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Abstract: A new coupling solution for transmitting the rotation motion between two 

shafts with crossed axes is proposed. Based on structural considerations, a planar (P) pair 

is introduced into the structure of the mechanism, presenting the advantage of reduced 

costs due to the constructive and manufacturing simplicity and to high reliability. The 

proposed mechanism is of the RRPRR type, and the structural symmetry simplifies sub-

stantially the construction of the mechanism. The constructive parameters of the mecha-

nism are the angle and distance between the driving and driven shaft and also the length 

of the common normal between the axes of driving and driven revolute (R) pairs, and the 

axes of the revolute pairs of the coupling chain, respectively. Due to the presence of the 

planar pair, the Hartenberg–Denavit method of homogenous operators is not applicable. 

The kinematic analysis for a specified motion of the driving element requires two stages: 

finding the relative motions from the revolute pairs and the motions from the planar pair. 

The RRPRR transmission is analysed for geometrical asymmetrical and symmetrical cases; 

the latter is more convenient and the design principles are presented. Concerning the di-

mensional optimization, it is found to be a methodology for ensuring that the transmission 

ratio of the mechanism can be maintained within a stipulated range. Based on the kine-

matical calculus and geometrical optimization, the mechanism was designed and manu-

factured. 

Keywords: crossed axes transmission; planar pair; non H-D mechanism 

 

1. Introduction 

In engineering systems the issue of ensuring a certain motion for a specific element 

of a mechanical structure often arises. The problem is solved using a kinematical chain 

that ensures the transmission of motion from the driving element (the actuator) to the 

final element (the effector). The classical approach of the problem assumes the use of a 

typical actuator with simple motion, and then, the kinematic chain has the role of trans-

forming the simple motion from the actuator to a complex motion required by the final 

element. Another manner of solving the problem consists in using a signal generator ca-

pable of ensuring the desired motion to the effector which is rigidly coupled to the actua-

tor. 
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Referring to the first solution, the most difficult task is to stipulate the structure and 

the dimensions of the coupling kinematic chain [1,2]. A first imposed requirement of struc-

tural order, is to ensure to the transmission mechanism a degree of freedom equal to the 

number of the driving elements. In practical engineering, there are quite rare cases when 

a mechanism is capable of ensuring to the final element a law of motion identical to the 

expected one [3]. 

In most situations, the obtained law of motion approximates the theoretical one with 

a certain error. The dimensional optimization of the mechanisms should be based on the 

next optimization criterion: the deviation between the actual and theoretical law of motion 

should be kept between pre-set limits. Unlike the dimensional optimization which is a 

continuous process, as Hunt [4] mentions, the structural optimization is iterative. Thus, if 

a dimensional solution that ensures the optimization criteria cannot be found for an 

adopted structure, then, this structural solution must be aborted and a new one must be 

searched for. 

The main objective of our work is to provide a new constructive solution, simple and 

robust, for coupling two shafts with crossed axes (non-co-planar) whose axes are not 

obliged to maintain a fixed position (the relative position of the axes may modify in 

time).The mechanisms with planar pairs are less used in practice [5], mainly due to the 

high number of degrees of freedom (three) which must be controlled. But the application 

of planar pairs in the structure of a mechanism presents the advantage of the reduced 

costs of these pairs, due to the constructive and manufacturing simplicity and to high re-

liability given by the contact on large regions between the surfaces of the contacting ele-

ments [6]. To identify a possible structural solution containing planar pairs, one should 

start from the mobility of a spatial mechanism, found with the following relation: 

where 𝑀𝑓 is the mobility, defined as the number of scalar independent parameters re-

quired to describe univocally the position of the mechanism; 𝑓 is the family of the mech-

anism, defined as the number of common constraints imposed on all mobile elements of 

the mechanisms; 𝑛  is the number of elements of the mechanism; 𝑐𝑘  is the number of 

pairs of class 𝑘; the class of a kinematic pair is defined as the number of cancelled degrees 

of freedom for one element of the pair when the other element is considered immobile; 

the class can take values between 1 and 5. 

The employment of Equation (1) allows for finding the structure of a mechanism 

when certain (different) structural conditions are imposed. As an example, let us consider 

that a structural solution that permits the transmission of motion between two shafts with 

crossed axes by direct contact, as in Figure 1, is sought. 

 

Figure 1. Transmission of motion between two shafts with crossed axes. 

To apply the Equation (1), it is accepted a priori that the situation of the most general 

case of spatial mechanism (as a consequence, 𝑓 = 0) exists [7], that is, the mobility of the 

𝑀𝑓 = (6 − 𝑓)(𝑛 − 1) − ∑ (𝑘 − 𝑓)𝑐𝑘
5
𝑘=𝑓+1   (1) 
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mechanisms should be 𝑀0 = 1, meaning that a single driving element exists. The mecha-

nism has (0,1,2) = 3 elements: the mobile elements 1 and 2 are linked to the ground by 

revolute pairs A and B, of the fifth class and between these two elements is formed a pair 

of class 𝐶𝑥 that supresses x degrees of freedom of the mechanism [8]. Equation (1) be-

comes: 

1 = 6(𝑛 − 1) − 2 ⋅ 5 − 1 ⋅ 𝑥 (2) 

From here: 

1 = 6(3 − 1) − 10 − 𝑥 (3) 

Equation (3) has a unique solution: 

𝑥 = 1. (4) 

Equation (4) shows that the single possible structural solution for transmission of 

motion between two shafts with crossed axes is represented by the construction of a pairs 

of class 1 between the two shafts. As examples of such mechanisms one may remind: of 

the spatial cam mechanisms [9], and the gear mechanisms with crossed axes, either with 

helical gears or with hypoid gears [10,11]. 

The challenge of introducing into the structure of the mechanism another pair, and 

not the class 1 pair, conducts to values of the mobility 𝑀 ≤ 0, and thus the mechanism is 

blocked. As a consequence, the transmission of motion between the two kinematic ele-

ments cannot be obtained via a planar pair. 

A structural solution is aimed at, to transmit the motion between the two shafts using 

intermediate element 3; see Figure 2. 

To be remarked that for parallelism between driving and driven axes, the coupling 

can be substituted by a Schmidt coupling [12], or for concurrent axes, the coupling can be 

replaced by a Cardan joint [13], or conical gear mechanisms. The present coupling is su-

perior to the ones mentioned from the point of view of the transmission ratio since, unlike 

the Cardan joint which has a variable transmission ratio, it is a homokinetic one, as will 

be shown. A mechanical transmission which allows for transmission of rotation motion 

with a constant ratio between concurrent axes is the Rzeppa joint [14]. As can be noticed, 

in order to replace the sliding friction with the rolling friction, the spherical bodies are 

moving in toroidal channels made on the surfaces of the two shafts, a fact that results in 

unusual manufacturing difficulties. Concerning the helical gear mechanisms (and also the 

Rzeppa joints), they have the kinematic advantage with respect to the proposed solution 

of a rigorously constant transmission ratio, but present as a disadvantage the necessity of 

ensuring a very well controlled relative position of the axes, and that the axes should be 

fixed. Additionally, the contact between the teeth of gear mechanisms is of the Hertz type, 

characterised by important contact surface stresses while for the proposed solution, all 

contacts are of the surface type (conformal), with the possibility of adopting from the de-

sign phase the dimensions of the contact regions in order to limit the values of contact 

pressures. 

