators 2025, 14, 59

15 of 23

and multiple inspection devices (RealSense d435i and Kinect V2) (Intel RealSense D435i,
Intel Corporation, Santa Clara, CA, USA; Microsoft Kinect V2, Microsoft Corporation,
Redmond, DC, USA). The end fixtures of the collaborative robotic arms UR5 and UR10 are
both self-designed parallel grippers with a motorized Allen wrench at the end of UR10,
where URS is used for gripping the blades and covers, and UR10 is used for gripping
the bolts and tightening the bolts. The servo motor controls the rotation of the leaf disk.
After completing the assembly of one set of blades, the servo motor controls the leaf disk
through a 1:40 reducer to realize a low-speed and high-precision rotation, rotating 90°
clockwise to the next assembly position. The robotic arm, global camera and depth camera

are connected to the host computer through Ethernet.

‘ Kinect V2 2 material platform 3 teaching aid 4 control box . warning light

6 servo motor . gripper 8 RealSense d4351 9 URS5 10 UR10
. screwdriver . screw . blade ‘ cover . leaf disk

Figure 7. Lab bench assembly scene (the left picture shows the working scene of the whole experi-
mental bench; the right picture shows the global camera view, the bottom part is the material table
where the workpieces are to be gripped, the center is the two UR robotic arms, and the top part is the
rotor carousel to be assembled). The assembly task is to grasp various workpieces on the material
table by the robotic arms and assemble them on the rotor carousel above.

During this robotic arm assembly process, multiple dynamic obstacles may appear in
the work environment, which mainly include operators involved in the human-machine
collaboration, other robotic arms, parts and components, temporary tools and equipment,
and cables and pipelines. As shown in Figure 8, to cope with these dynamic obstacles, we
use a Kinect V2 industrial camera placed in a position where the entire workspace can be
observed as a global camera; at the same time, a RealSense d435i depth camera is placed on
the robot arm as a localized camera. These sensors are able to collect point cloud data in
real time within the work area and generate AABB bounding boxes for each obstacle. The
data quality is ensured by denoising and filtering the point cloud data. Using the collision
detection algorithm described above, combined with Bi-RRT global path planning and SAC
local obstacle avoidance algorithms, dynamic obstacles are detected and processed in real
time, and the motion trajectory of the robotic arm is dynamically adjusted to ensure its safe
and efficient operation in complex environments.

Actuators 2025, 14, 59

16 of 23

= 1 \

WS

Figure 8. Inspection view during assembly (the left display in the figure shows a localized view of
what the RealSense d435i camera can see, and the right display shows the global view of the Kinect
V2 camera).

Considering the slow speed of training a real robot and the easy damage of the robot,
the present study first constructed a dynamics and kinematics model of the robot in the
physics simulation engine, simplified the trajectory planning problem in this assembly
process to be realized in the simulation environment, and represented the obstacles with
AABB bounding boxes. During the simulation process, the following aspects were focused
on: first, evaluating the real-time response capability of the system in the face of dynamic
obstacles to ensure that the robotic arm can adjust its trajectory in time to avoid a collision;
second, verifying the accuracy of the Bi-RRT global path planning and SAC local obstacle
avoidance algorithms to ensure that the robotic arm can accurately avoid obstacles and
arrive at the target location; in addition, testing the Kinect V2 and the RealSense d435i
camera’s environmental perception stability under different environmental conditions to
ensure the stability and accuracy of point cloud data acquisition. Finally, the robustness of
the system is tested under dynamic obstacle interference to ensure that the robotic arm can
still operate safely in complex environments.

Based on the techniques and methods described above, we validate the effectiveness of
the methods by simplifying and modeling the simulation environment of the key problem.
The simulation environment is shown in Figure 9, with a robotic arm and a simple dynamic
obstacle, and using virtual global and local cameras for real-time data acquisition. The
obstacle data are processed by a collision detection algorithm and a path planning algorithm
that dynamically adjust the robotic arm path to ensure obstacle avoidance.