Equation (1) takes the form 𝑀0 = 1, 𝑛(0,1,2,3) = 4, the pairs A and B remain of the 

fifth class and a planar pair of class 3 (𝑃3) is formed between the elements 1 and 2, and 

thus, the intermediate element 3 will form other pairs of class 𝑥, 𝑦...., with the rest of the 

elements; see Figure 2. Here, the intuitive notation P for the planar pair was used, though 

other notations exist in the literature [15]; and to avoid confusions, recent works do not 

practice such literal symbolization [16]. 
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Figure 2. Mechanism with planar pair and intermediate coupling element (traced in red). 

In this case, Equation (1) becomes 

1 = 6(4 − 1) − 2 ⋅ 5 − 3 − (𝑥 + 𝑦+. . . ), (5) 

and conducts to: 

𝑥 + 𝑦+. . . = 4. (6) 

Equation (6) shows that the rest of the pairs possibly formed by the intermediate el-

ement can be of class maximum 4, and there are several possible structural solutions. 

When a minimum number of pairs is desired, the single probable structural solution is 

𝑥 = 4, 𝑦 = 𝑥 =. . . = 0 and corresponds to the case when the intermediate element forms 

with the other mobile element a class four cylindrical pair [17]. The obtained mechanism, 

RPCR, presented in Figure 3 is detailed constructively and kinematical analysed in [18]. 

The demand of obtaining a mechanism with symmetrical structure of the 𝑅𝑃𝐶𝑥𝑃𝑅 type 

result in the following particular form of Equation (1): 

1 = 6(4 − 1) − 2 ⋅ 5 − 2 ⋅ 3 − 𝑥 (7) 

that has the solution 𝑥 = 1; see example in Figure 4. Therefore, if the mechanism contains 

two revolute pairs and two planar pairs, the existence of an additional class 1 pairs is 

necessary for obtaining a well determined motion. The condition of having structural 

symmetry of the mechanism is related to the idea that the single viable solution is that this 

class 1 pair should be formed either between the driven and driving element, or between 

the intermediate element and the ground. 

 

Figure 3. Constructive solutions for the RPCR mechanism. 

The constructive solution of the last variant is presented in [19]. As  can be observed 

from Figure 5, the application of the class 1 pair is not simple; the constructive solution of 
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transmission becomes complex and, furthermore, the concentrated contact will induce 

significant contact stresses. 

 

Figure 4. Mechanism with two planar pairs and symmetric structure, RP1PR; the intermediate 

element is in red. 

 

Figure 5. Constructive solutions for the RP1PR mechanism. 

So, the conclusion of avoiding higher pairs in the structure of the kinematic chain 

emerges and leads to the idea of using as coupling solution a kinematic chain formed by 

two elements, 2 and 4, that form between them a planar pair of class 𝐶3 and also, form a 

mechanism with symmetric structure. The structural symmetry condition is related to the 

requirement that the elements of the intermediate coupling chain form with each of the 

driving and driven elements a pair of the same class 𝑐𝑥. For this case, in Equation (1), 

𝑛(0,1,2,3,4) = 5 elements; two revolute pairs of class 5, A and B; a planar pair 𝑃3 of class 

3; two pairs 𝐶𝑥 of the same class x as in Figure 6. 
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Figure 6. Spatial mechanism with symmetrical structure containing a planar pair. 

The mobility of the mechanism remains the same: 

1 = 6(5 − 1) − 2 ⋅ 5 − 2 ⋅ 3 − 2𝑥 (8) 

From here, 

𝑥 = 5. (9) 

In conclusion, the unknown pairs have to be of class 5 (revolute, translation or heli-

cal). From these three variants, the revolute pair was the option since it can be materialized 

by rolling bearings. Additionally, one can remark that for the crossed axes, both the dou-

ble Cardan joint and the present mechanism, the sliding friction was not avoided, in the 

prismatic pair and in the planar pair, respectively. Another solution that can be applied 

for the transmission of rotation motion with a constant ratio, between crossed axes, is rep-

resented by the mechanism with tripodic [20] or bipodic contact. This results, with the 

exception of the planar pair, in all other pairs of the mechanism, the rolling friction is 

ensured, a fact that provides higher efficiency [21]. It must be mentioned that the correct 

running of the mechanism requires that the revolution axes 𝛥′ and 𝛥”of the new formed 

revolute pairs not be parallel to 𝒏, the normal to the contact plane of the planar pair; see 

Figure 7. If this condition is not obeyed, an uncontrolled revolute motion could appear in 

the intermediate revolute pair which links the element of the planar pair to the input ele-

ment and to the output element, respectively. 

 

Figure 7. Mechanism with symmetrical structure with planar pair, RRPRR. 

2. Materials and Method 

2.1. Method of Homogenous Operators;Principle of the Method 

The kinematic analysis of spatial mechanisms can be made following the method de-

veloped by Hartenberg and Denavit [22,23] based on matrix calculus. The method is suit-

able to all mechanisms that have on their structure only revolute pairs, with the particular 

aspects of revolution, translation or helical motion. The mechanisms that obey this condi-

tion, that is, contain pairs for which an axis of relative motion can be identified, are named 

H-D mechanisms, while the ones which do not satisfy this condition (since they contain 

pairs for which we cannot stipulate an axis of relative motion between the elements of the 

pair) are called non H-D mechanisms. The Hartenberg–Denavit method is founded on the 

transformation relation for the coordinates of a point when the reference frame is changed. 

Two Cartesian reference systems (𝑝) and (𝑞) are considered, as in Figure 8. A point 𝑀 

has the coordinates 𝑀(𝑥𝑝, 𝑦𝑝, 𝑧𝑝)  in (𝑝)  system and 𝑀(𝑥𝑞 , 𝑦𝑞 , 𝑧𝑝)  in (𝑞)  system. It is 
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aimed at obtaining the calculus relations of the coordinates in the (𝑝) frame when the 

coordinates are known and the position of the system (the origin 𝑂𝑞 and the orientation 

of the versors 𝒊𝑞 , 𝒋𝑞 , 𝒌𝑞), in the (𝑞) frame, as in Figure 8. 

 

Figure 8. The position of a point 𝑀 in two coordinate reference systems, the initial in blue and the 

current in red. 

The relation between the position vectors of the point 𝑀 in the two coordinate sys-

tems is: 

𝒓𝑀
(𝑝)
= 𝒓𝑂𝑞

(𝑝)
+ 𝒓𝑀

(𝑞)
 (10) 

where 𝒓𝑀
(𝑝)

, 𝒓𝑀
(𝑞)

 are the position vectors of point 𝑀 in the two frames (the exponent rep-

resents the coordinate system in which the vector is stipulated) and 𝒓𝑂𝑞
(𝑝)

 is the position 

vector of the origin of system (𝑞) in system (𝑝). Expressing the vectors from relation (10) 

using the versors of the coordinate axes, results in 

𝑥𝑝𝒊𝑝 + 𝑦𝑝𝒋𝑝 + 𝑧𝑝𝒌𝑝 = 𝑥𝑂𝑞
(𝑝)
𝒊𝑝 + 𝑦𝑂𝑞

(𝑝)
𝒋𝑝 + 𝑧𝑂𝑞

(𝑝)
𝒌𝑝 + 𝑥𝑞𝒊𝑞 + 𝑦𝑞𝒋𝑞 + 𝑧𝑞𝒌𝑞|· 𝒊𝑝, 𝒋𝑝, 𝒌𝑝 (11) 

The above relation is projected on the axes of system (𝑝) and conducts to three scalar 

equations which can be expressed in matrix format, as follows: 

[

𝑥𝑝
𝑦𝑝
𝑧𝑝
] =

[
 
 
 
 𝑥𝑂𝑞
(𝑝)

𝑦𝑂𝑞
(𝑝)

𝑧𝑂𝑞
(𝑝)
]
 
 
 
 

+ [

𝑖𝑞 ⋅ 𝑖𝑝 𝑗𝑞 ⋅ 𝑖𝑝 𝑘𝑞 ⋅ 𝑖𝑝
𝑖𝑞 ⋅ 𝑗𝑝 𝑗𝑞 ⋅ 𝑗𝑝 𝑘𝑞 ⋅ 𝑗𝑝
𝑖𝑞 ⋅ 𝑘𝑝 𝑗𝑞 ⋅ 𝑘𝑝 𝑘𝑞 ⋅ 𝑘𝑝

] ⋅ [

𝑥𝑞
𝑦𝑞
𝑧𝑞
] (12) 

Equation (12) can be written in a concentrated manner, as proposed by McCarthy 

[24,25]: 

𝒙𝑝 = 𝒅𝑝𝑞 + 𝑹𝑝𝑞𝒙𝑞 (13) 

where the components of the displacement that superposes system (𝑝) over system (𝑞) 

are: 

𝒅𝑝𝑞 =

[
 
 
 
 𝑥𝑂𝑞
(𝑝)

𝑦𝑂𝑞
(𝑝)

𝑧𝑂𝑞
(𝑝)

]
 
 
 
 

, 𝑅𝑝𝑞 = [

𝑖𝑞 ⋅ 𝑖𝑝 𝑗𝑞 ⋅ 𝑖𝑝 𝑘𝑞 ⋅ 𝑖𝑝
𝑖𝑞 ⋅ 𝑗𝑝 𝑗𝑞 ⋅ 𝑗𝑝 𝑘𝑞 ⋅ 𝑗𝑝
𝑖𝑞 ⋅ 𝑘𝑝 𝑗𝑞 ⋅ 𝑘𝑝 𝑘𝑞 ⋅ 𝑘𝑝

] (14) 
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The vector corresponding to the translation of point 𝑂𝑝 in 𝑂𝑞 is 𝒅𝑝𝑞  and 𝑹𝑝𝑞 is the 

matrix corresponding to the rotation that superposes the axes of frame (𝑝) over the axes 

of frame (𝑞). When three systems (𝑝), (𝑞), (𝑟) are considered, the displacement of the initial 

system (𝑝) over the final system (𝑟) is straightforward, with the matrix relation as follows: 

𝒙𝑝 = 𝒅𝑝𝑟 + 𝑹𝑝𝑟𝒙𝑟 (15) 

or by passing through the intermediate system (𝑞): 

𝒙𝑝 = 𝒅𝑝𝑞 + 𝑹𝑝𝑞𝒙𝑞 = 𝒅𝑝𝑞 + 𝑹𝑝𝑞(𝒅𝑞𝑟 + 𝑹𝑞𝑟𝒙𝑟) = (𝒅𝑝𝑞 + 𝑹𝑝𝑞𝒅𝑞𝑟) + 𝑹𝑝𝑞𝑹𝑞𝑟𝒙𝑟       (16) 

The displacement and rotations from relations (15) and (16) are identified, resulting 

in 

{
𝑑𝑝𝑟 = (𝑑𝑝𝑞 + 𝑅𝑝𝑞𝑑𝑞𝑟)

𝑅𝑝𝑟 = 𝑅𝑝𝑞𝑅𝑞𝑟
 (17) 

Relations (17) show that the final rotation matrix can be obtained by the simple matrix 

product between the rotation matrices in the order of their effectuation but the displace-

ment vector does not result by a simple addition of the vectors corresponding to transla-

tions. The relation will be more complex with the increase in the number of intermediate 

frames used for attending the final system. To overpass this drawback, Hartenberg and 

Denavit considered that the tri-dimensional motion from the space (𝑥, 𝑦, 𝑧) is a glide in the 

hyperplane (𝑤 = 1) tetra-dimensional Cartesian space (𝑥, 𝑦, 𝑧, 𝑤). This motion is described 

by the following matrix equation: 

[
𝑥𝑝
(3𝑥1)

1
] = [

𝑅𝑝𝑞
(3𝑥3)

𝑑𝑝𝑞
(3𝑥1)

0 0 0 1
] [
𝑥𝑝
(3𝑥1)

1
] (18) 

Or, concentrated: 

𝑿𝑝 = 𝑻𝑝𝑞𝑿𝑞 (19) 

where: 

𝑋𝑝
(4𝑥1)

= [
𝑥𝑝
1
], 𝑇𝑝𝑞

(4𝑥4)

= [
𝑅𝑝𝑞 𝑑𝑝𝑞

(0 0 0) 1
] (20) 

In the above relations 𝑇𝑝𝑞 represents the displacement which superposes frame (p) 

over frame (q), having as components the translation of vector 𝑑𝑝𝑞 and the rotation of 

matrix 𝑅𝑝𝑞. 

𝑋𝑝 = 𝑇𝑝𝑞𝑋𝑞 = 𝑇𝑝𝑞(𝑇𝑞𝑟𝑋𝑟) = (𝑇𝑝𝑞𝑇𝑞𝑟)𝑋𝑟 (21) 

From Equation (21), the relation describing the composition of the matrices is: 

𝑇𝑝𝑟 = 𝑇𝑝𝑞𝑇𝑞𝑟 (22) 

From relation (22) it can be noticed that the matrix of a global displacement is ob-

tained as a product of matrices for all successive intermediate displacements, written in 

the order of occurrence. Relation (22) shows the homogenous character of the coordinate 

transformation relations (20). For this reason, the method proposed by Hartenberg and 

Denavit is also called the “method of homogenous operators” [22,23]. Applying relation 

(22) for the displacement from frame (1) into frame (n) using the intermediate frames 

(2), (3), . . . , (𝑛 − 1), the next relation is obtained as follows: 

𝑇1𝑛 = 𝑇12𝑇23. . . . . 𝑇𝑛−1,𝑛 (23) 

Now, by identifying system (𝑛 + 1) with system (1), 

𝑛 + 1 ≡ 1 (24) 

the following equation is obtained: 
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𝑇12𝑇23. . . . 𝑇𝑛−1.𝑛𝑇𝑛,1 = 𝑇1,1 = 𝐼4 (25) 

The above equation represents the closure matrix equation for a kinematical spatial 

chain. This equation is similar to the vector closure equation for a plane kinematical chain 

and permits finding the position parameters of the kinematical chain. 

Equation (23) or (25) provides 12 scalar equations. Three of these correspond to the 

equalities between the displacement vectors and nine equations correspond to the equal-

ity of the rotation matrices from both members of equations. From the last nine, only three 

equations are independent, and, to be emphasised, identifying these three independent 

equations is a difficult task [26]. In conclusion, either Equations (23) or (25) will result in 

six scalar equations that permit finding the position of the kinematic chain. The form of 

the scalar equations is intricate, since there are trigonometrical systems with multiple so-

lutions corresponding to all assembling possibilities. Hartenberg and Denavit showed 

that for the case of a mechanism having in its structure only revolute pairs (H-D mecha-

nism), by convenient choice of coordinate axes, the number of scalar parameters required 

to stipulate the relative position between two coordinate systems is reduced from six to 

four. For this purpose, the axes of the pairs will be the “z” axes of the coordinate systems, 

indexed in the order of their connection in the structure of the mechanism, while the axes 

“x” will be the common normals of two consecutive “z” axes. The procedure is illustrated 

in Figure 9. 

 

Figure 9. The Hartenberg-Denavit parameters. 

Thus, system “k” can be superposed over system “k + 1” by performing two succes-

sive displacements: the first is a roto-translation about the “𝑧𝑘” axis of parameters 𝜃𝑘 and 

𝑠𝑘, and the second is a roto-translation about the “𝑥 + 1” axis of parameters 𝛼𝑘,𝑘+1 and 

𝑎𝑘,𝑘+1. 