The experiment is simulated using a UR5 collaborative robotic arm, where the ma-
nipulator needs to grasp a randomly initialized object and place it at a specified location.
There is a random moving obstacle in the path, which the robotic arm needs to avoid. In
addition, the robotic arm needs to avoid collisions with the tabletop as well as its own links.
During each training session, the initial configuration of the robotic arm, the target location,
and the location of the obstacle are chosen randomly. The positions of the obstacles and the
target do not change during the training process, but the position of the obstacles and the
target position can change dynamically during the testing process.

Actuators 2025, 14, 59

17 of 23

TURSRobotic Arm [1

target point —'

obstacle

Figure 9. Simulation of the robotic arm during the training process (the UR5 robotic arm present in
the figure takes the position of the workpiece to be gripped or the position to be assembled as the
target point, and the various obstacles in the complex environment are assumed to be the obstacles of
the square in the figure, so that the robotic arm moves from a random position to the target point
position and avoids the dynamic obstacles in the environment in the process).

In the present study, the training process uses the improved SAC algorithm to train
the network. For each round of training, the current round is ended when the robot success-
fully reaches the intermediate goal point or collision occurs. The rewards for successfully
reaching the target node and bumping into the obstacle are set to r¢ = +4,7. = —5, respec-
tively, along with the corresponding reward weights given during the exploration process:
k=—-2,A1 = +1,A; = +2, A3 = +3 and the parameters inside are d; = 0.05m, d; = 0.2m,
and each sample generated by interacting with the environment is stored in the experi-
ence playback buffer, and then the sampling probability of each sample is updated. The
SAC algorithm has a large number of hyperparameters that affect the effectiveness of the
algorithm training. The parameters of the network used in the training are updated by
sampling from the experience playback buffer D. The basic parameters used for the training
are referenced in other articles in the same field on hyperparameter settings [25,26] and are
given in Table 1 with determinable hyperparameter settings.

Table 1. Table of reinforcement learning parameters.

Parameter Value
Actor learning rate 0.0001
Critic learning rate 0.0001
Discount factor 0.99
Maximum training steps 1,000,001
Batch size 256
Replay buffer size 1,000,000

5. Results and Discussion

Success rate and training speed are two main indicators to evaluate the training effect
of a neural network motion planner. In the experimental process, the improved SAC
algorithm is used to train the network 100,000 times. Each round of training is randomly
given the position where the target appears and the starting position of the robot, and the

Actuators 2025, 14, 59

18 of 23

end of the robot is controlled to move to the target position. During training, we save the
model every 500 times, and then test the saved model, calculate the success rate and plot
the success rate curve. In addition, for the improved SAC algorithm, we compare several
other deep reinforcement learning algorithms (DDPG [27] and DQN [28]) and plot the data
in graphs. Figure 10 shows the success curves of the three different algorithms for this
problem. Meanwhile, the reward values during training were recorded and calculated,
and the three deep reinforcement learning reward value curves were plotted according
to the definition of the reward function, as shown in Figure 11. Comparison with the
above figure shows that the improved SAC algorithm is more stable and performs better.
From the figure, it can be seen that with the increase in the number of training points, the
reward convergence is very fast, and the reward values are all gradually stabilized. When
the number of training points reaches a certain number of times, the improved SAC algo-
rithm can complete the path planning of the dynamic obstacle avoidance task with a high
success rate.

10

0.8 1

0.6

success Rate

0.4 1

0.2

—— DDPG
— DON
— SAC

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Episodes (x1075)

Figure 10. Success rate graphs during training (SAC, DDPG, DQN).

—40

—— DDPG
—— DON
— SAC

—60 T T T T
0.0 0.2 0.4 0.6 0.8 10
Episodes (x10"5)

Figure 11. Plot of reward values during training (SAC, DDPG, DQN).