The matrix that describes displacement of the coordinate system “k” over system “k 

+ 1” is the following product: 

𝑇𝑘,𝑘+1 = 𝑍(𝜃𝑘, 𝑠𝑘)𝑋(𝛼𝑘,𝑘+1, 𝑎𝑘,𝑘+1) (26) 

where the matrices 𝑍(𝜃𝑘, 𝑠𝑘) and 𝑋(𝛼𝑘,𝑘+1, 𝑎𝑘,𝑘+1), according to [25] are given by the fol-

lowing relation: 
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The matrices 𝒁(𝜃, 𝑠) and 𝑿(𝛼, 𝑎) have the property that their inverse is obtained by 

a plain change in the signum of arguments: 

𝑋(𝛼, 𝑎)−1 = 𝑋(−𝛼,−𝑎) (29) 

𝑍(𝜃, 𝑠)−1 = 𝑍(−𝜃,−𝑠) (30) 

Relations (29) and (30) permit the calculus of the inverse of the 𝑻𝑘,𝑘+1 matrix from 

relation (26) as follows: 

𝑻𝑘,𝑘+1
−1 = [𝒁(𝜃𝑘, 𝑠𝑘)𝑿(𝛼𝑘,𝑘+1, 𝑎𝑘,𝑘+1)]

−1
= 𝑿(−𝛼𝑘,𝑘+1, −𝑎𝑘,𝑘+1)𝒁(−𝜃𝑘, −𝑠𝑘) (31) 

The scalar equations obtained based on relation (25) are intricate trigonometric equa-

tions. To simplify the results, McCarthy proposes the re-writing of Equation (25) under 

the following form: 

𝑇12𝑇23. . 𝑇𝑘−1,𝑘 = (𝑇𝑘,𝑘+1. . 𝑇𝑛−1.𝑛𝑇𝑛,1)
−1 (32) 

McCarthy recommends that the ground of the mechanism should be the separation 

element and the index “𝑘” should be chosen in a manner that both terms of Equation (32) 

contains, if possible, the same number of unknowns. 

For the H-D mechanisms, Uicker [27] proposes a numerical algorithm for solving 

Equation (25), an algorithm which considers all 12 scalar equations obtained from matrix 

Equation (25). 

2.2. Obtaining the Motions from the Revolute Pairs 

The Hartenberg-Denavit method is applicable only for the mechanisms formed by 

kinematical chains having in the structure only revolute pairs, (having the axis of motion 

well stipulated, H-D linkages) with the following particular cases: revolute pair, transla-

tional pair or helical pair. If other types of pairs occur in the structure of the mechanism, 

(non H-D kinematical chains), the method is not applicable. A solution for overpassing 

this drawback consists in structural equivalation of all non H-D pairs with revolute pairs, 

and afterwards, the H-D method can be applied. This manner has the disadvantage that 

complex kinematical chains result in very difficult calculus [28]. 

In actual applications, given the non H-D pairs have more degrees of freedom, the 

geometrical creating conditions are simpler. For example, in the case of a lower non H-D 

pair of class three: the geometric conditions impose that three non-coplanar points from 

an element should appertain to a plane attached to the other element, and for the spherical 

pair, it is sufficient that a point from one of the elements coincides to another point (at-

tached to) from the other element. The difficulty of imposing such conditions consists in 

the fact that they impose relations between geometrical elements placed on different ele-

ments. In order to express the conditions of creating a pair in mathematical form, it is 
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required that all the parameters characteristic of the geometries of the two elements of the 

pair are expressed in the same reference system. This can be made simple, by applying 

the transformation relations presented above, namely the method of homogenous opera-

tors proposed by Hartenberg and Denavit. 

In Figure 10 is presented the scheme of the symmetric non H-D mechanism RRPRR. 

The mechanism contains the driving element 1 and driven element 2, each linked to the 

ground by a revolute pair. Between the two elements, the motion is transmitted via a non 

H-D kinematic chain, consisting in the intermediate elements 3 and 4, between which a 

planar pair is formed. Elements 3 and 4 of the intermediate kinematic chain are linked to 

elements 1 and 2 by revolute pairs, respectively. The axes of the intermediate revolute 

pairs are normal to the axes of the pairs linked to the ground. 

 

Figure 10. The constructive schematics of the structurally symmetrical mechanisms RRPRR: driv-

ing element 1 in magenta, driven element 2 in green and intermediate elements, 3 in red and 4 in 

blue. 

The axes of the revolute pairs were denoted according the Hartenberg-Denavit meth-

odology, with 𝑧𝑘 , 𝑘 = 1,2,3,4. The geometrical creating cnditions for the planar pair be-

tween elements 3 and 4 will be expressed in a reference frame attached to the ground. The 

coordinate system “0” fixed to the ground has the 𝑂𝑥0 axis along the common normal of 

the axes 𝑧1 and 𝑧2, (input and output axes), and the origin 𝑂 is placed at the middle of 

the minimum distance between them. 𝑂𝑧0 is placed in the bisecting plane of the dihedral 

angle formed by the plane defined by the axes 𝑂𝑥0 and 𝑧1, and 𝑂𝑥0 and 𝑧2, respectively. 

The 𝑂𝑦0 axis completes a right Cartesian reference system. 

As mentioned, in order to make the planar pair, it is required that the planes (𝑃3) 

and (𝑃4) should be in coincidence, in any moment, as in Figure 11. This necessity is ful-

filled if three noncolinear points from one of the planes also belong to the other plane. 
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Figure 11. The planes that create the planar pair and the non-coplanar points chosen for the defini-

tion of the pair: in red, the plane (𝑃3) and the system 3; in blue, the plane (𝑃4) and the system 4. 

The vector form for expressing the condition that the points 𝐴𝑘, 𝑘 = 1,2,3 from plane 

4𝑃(4) belong to (𝑃3) is: 

𝒏 ⋅ 𝑂3𝐴𝑘 = 0, 𝑘 = 1,2,3 (33) 

where 𝑂3 is the origin of reference system 3, as in Figure 10. Relations (33) offer three 

scalar equations on unknowns, the angles 𝜃2, 𝜃3, and 𝜃4 from the rotation pairs of the 

mechanism. The vectors and the points from relations (33) have well-stipulated compo-

nents, both in frame 3 (𝒏3 and 𝑂3), and in frame 4, the points 𝐴𝑘, 𝑘 = 1,2,3. In order to 

operate with relations (33), all the vectors and all the coordinates of the points must be 

expressed in the same coordinate system. According to McCarthy [25], it is recommended 

that the coordinate system should be structural, equally distanced from systems 3 and 4; 

thus, a frame attached to the ground 𝑥0, 𝑦0, 𝑧0 was chosen, of origin and orientation pre-

sented in Figure 10. 

The displacement that takes system 0 over system 3 has the homogenous operator 

𝑻03: 

𝑇03 = 𝑋 (
𝜋

2
− 𝛼,−𝑎)𝑍(𝜃1, 𝑠1)𝑋 (−

𝜋

2
, 0) 𝑍(𝜃3, 0) =

= [

cos𝜃1cos𝜃3 −cos𝜃1sin𝜃3 −sin𝜃1 −𝑎
sin𝛼sin𝜃1cos𝜃3 + cos𝛼sin𝜃3 −sin𝛼 sin𝜃1sin𝜃3 + cos𝛼cos𝜃3 sin𝛼 cos𝜃1 −cos𝛼 𝑠1
cos𝛼sin𝜃1cos𝜃3 − sin𝛼sin𝜃3 −cos𝛼sin𝜃1sin𝜃3 − sin𝛼cos𝜃3 cos𝛼cos𝜃1 sin𝛼 𝑠1

0 0 0 1

]
 (34) 

In a similar manner, the displacement of ground 0 over frame 4 has the matrix 𝑻04: 

𝑇04 = 𝑋 (−
𝜋

2
+ 𝛼, 𝑎) 𝑍(𝜃2, 𝑠2)𝑋 (

𝜋

2
, 0) 𝑍(𝜃4, 0) =

= [

cos𝜃2cos𝜃4 −cos𝜃2sin𝜃4 sin𝜃2 𝑎
sin𝛼sin𝜃2cos𝜃4 + cos𝛼sin𝜃4 −sin𝛼sin𝜃2sin𝜃4 + cos𝛼cos𝜃4 −sin𝛼cos𝜃2 𝑠2cos𝛼
−cos𝛼sin𝜃2cos𝜃4 + sin𝛼sin𝜃4 cos𝛼sin𝜃2sin𝜃4 + sin𝛼cos𝜃4 cos𝛼cos𝜃2 𝑠2sin𝛼

0 0 0 1

]
 (35) 

In order to obtain the projection of the normal 𝒏 to the common contact plane of the 

planar pair, one can use the relation: 
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𝑛 = 𝑇03𝑛3 = 𝑇03[0 1 0 0]𝑇 = [

−cos𝜃1sin𝜃3
−sin𝛼 sin𝜃1sin𝜃3 + cos𝛼cos𝜃3
−cos𝛼  sin𝜃1sin𝜃3 − sin𝛼cos𝜃3

1

] (36) 

or the relation: 

𝑛 = 𝑇04𝑛4 = 𝑇04[0 1 0 0]𝑇 = [

cos𝜃2sin𝜃4
sin𝛼 sin𝜃2sin𝜃4 − cos𝛼cos𝜃4
−cos𝛼  sin𝜃2sin𝜃4 − sin𝛼cos𝜃4

1

] (37) 

It can be remarked that relation (36) is preferable because it contains only one of the 

unknowns, 𝜃3, while in relation (37), both 𝜃2 and 𝜃4 are present. The vector 𝒓0 = 𝑂𝑂3 

has the components in frame 0 given by 

𝑟0 = 𝑇03[0 0 0 1]𝑇 = [

−𝑎
−𝑠1cos𝛼
𝑠1sin𝛼
1

] (38) 

The vectors 𝒓1, 𝒓2, and 𝒓3 are the position vectors in frame 0 for the noncolinear 

points 𝐴1, 𝐴2, and 𝐴3 belonging to plane 𝑂4𝑥4𝑧4 from frame 4. For the general case, re-

lations (33) have a difficult form. To simplify this form, three particular points were se-

lected, having in frame 4 the coordinates: 𝐴1(0,0, 𝜁), 𝐴2(0,0, −𝜁), and 𝐴3(𝜉, 0,0, ), as in 

Figure 11. The position vectors of these points in frame 0 will have the following form: 

𝑟1 = 𝑇04 [

0
0
𝜁
1

] = [

𝑎 + 𝜁sin𝜃2
𝑠2cos𝛼 − 𝜁 sin𝛼cos𝜃2
𝑠2 sin 𝛼 + 𝜁cos𝛼cos𝜃2 

1

] (39) 

𝑟2 = 𝑇04 [

0
0
−𝜁
1

] = [

𝑎 + 𝜁sin𝜃2
𝑠2cos𝛼 + 𝜁 sin𝛼cos𝜃2
𝑠2 sin 𝛼 − 𝜁cos𝛼cos𝜃2 

1

] (40) 

𝑟3 = 𝑇04 [

𝜉
0
0
1

] = [

𝑎 + 𝜉cos𝜃2cos𝜃4
𝑠2cos𝛼 + 𝜉sin𝛼sin𝜃2cos𝜃4 + 𝜉cos𝛼 sin𝜃4
𝑠2sin𝛼 − 𝜉cos𝛼  sin𝜃2cos𝜃4 + 𝜉sin𝛼  sin𝜃4

1

] (41) 

By replacing Equations (36), (39), (40) and (41) in relations (33), three scalar equations 

result, of unknowns the angles 𝜃2, 𝜃3, and 𝜃4 corresponding to the rotations about the 

axes 𝑧2, 𝑧3, and 𝑧4, respectively. The actual form of the equations is complicated: 

{

(cos2𝛼 + 𝑠1/𝑠2)cos𝜃3 − [(2𝑎/𝑠2)cos𝜃1 + sin2𝛼sin𝜃1]sin𝜃3 = 0
cos2𝛼sin𝜃1cos𝜃2 + cos𝜃1sin𝜃2sin𝜃3 + sin2𝛼cos𝜃2cos𝜃3 = 0

(cos2𝛼cos𝜃3 − sin2𝛼sin𝜃1sin𝜃3)sin𝜃4 + [(sin2𝛼cos𝜃3 + cos2𝛼sin𝜃1sin𝜃3)sin𝜃2 − cos𝜃1cos𝜃2sin𝜃3]cos𝜃4 +
+(cos2𝛼sin𝜃1cos𝜃2 + cos𝜃1sin𝜃2sin𝜃3 + sin2𝛼cos𝜃2cos𝜃3) = 0

 (42) 

It is remarked that, the term from Equation (42), which does not contain the unknown 

𝜃4, is identical to the left member of the second equation of the system and, therefore, it is 

zero. So, the final form of system (42) is 

{

(𝑐𝑜𝑠 2𝛼 + 𝑠1/𝑠2) 𝑐𝑜𝑠𝜃3− [(2𝑎/𝑠2) 𝑐𝑜𝑠𝜃1+𝑠𝑖𝑛 2 𝛼 𝑠𝑖𝑛𝜃1] 𝑠𝑖𝑛𝜃3 =0
[𝑐𝑜𝑠 2 𝛼 𝑠𝑖𝑛𝜃1+𝑠𝑖𝑛 2𝛼 𝑐𝑜𝑠𝜃3] 𝑐𝑜𝑠𝜃2+(𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃3) 𝑠𝑖𝑛𝜃2 =0

[(𝑠𝑖𝑛 2𝛼 𝑐𝑜𝑠𝜃3+𝑐𝑜𝑠 2𝛼 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃3) 𝑠𝑖𝑛𝜃2−𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃3] 𝑐𝑜𝑠𝜃4+(𝑐𝑜𝑠 2𝛼 𝑐𝑜𝑠𝜃3−𝑠𝑖𝑛 2𝛼 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃3) 𝑠𝑖𝑛𝜃4 =0
 (43) 

It can be noticed that the equations of system (43) can be written in the following 

form: 

𝐴𝑘 𝑐𝑜𝑠𝜃𝑘+𝐵𝑘 𝑠𝑖𝑛𝜃𝑘 =0 (44) 
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where the coefficients 𝐴𝑘 and 𝐵𝑘 are knowns, since they can be found with the values of 

the unknowns from the previous equations. System (43) has the following solutions: 

{
 
 
 

 
 
 𝜃3 = 𝑎𝑡𝑎𝑛

𝑐𝑜𝑠 2𝛼 + 𝑠1/𝑠2

(
2𝑎
𝑠2
) 𝑐𝑜𝑠𝜃1+𝑠𝑖𝑛 2𝛼 𝑠𝑖𝑛𝜃1

+ 𝑘1𝜋, 𝑘1 ∈ 𝒁

𝜃2 = −𝑎𝑡𝑎𝑛
𝑐𝑜𝑠 2𝛼 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃3+𝑠𝑖𝑛 2𝛼 𝑐𝑜𝑠𝜃3

𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃3
+ 𝑘2𝜋, 𝑘2 ∈ 𝒁

𝜃4 = −𝑎𝑡𝑎𝑛
(𝑠𝑖𝑛 2 𝛼 𝑐𝑜𝑠𝜃3+𝑐𝑜𝑠 2𝛼 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃3) 𝑠𝑖𝑛𝜃2−𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃3

𝑐𝑜𝑠 2𝛼 𝑐𝑜𝑠𝜃3−𝑠𝑖𝑛 2𝛼 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃3
+ 𝑘3𝜋, 𝑘3 ∈ 𝒁

 (45) 

In Equation (45), 𝑘1, 𝑘2, 𝑘3 are numbers belonging to integer numbers 𝒁 To choose 

these values of 𝑘1 , 𝑘2 , 𝑘3  in a manner that the theoretical model matches the actual 

mechanism is a difficult task. In order to unburden this selection duty, the mechanism was 

modelled in a simplified manner using the DMUKinematics/CATIA Dassault software 

module [29], as shown in Figure 12. This model results in 2𝑎 = 20 mm; 2𝛼 = 20° ; 𝑠1 =

50 mm and 𝑠2 = 80 mm.  