In the present study, the improved SAC is chosen as the main algorithm for local tra-
jectory planning and compared with the Deep Deterministic Policy Gradient (DDPG) and
Deep Q Network (DQN). Among them, DDPG is a reinforcement learning algorithm based
on actor-critic architecture for continuous action space, which combines the advantages of
offline policy learning and policy gradient methods of DON to achieve efficient policy opti-
mization. The DDPG is able to select the optimal obstacle avoidance action in continuous
action space to adapt to the complex motion requirements of the robotic arm. The DQN
(Deep Q Network) is a deep reinforcement learning network. As an important algorithm

Actuators 2025, 14, 59

19 of 23

for discrete action spaces, the DQN approximates the Q-value function through a neural
network and uses empirical replay and a goal network to stabilize the training process.
DOQON performs well when dealing with high-dimensional state spaces, and although it was
originally used for discrete actions, discretizing the continuous action space of a robotic
arm enables the DQN to be applied to solving dynamic obstacle avoidance problems as
well. Nevertheless, the training process of DON is relatively simple and stable, which
makes it more suitable for tasks where the actions can be discretized efficiently and the
dimensionality of the state space is moderate.

Comparing the plots of the success rate and reward function of the three algorithms,
we can see the trend of SAC rising rapidly and stabilizing gradually. The DDPG shows
greater volatility during the training process, but eventually reaches a high success rate
and reward value. The DQN algorithm, although stable during the training process, does
not perform as well as SAC and DDPG in the continuous action control task, with a lower
success rate and reward value are lower. The rationality and effectiveness of choosing the
SAC algorithm for local trajectory planning of a robotic arm are further verified.

In the simulation environment, Figure 12 shows the whole process of robotic arm path
planning and dynamic obstacle avoidance. First, in Figure 12a, the robotic arm is located
at the initial position and global path planning is performed using the Bi-RRT algorithm.
Then, in Figure 12b, the robotic arm starts to move towards the target position (indicated
by the red sphere) where the white squares indicate the obstacles. Figure 12¢,d show the
robotic arm performing an obstacle avoidance process after detecting an obstacle, and
adjusting the local path to avoid the obstacle by the SAC algorithm. Then, in Figure 12e,
the robotic arm continues to move towards the target point after successfully bypassing
the obstacle. Finally, in Figure 12f, the robotic arm reaches the target point and is ready to
perform the grasping task. The whole process demonstrates in detail the path planning
ability of the robotic arm in a dynamic obstacle environment, moving from the initial
position to the target point and successfully avoiding obstacles.

() ()

Figure 12. The whole path planning and dynamic obstacle avoidance process of the robotic arm.
((a) Robot initial position. (b,c) Avoiding dynamic obstacles. (d,e) Movement towards the target.
(f) Target location).

This next section tests the performance of the SAC-Bi-RRT in the presence of dynamic
obstacles. First, an arbitrary pose of the obstacle is randomly generated in space, and then
the obstacle is made to move in one direction at a uniform speed while the manipulator
arm moves. In the experiments of trajectory planning, the obstacle and the manipulator
move simultaneously. A comparison of three different path planning algorithms, SAC-Bi-
RRT, DDPG-Bi-RRT, and SAC, is shown in Figure 13, where the blue trajectories represent
the paths generated using Bi-RRT when there is no obstacle in the working interval, and
the green trajectories represent the paths planned by SAC-Bi-RRT, DDPG-Bi-RRT, and
SAC algorithms, respectively. The RRT algorithm and the SAC-Bi-RRT algorithm are
compared in Figure 13a, the RRT algorithm and the DDPG-Bi-RRT algorithm are compared
in Figure 13b, and the Bi-RRT algorithm and the SAC algorithm are compared in Figure 13c.
The start position and target position in each figure are marked with different colors,