 

Figure 12. Kinematic model of the transmission obtained with CATIA module DMUKinematics. 

The contact zone from planar pair is purple and the elements of the pair are blue and red. 

With these values, for a given position angle 𝜃10 = 22.11°   of driving element 1, 

𝜃20 = −25.027°  ,  𝜃30 = 77.03°  , 𝜃40 = −94.901°  were obtained, and afterwards, the 

variation in the three rotation angles was represented as a function of the position angle 

of the driving element, as in Figures 13–15. The discontinuities occurring in the models of 

the revolutions from the pairs of the mechanism, in Figure 16, are caused by the presence 

of the function 𝑎𝑡𝑎𝑛( 𝑥) in relations (45) of the displacements, a function that has the co-

domain [−𝜋/2, 𝜋/2], corresponding to a 𝜋𝑟𝑎𝑑 revolution. 
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Figure 13. The rotation angle obtained in the driven pair R2. 

 

Figure 14. The rotation angle from the first inner revolute pair R3. 

 

Figure 15. The rotation angle from the second inner revolute pair R4. 
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Figure 16. The derivative of the rotation angle from the second inner revolute pair R4 presents dis-

continuities, which does not correspond to physical realities. 

A complete revolution requires a function of co-domain of length 2𝜋. The computing 

utilitaries provide inverse trigonometric functions of two arguments which satisfy this 

requirement (the 2𝜋 length co-domain) from which we can recall: 𝑎𝑡𝑎𝑛 2 (𝑥, 𝑦) having 

the co-domain; [0,2𝜋], 𝑎𝑟𝑔( 𝑥 + 𝑖𝑦) having the co-domain [−𝜋, 𝜋], and 𝑎𝑛𝑔𝑙𝑒(𝑥, 𝑦) hav-

ing the co-domain [0,2𝜋] [30]. 

For modelling the kinematic of the mechanism in concordance with the continuity 

conditions imposed on the displacements of the actual mechanism, the Equation (45) were 

written as follows: 

{

𝜃3 = 𝑎𝑟𝑔[ (2𝑎/𝑠2) 𝑐𝑜𝑠𝜃1+𝑠𝑖𝑛 2𝛼 𝑠𝑖𝑛𝜃1+ 𝑖(𝑐𝑜𝑠 2𝛼 + 𝑠1/𝑠2)]

𝜃2 = −𝑎𝑛𝑔𝑙𝑒(𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃3, 𝑐𝑜𝑠 2 𝛼 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃3+𝑠𝑖𝑛 2𝛼 𝑐𝑜𝑠𝜃3)
𝜃4 = −𝑎𝑟𝑔{ 𝑐𝑜𝑠 2𝛼 𝑐𝑜𝑠𝜃3−𝑠𝑖𝑛 2𝛼 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃3+ 𝑖[(𝑠𝑖𝑛 2𝛼 𝑐𝑜𝑠𝜃3+𝑐𝑜𝑠 2𝛼 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃3) 𝑠𝑖𝑛𝜃2−𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃3)} − 𝜋

 (46) 

In Figures 17–19 are represented the displacements found with relations (45) (in red 

line) and relations (46) (blue line), and the values obtained, for a stipulated position of the 

driving element, with the kinematic simulation software (circle symbols). The derivatives 

of the three rotations expressed by relations (46) are represented in Figure 20 and a conti-

nuity of angular velocities is remarked. Additionally, driven element 2 has a rotatory mo-

tion as the sign of the derivative of the signal is constant, while in the intermediate revo-

lute pairs, the motions are oscillations (the angles 𝜃3 and 𝜃4), because the derivatives of 

these angles present periodical variations in sign. 

 

Figure 17. The rotation angle in R2 obtained using inverse trigonometric functions of one argument 

(red line) and of two arguments (blue line). 

 

Figure 18. The rotation angle in R3 obtained using inverse trigonometric functions of one argument 

(red plot) and of two arguments (blue plot). 
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Figure 19. The rotation angle in R4 obtained using inverse trigonometric functions of one argument 

(red plot) and of two arguments (blue plot). 

 

Figure 20. The derivative of the rotation angles, from revolute pairs R2 (red plot), R3 (blue plot), 

and R4 (magenta plot), obtained using inverse trigonometric functions of two arguments. 

2.3. Finding the Motions from the Planar Pair 

The planar pair is a class 3 pair and permits 6 − 3 = 3 degrees of freedom between 

its elements, that is a rotation about the normal to the common contact plane and two 

translations in the contact plane. In order to define the rotation, it is necessary to find the 

angle between two straight lines, each one attached to an element of the pair. For this case, 

the angle between the versors 𝒌4 and 𝒌3 will be determined. Considering that each of 

the two versors has the coordinates stipulated in different systems of reference, 

𝑘4
(4)
= [0 0 1 0]𝑇, 𝑘3

(3)
= [0 0 1 0]𝑇 (47) 

results in the necessity of expressing them in the same frame. Here, the most convenient 

is the frame of the ground. Thus, 

𝑘4
(0)
= 𝑇04𝑘4

(4)
= [

sin𝜃2
−sin𝛼cos𝜃2
cos𝛼cos𝜃2

0

] (48) 

𝑘3
(0)
= 𝑇03𝑘3

(3)
= [

sin𝜃1
−sin𝛼cos𝜃1
cos𝛼cos𝜃1

0

] (49) 

An issue occurring when only the versors 𝒌4 and 𝒌3 are used is the occurrence of 

an ambiguity generated by the fact that there are two different positions of the versor 𝒌4 
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relative to 𝒌3 for which the dot product 𝒌4 ⋅ 𝒌3 has the same value. These two positions 

of the versor 𝒌4 make the same angle with the versor 𝒌3, but one is in a trigonometric 

and the other is in a clock-wise sense relative to 𝒌3. To eliminate this ambiguity, the versor 

𝒊3
(0)

 is also determined, defining the oriented angle between the versors 𝒌4 and 𝒌3: 

𝑖3
(0)
= 𝑇03𝑖0

(3)
= 𝑇03 [

1
0
0
0

] = [

cos𝜃1cos𝜃3
sin𝛼sin𝜃1cos𝜃3 + cos𝑎sin𝜃3
cos𝛼sin𝜃1cos𝜃3 − sin𝛼sin𝜃3

0

] (50) 

The rotation angle 𝜃43 made by the axis 𝑧4 with the axis 𝑧3 is 

𝜃43 = 𝑎𝑛𝑔𝑙𝑒(𝒌4 ⋅ 𝒊3, 𝒌4 ⋅ 𝒌3) −
𝜋

2
 (51) 

Or, in explicit manner, 

𝜃43 = 𝑎𝑛𝑔𝑙𝑒 [
𝑐𝑜𝑠 2𝛼 𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝜃3+𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃3−𝑠𝑖𝑛 2𝛼 𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃3,

𝑐𝑜𝑠 2 𝛼 𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃2−𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2
] −

𝜋

2
 (52) 

The variation in the oriented angle between the axes 𝑧4  and 𝑧3  is represented in 

Figure 21a; the variation in the angular velocity from the planar joint is presented in Figure 

21b and it can be noticed that the motion is oscillatory because the angular velocity 

changes its sign. 

  
(a) (b) 

Figure 21. The variation in the (a) rotation angle; (b) angular velocity, from the planar pair. 

To characterise the relative displacements from the planar pair, two planes attached 

to each of the elements of the pair are considered; the trajectory of a point belonging to 

one plane is required, with respect to the other plane. Considering from the plane 𝑂3𝑥3𝑧3, 

a point of coordinates: 

𝑟3
(3)
= [𝑥3 0 𝑧3 1]𝑇 (53) 

In order to find the coordinates 𝒓3
(4)

, the relation for coordinate transformation is ap-

plied: 

𝒓3
(4)
= 𝑻43𝒓3

(3)
 (54) 

where the homogenous operator 𝑻43, in explicit form, is: 

𝑇43 = 𝑇40𝑇03 = (𝑇04)
−1𝑇03 = 

= [𝑿(−
𝜋

2
+ 𝛼, 𝑎) 𝒁(𝜃2, 𝑠2)𝑿 (

𝜋

2
, 0) 𝒁(𝜃4, 0)]

−1

𝑿(
𝜋

2
− 𝛼,−𝑎)𝒁(𝜃1, 𝑠1)𝑿 (−

𝜋

2
, 0) 𝒁(𝜃3, 0) = 

= 𝒁(−𝜃4, 0)𝑿 (−
𝜋

2
, 0) 𝒁(−𝜃2, −𝑠2)𝑿 (

𝜋

2
− 𝛼,−𝑎)𝑿 (

𝜋

2
− 𝛼,−𝑎)𝒁(𝜃1, 𝑠1)𝑿 (−

𝜋

2
, 0) 𝒁(𝜃3, 0) 

(55) 

After performing the calculus, the following expression is obtained: 
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𝑥3
(4)
= 𝑥3 [

(𝑠𝑖𝑛𝜃3 𝑠𝑖𝑛𝜃4−𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃3 𝑐𝑜𝑠𝜃4) 𝑐𝑜𝑠 2𝛼 +

(𝑠𝑖𝑛𝜃2 𝑠𝑖𝑛𝜃3 𝑐𝑜𝑠𝜃4+𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃3 𝑠𝑖𝑛𝜃4) 𝑠𝑖𝑛 2𝛼 + 𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝜃3𝑐𝑜𝑠𝜃4
] 

+𝑧3[𝑠𝑖𝑛 2 𝛼 𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃4−𝑐𝑜𝑠 2𝛼 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃4−𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃2𝑐𝑜𝑠𝜃4 ] 

−2𝑎 𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝜃4−𝑠1(𝑐𝑜𝑠 2𝛼 𝑠𝑖𝑛𝜃4+𝑠𝑖𝑛 2𝛼 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃4) − 𝑠2𝑠𝑖𝑛𝜃4 

𝑦3
(4)
= 0 

𝑧3
(4)
= 𝑥3[𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃3+𝑐𝑜𝑠 2𝛼 𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝜃3−𝑠𝑖𝑛 2𝛼 𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃3] 

               +𝑧3(𝑐𝑜𝑠 2𝛼 𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃2−𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃2) + 𝑠1 𝑠𝑖𝑛 2𝛼 𝑐𝑜𝑠𝜃2−2𝑎 𝑠𝑖𝑛𝜃2 

(56) 

The comparison between analytical and numerical trajectories is intended: the point 

of coordinates 𝑟3
(3)
= [80 0 30 1]𝑇  from the plane 𝑂3𝑥3𝑧3  has the trajectory in the 

plane 𝑂4𝑥4𝑧4 found with relation (56) as represented in Figure 22a, and the trajectory sim-

ulated using the kinematic software module is presented in Figure 22b. The coordinate 

grids traced on both plots allow for quantitative comparison and an excellent agreement 

between the two curves is remarked. 

In a similar manner, the trajectory is described in the plane 𝑂3𝑥3𝑧3 by a point belong-

ing to the plane 𝑂4𝑥4𝑧4. The transformation relation of the coordinates of the point 

𝑟4
(4)
= [𝑥4 0 𝑧4 1]𝑇 (57) 

from system 4 in system 3 is 

𝒓4
(3)
= 𝑻43𝒓4

(4)
 (58) 

where the homogenous operator of transformation 𝑻43 is given by the relation 

𝑇43 = 𝑻30𝑻04 = (𝑻03)
−1𝑇04 = 

= [𝑿(
𝜋

2
− 𝛼,−𝑎)𝒁(𝜃1, 𝑠1)𝑿 (−

𝜋

2
, 0) 𝒁(𝜃3, 0)]

−1

𝑿(−
𝜋

2
+ 𝛼, 𝑎)𝒁(𝜃2, 𝑠2)𝑿 (

𝜋

2
, 0)𝒁(𝜃4, 0) 

                         = 𝒁(−𝜃3, 0)𝑿 (
𝜋

2
, 0) 𝒁(−𝜃1, −𝑠1)𝑿 (−

𝜋

2
+ 𝛼, 𝑎)𝑿 (−

𝜋

2
+ 𝛼, 𝑎)𝒁(𝜃2, 𝑠2)𝑿 (

𝜋

2
, 0) 𝒁(𝜃4, 0) 

(59) 

 

 
(a) (b) 

Figure 22. Comparison between the trajectories described in the plane 𝑂4𝑥4𝑧4 by a point from the 

plane 𝑂3𝑥3𝑧3 belonging to the element 3: (a) analytical; (b) numerical. 
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By replacing in relation (58) the expressions of 𝒓4
(4)

and 𝑻43, from relations (57) and 

(59), the next relation is obtained after a series of calculus: 

𝑥4
(3)
= 𝑥4 [

(𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃3 𝑠𝑖𝑛𝜃4+𝑠𝑖𝑛𝜃2 𝑠𝑖𝑛𝜃3 𝑐𝑜𝑠𝜃4) 𝑠𝑖𝑛 2𝛼 +

(𝑠𝑖𝑛𝜃3 𝑠𝑖𝑛𝜃4−𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃3 𝑐𝑜𝑠𝜃4) 𝑐𝑜𝑠 2𝛼 + 𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠3𝑐𝑜𝑠𝜃4
] 

+𝑧4(𝑐𝑜𝑠 2𝛼 𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝜃3−𝑠𝑖𝑛 2𝛼 𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃3+𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃3 ) 

+2𝑎 𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃3+𝑠1 𝑠𝑖𝑛𝜃3+𝑠2(𝑐𝑜𝑠 2𝛼 𝑐𝑜𝑠𝜃3+𝑠𝑖𝑛 2𝛼 𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃3) 

𝑦4
(3)
= 0 

𝑧4
(3)
= 𝑥4(𝑠𝑖𝑛 2 𝑎 𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃4−𝑐𝑜𝑠 2𝛼 𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃4−𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝜃4) 

                                 +𝑧4(𝑐𝑜𝑠 2𝛼) 𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃2−𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃2) − 2𝑎 𝑠𝑖𝑛𝜃1+𝑠2 𝑠𝑖𝑛 2𝛼 𝑐𝑜𝑠𝜃1 

(60) 

The correctness of relations (60) is proved by the comparison presented in Figure 23, 

where the comparison of trajectories of the point 𝑟4
(4)
= [80 0 30 1]𝑇 from the plane 

𝑂4𝑥4𝑧4 is traced in the plane 𝑂3𝑥3𝑧3. For a fixed point from system 4, the analytical trajec-

tory was traced using relation (60) and the numerical one was traced using the simulation 

software, in the plane from system 3. 