Actuators 2025, 14, 59

20 of 23

o Start Position (Bi-RRT) —— Robot Trajectory (8i-RRT)
x Goal Position (i-RRT) ® Start Position (Bi-RRT)

—— Robot Trajectory (SAC-Bi-RRT) x Goal Position (Bi-RRT)
« Start Position (SAC-Bi-RRT) —— Robot Trajectory (DDPG-Bi-RRT)
x Goal Position (SAC-8I-RRT) ® Start Position (DDPG-Bi-RRT)

and the red and green squares indicate the start position and final position of the obstacle,
respectively. It can be seen that as the obstacle moves, the path of the manipulator gradually
deviates from the initial path, reflecting its real-time obstacle avoidance capability. In
contrast, the SAC-Bi-RRT algorithm outperforms the DDPG-Bi-RRT and SAC algorithms in
complex dynamic environments. This further validates the effectiveness and adaptability
of SAC-Bi-RRT in dealing with dynamic obstacle environments.

—— Robot Trajectory (Bi-RRT) — Robot Trajectory (81-RRT)
® Start Position (BI-RRT)
x Goal Position (Bi-RRT)
— Robot Trajectory (SAC)
® Start Position (SAC)

x Goal Position (SAC)
% Goal Position (DDPG-BI-RRT)

Figure 13. Planned path of the robotic arm in the absence and presence of dynamic obstacles.
(a) The RRT algorithm and the SAC-Bi-RRT algorithm are compared. (b) The RRT algorithm and
the DDPG-Bi-RRT algorithm are compared. (c) The Bi-RRT algorithm and the SAC algorithm
were compared.

In a further validation process, 100 new planned tasks were used as a set of validation
sets and the already trained network model was tested based on them. The test results
are shown in Table 2, demonstrating the success rate, average path length, and average
time taken for the 100 tests. The Bi-RRT algorithm is a path planned in the absence of
obstacles in the environment, and in order to observe the results of the improved algorithm,
a comparison of the paths versus the time has been included, but its success rate is not
listed. In the same environment, combining the SAC algorithm with the Bi-RRT algorithm
to jointly realize robotic arm motion planning is more effective than other algorithms
to realize motion planning. Specifically, the SAC-Bi-RRT algorithm has a significantly
higher success rate than the other algorithms, which indicates that the algorithm is more
robust and adaptable in dynamic obstacle avoidance tasks. The improved success rate
not only reflects the optimization ability of the algorithm in path planning but is also
affected by a combination of factors. For example, the number of obstacles and their
motion characteristics in a dynamic environment can significantly affect the difficulty of
the task, and the SAC-Bi-RRT algorithm is able to adapt to these changes more flexibly.
In addition, sensor accuracy and data latency can have an impact on the perception of
obstacle locations, thus indirectly affecting the accuracy of planning; in this experiment, the
algorithm effectively reduces the negative impact of these external disturbances through a
more efficient perception and response mechanism.

Table 2. Performance comparison of algorithms.

Success Rate Path Length Average Time
Bi-RRT \ 1.41 493
SAC 0.87 1.88 6.63
SAC-Bi-RRT 0.95 1.73 6.14

DDPG-Bi-RRT 0.79 1.95 7.06

Actuators 2025, 14, 59

21 0f23

In addition to the improved success rate, the SAC-Bi-RRT algorithm generates shorter
paths, and its efficiency in path optimization is significantly improved. This not only re-
duces the time for task execution, but also reduces the complexity of the paths and possible
deviations during the movement of the robotic arm. At the same time, the algorithm
has a shorter average planning time, reflecting its computational efficiency in dynamic
environments. Taken together, the SAC-Bi-RRT algorithm outperforms other algorithms in
three key metrics: success rate, path length and average planning time.

Although the SAC-Bi-RRT algorithm performs well in the simulation environment,
there are still some potential limitations. First, the dynamic characteristics of obstacles in
the simulation environment are simplified, and future research needs to consider more
complex and dynamic obstacles, especially in real scenarios with many obstacles. Second,
the algorithms may face errors and delays in the processing of real sensor data, which
have an impact on the effectiveness of obstacle avoidance. Finally, although we consider
partial control and sensor assumptions, the real-time and computational efficiency of the
algorithms may become a bottleneck in more complex systems, such as multiple robotic
arm collaboration or large-scale industrial applications. Therefore, in future work, we will
continue to explore how to improve the scalability and robustness of the method, especially
in complex and dynamic environments.

6. Summary and Outlook

In the present study, a visual assembly method based on SAC-Bi-RRT with two-layer
motion planning is proposed for complex operational task requirements in industrial
scenarios to improve the agent of robotic arm assembly in dynamic environments. The SAC
algorithm and Bi-RRT algorithm are combined for motion planning, and a global camera is
used to monitor the entire operation interval of the robotic arm and obtain environmental
information throughout this interval. The method combines the advantages of Bi-RRT for
fast global exploration and the SAC algorithm for handling complex problems, enabling
the assembly task of the robotic arm to be applied to more complex and randomized
scenarios. The SAC deep reinforcement learning algorithm is used for training and testing in
simulation. To address the problem of low sample learning efficiency, prioritized experience
replay (PER) is used to adjust the sample weights and improve sampling efficiency. To
enhance the efficiency and quality of path planning, a heuristic search approach is applied
in the Bi-RRT construction process. It is verified that SAC-Bi-RRT demonstrates better
performance in terms of success rate, stability, and completion time in the robotic arm
motion planning task.

Despite the good experimental results achieved by the method in the simulation
environment, there are still some limitations, especially when applying the algorithm to real-
world environments. To address these issues, future research will focus on improving the
practical applicability of the algorithm; specifically, we plan to introduce multi-sensor fusion
technology to improve the accuracy and robustness of sensor data and reduce the impact of
environmental complexity and dynamic changes on path planning. Meanwhile, to further
improve the real-time and computational efficiency of the algorithms, future research will
explore the use of strategies such as hyperparameter optimization, migration learning, and
online learning to speed up the training process and reduce the algorithm’s response time.
In addition, with the increasing scale of multi-robot systems, the algorithms may face larger
computational overheads and coordination scheduling challenges; therefore, future work
will enhance the scalability and adaptability of the algorithms in multi-robot collaborative
scenarios by means of distributed computing and collaborative control strategies.

Although satisfactory experimental results have been achieved in this study, transi-
tioning the approach from a simulation environment to a real robotic arm system still faces

Actuators 2025, 14, 59 22 of 23

many challenges, including issues of sensor accuracy, real-time data processing, and adapt-
ability of the control algorithm. Future research will focus on addressing these issues and
further validating the algorithm’s performance in real industrial environments, especially
its applicability and performance in complex and dynamic environments. In summary,
future work will focus on the scalability of the algorithm, training efficiency, multi-robot
collaboration, and feasibility in real-world applications, aiming to promote the success of
the method in a wider range of practical applications.

Author Contributions: Conceptualization, Q.Z. and S.H.; methodology, S.H.; software, Q.Z. and
J.D.; validation, Q.Z. and J.Q.; formal analysis, S.H. and].D.; investigation, S.H.; resources, S.H. and
Y.Z.; data curation, Q.Z. and S.H.; writing—original draft preparation, S.H.; writing—review and
editing, Q.Z.,J.Q. and Y.Z.; supervision,].D.; project administration, Q.Z.; funding acquisition, S.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Qi R; Zhou, W,; Liu, J.; Zhang, W.; Xiao, L. Obstacle avoidance trajectory planning for gaussian motion of robot based on
probability theory. J. Mech. Eng. 2017, 53, 93-100. [CrossRef]

2. Kong, L.; He, W.; Yang, C. Adaptive Fuzzy Control for Coordinated Multiple Robots With Constraint Using Impedance Learning.
IEEE Trans. Cybern. 2018, 49, 3053-3063. [CrossRef] [PubMed]

3. LaValle, S. Rapidly-exploring random trees: A new tool for path planning. In Research Report 9811; Department of Computer
Science, Iowa State University: Ames, IA, USA, 1998.

4. Shen, H,; Xie, W.E; Tang, J.; Zhou, T. Adaptive manipulability-based path planning strategy for industrial robot manipulators.
IEEE/ASME Trans. Mechatron. 2023, 28, 1742-1753. [CrossRef]

5. Zhang, Q.; Li, H.; Duan, J.; Qin, J.; Zhou, Y. Multi-Objective Point Motion Planning for Assembly Robotic Arm Based on IPQ-RRT*
Connect Algorithm. Actuators 2023, 12, 459. [CrossRef]

6. Ferguson, D.; Kalra, N.; Stentz, A. Replanning with rrts. In Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, Orlando, FL, USA, 15-19 May 2006; ICRA 2006. IEEE: Piscataway, NJ, USA, 2006; pp. 1243-1248.

7. Li, Y. An RRT-based path planning strategy in a dynamic environment. In Proceedings of the 2021 7th International Conference
on Automation, Robotics and Applications (ICARA), Prague, Czech Republic, 4-6 February 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 1-5.

8. Han, D.; Nie, H.; Chen, J.; Chen, M. Dynamic obstacle avoidance for manipulators using distance calculation and discrete
detection. Robot. Comput. Integr. Manuf. 2018, 49, 98-104. [CrossRef]

9. Chen, G,; Liu, D.; Wang, Y.; Jia, Q.; Zhang, X. Path planning method with obstacle avoidance for manipulators in dynamic
environment. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418820223. [CrossRef]

10. Mukadam, M.; Dong, J.; Yan, X.; Dellaert, F.; Boots, B. Continuous-time Gaussian process motion planning via probabilistic
inference. Int.]. Robot. Res. 2018, 37, 1319-1340. [CrossRef]

11. Zhu,J.; Zhao, S.; Zhao, R. Path planning for autonomous underwater vehicle based on artificial potential field and modified RRT.
In Proceedings of the 2021 International Conference on Computer, Control and Robotics (ICCCR), Shanghai, China, 8-10 January
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 21-25.

12. Wang, B.; Liu, Z,; Li, Q.; Prorok, A. Mobile robot path planning in dynamic environments through globally guided reinforcement
learning. IEEE Robot. Autom. Lett. 2020, 5, 6932-6939. [CrossRef]

13. Cheng, Y.; Zhang, W. Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels.
Neurocomputing 2018, 272, 63-73. [CrossRef]

14. Bing, Z.; Brucker, M.; Morin, FEO,; Li, R.; Su, X.; Huang, K.; Knoll, A. Complex robotic manipulation via graph-based hindsight
goal generation. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 7863-7876. [CrossRef]

15. Abdi, A.; Adhikari, D.; Park,].H. A novel hybrid path planning method based on g-learning and neural network for robot arm.
Appl. Sci. 2021, 11, 6770. [CrossRef]

16. Abdi, A.; Ranjbar, M.H.; Park,].H. Computer vision-based path planning for robot arms in three-dimensional workspaces using

Q-learning and neural networks. Sensors 2022, 22, 1697. [CrossRef] [PubMed]

https://doi.org/10.3901/JME.2017.05.093
https://doi.org/10.1109/TCYB.2018.2838573
https://www.ncbi.nlm.nih.gov/pubmed/30843856
https://doi.org/10.1109/TMECH.2022.3231467
https://doi.org/10.3390/act12120459
https://doi.org/10.1016/j.rcim.2017.05.013
https://doi.org/10.1177/1729881418820223
https://doi.org/10.1177/0278364918790369
https://doi.org/10.1109/LRA.2020.3026638
https://doi.org/10.1016/j.neucom.2017.06.066
https://doi.org/10.1109/TNNLS.2021.3088947
https://doi.org/10.3390/app11156770
https://doi.org/10.3390/s22051697
https://www.ncbi.nlm.nih.gov/pubmed/35270847

Actuators 2025, 14, 59 23 of 23

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Zhang, T.; Zhang, K,; Lin,].; Louie, W.Y.; Huang, H. Sim2real learning of obstacle avoidance for robotic manipulators in uncertain
environments. IEEE Robot. Autom. Lett. 2021, 7, 65-72. [CrossRef]

Zhang, S.; Xia, Q.; Chen, M.; Cheng, S. Multi-Objective Optimal Trajectory Planning for Robotic Arms Using Deep Reinforcement
Learning. Sensors 2023, 23, 5974. [CrossRef] [PubMed]

Berenson, D.; Kuffner, J.; Choset, H. An optimization approach to planning for mobile manipulation. In Proceedings of the 2008
IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19-23 May 2008; IEEE: Piscataway, NJ, USA,
2008; pp. 1187-1192.

Xia, F; Li, C.; Martin-Martin, R.; Litany, O.; Toshev, A.; Savarese, S. Relmogen: Integrating motion generation in reinforcement
learning for mobile manipulation. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA),
Xi’an, China, 30 May-5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4583-4590.

Yamada, J.; Lee, Y.; Salhotra, G.; Pertsch, K.; Pflueger, M.; Sukhatme, G.; Lim, J.; Englert, P. Motion planner augmented
reinforcement learning for robot manipulation in obstructed environments. In Proceedings of the Conference on Robot Learning,
London, UK, 8-11 November 2021; PMLR: New York, NY, USA, 2021; pp. 589-603.

Kontoudis, G.P.; Vamvoudakis, K.G. Kinodynamic motion planning with continuous-time Q-learning: An online, model-free,
and safe navigation framework. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3803-3817. [CrossRef] [PubMed]

Chen, P; Pei, J.; Lu, W.; Li, M. A deep reinforcement learning based method for real-time path planning and dynamic obstacle
avoidance. Neurocomputing 2022, 497, 64-75. [CrossRef]

Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In Proceedings of the International Conference on Machine Learning, Vienna, Austria, 25-31 July 2018; PMLR:
New York, NY, USA, 2018; pp. 1861-1870.

Zhou, C.; Huang, B.; Franti, P. Representation learning and reinforcement learning for dynamic complex motion planning system.
IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 11049-11063. [CrossRef] [PubMed]

Bai, C.; Zhang, J.; Guo, J.; Yue, C.P. Adaptive Hybrid Optimization Learning-Based Accurate Motion Planning of Multi-Joint Arm.
IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 5440-5451. [CrossRef] [PubMed]

Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

Mnih, V,; Kavukcuoglu, K; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement
learning. arXiv 2013, arXiv:1312.5602.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LRA.2021.3116700
https://doi.org/10.3390/s23135974
https://www.ncbi.nlm.nih.gov/pubmed/37447823
https://doi.org/10.1109/TNNLS.2019.2899311
https://www.ncbi.nlm.nih.gov/pubmed/30946679
https://doi.org/10.1016/j.neucom.2022.05.006
https://doi.org/10.1109/TNNLS.2023.3247160
https://www.ncbi.nlm.nih.gov/pubmed/37028017
https://doi.org/10.1109/TNNLS.2023.3262109
https://www.ncbi.nlm.nih.gov/pubmed/37027270

	Introduction
	A Logical Framework for Dynamic Obstacle Avoidance Based on Soft Actor-Critic and Bidirectional Rapidly-Exploring Random Tree Joint Planning
	Methods
	Global Planner
	Collision Detection
	Localized Obstacle Avoider
	Soft Actor-Critic
	Prioritized Experience Replay
	Reward Function

	Case Studies
	Results and Discussion
	Summary and Outlook
	References