 
(a) (b) 

Figure 23. Comparison between the trajectories described in the plane 𝑂3𝑥3𝑧3 by a point from the 

plane 𝑂4𝑥4𝑧4: (a) analytical; (b) numerical (the brown region belongs to element 3) 

3. Results and Discussions 

As shown in the previous paragraph, the mechanism has a symmetrical structure 

with respect to the ground. The constructive parameters of the mechanism are as follows: 

the angle 2𝛼 between the input and output axes, 𝑧1 and 𝑧2 , respectively; the length 2𝑎 

of the common normal of these axes and 𝑠1 and𝑠2, the lengths of common normals of axes 

𝑧0 and 𝑧3, and, 𝑧0 and 𝑧4 respectively. 

The process of design and optimization of the mechanism involves only the parame-

ters 𝑠1 and 𝑠2 because the values of the parameters 2𝑎 and 2𝛼, characterizing the rela-

tive position between the in and out axes imposed by the project thematic. 

The design and optimization of the mechanism should consider two aspects: 

• Ensuring a transmission ratio which varies between pre-set limits; 

• Design of the pair capable to ensure a minimum contact zone able to transmit the 

torques corresponding to adequate operating and to avoid the interference between 

the two elements of the planar pair. 
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A constructive sketch of the mechanism is presented in Figure 24. The contacting 

regions which form the higher pair have rectangular shape. A good transmission of the 

forces between the elements requires finding the traces described by the straight lines 𝛥3 

and 𝛥4 in the common contact plane. 

 

Figure 24. Constructive draft of the mechanism. 

Assuming that the contact zones from both elements of the higher pair have rectan-

gular shapes and equal dimensions, using the simulation software, the geometrical loci 

described by the two straight lines 𝛥3 and 𝛥4 were found, as presented in Figure 24. 

The trajectories from Figure 25 were obtained for the next values of the following 

parameters: 2𝑎 = 0 mm ;  2𝛼 = 20°  ; 𝑠1 = 50 mm; 𝑠2 = 80 mm;  2𝑟 = 60 mm; 𝑥0 =

80 mm, where 2𝑟 and 𝑥0 are the dimensions of the active rectangular zone. Applying 

relations (56) and (60), the analytical traces of the two straight lines in the common contact 

plane were obtained; the results are represented in Figure 26; the difference between the 

traces can be noticed, and for both lines, during operation, there will exist regions of the 

traces situated outside the rectangular zone (plotted with black line). The calculus was 

repeated for other parameters, 𝑠1 = 𝑠2 = 100 mm and the traces from Figure 27 were ob-

tained, from which it is remarked that the two traces are identical in shape and position 

but are situated outside the rectangular region. Thus, a geometrical symmetry will be rec-

ommended, because, when suitable dimensions are ensured for one trace, the other trace 

will have the same dimensions. A second conclusion emerging from here is that for equal 

values of the parameters 𝑠1 and 𝑠2, there is the risk that the traces are positioned outside 

the zones assumed for contact. 

 

Figure 25. The trajectories described by the points from the most advanced segment of an element 

of the planar pair, in the contact plane from the other element of the pair. (the element 3 in red and 

the element 4 in blue and the corresponding relative trajectories). 
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Figure 26. Comparison between the geometrical loci of the segments 𝛥3 (red) and 𝛥4 (blue), for 

the parameters 2𝛼 = 20° ; 2𝑎 = 20 mm; 𝑠1 = 50 mm; 𝑠2 = 80 mm; 𝑥0 = 80 𝑚m; 𝑟 = 30 mm. 

 

Figure 27. Superposition of the traces of the straight lines 𝛥3 (red) and 𝛥4 (blue), for 𝑠 = 𝑠1 = 𝑠2 =

100 mm, 2𝛼 = 20° , 2𝑎 = 20 mm, 𝑥0 = 80 mm, 𝑟 = 30 mm. 

From Figures 26 and 27 show the major significance of the parameter 𝑠 = 𝑠1 = 𝑠2 

upon the dimensions of the contact region from the planar pair. 

In order to evaluate the effect of the three constructive paraments 2𝑎,  2𝛼 , and 𝑠 

upon the transmission ratio 𝑖12 of the mechanism, an analytical expression of the ratio is 

necessary. According to the definition relation: 
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𝑖12 =
𝜔1

𝜔2
=

𝑑𝜃1
𝑑𝑡

𝑑𝜃2(𝜃1)

𝑑𝑡

=
𝑑𝜃1
𝑑𝑡

𝑑𝜃2(𝜃1)

𝑑𝜃1

𝑑𝜃1
𝑑𝑡

=
1

𝑑𝜃2(𝜃1)

𝑑𝜃1

  (61) 

Analysing relations (46) which give the displacements from the revolute pairs as 

functions of the angle 𝜃1 of the driving element, one can remark that the angle 𝜃2 de-

pends on the angle 𝜃1 both directly and via the angle 𝜃3(𝜃1). Considering that, for the 

calculus of the transmission ratio 𝑖12 it is necessary for the derivative of 𝜃2 with respect 

to 𝜃1  and the derivatives of the angles 𝜃2  and 𝜃3  to conduct to the same continuous 

functions no matter if expressed by Equations (45) or (46), relations (45) will be used for 

the angles 𝜃2 and 𝜃3 because they contain inverse trigonometric functions of a single ar-

gument. 

The expression of 𝜃3(𝜃1) can be written as 

𝜃3 = 𝑎𝑡𝑎𝑛
1+𝑐𝑜𝑠 2𝛼

2
𝑎

𝑠
 𝑐𝑜𝑠𝜃1+𝑠𝑖𝑛 2𝛼 𝑠𝑖𝑛𝜃1 

  (62) 

This expression is introduced into the second Equation (45) and after calculus, it re-

sults in the following: 

𝜃2 = −𝑎𝑡𝑎𝑛[ 𝑡𝑎𝑛𝜃1+2
𝑎

𝑠
𝑡𝑎𝑛 𝛼]  (63) 

The transmission ratio can be expressed only as a function of the angle 𝜃1 by the 

simple relation 

𝑖12 = −
1+[𝑡𝑎𝑛𝜃1+2

𝑎

𝑠
𝑡𝑎𝑛𝛼]2

1+𝑡𝑎𝑛2 𝜃1
  (64) 

Relation (64) allows for the study of the influence of the three constructive parameters 

upon the transmission ratio. Analysing relation (64), the main strong points of the present 

coupling solution are highlighted: 

• The possibility of transmission of rotation motion between two crossed shafts with 

variable relative position 

• For the particular cases 𝛼 = 0, the axes of the shafts are parallel and the transmission 

ratio is 𝑖12 = −1; the coupling becomes a CV (constant velocity) joint and can replace 

an Oldham or Schmidt joint [31]. 

• For the case 𝑎 = 0, the ratio is also 𝑖12 = −1 and the coupling can replace a conical 

gear mechanism or a Rzeppa joint. 

• Comparing the constructive solution of the present coupling to the ones mentioned, 

we can say the following: 

− The present joint has fewer elements, compared to Rzeppa and Schmidt joints. 

− Elementary boundary surfaces (cylinder or plane), compared to the Rzeppa 

joint, which has spherical and toroidal surfaces or compared to conical gear, 

which has conical flank involute surfaces. 

• Based on a simpler constructive solution, the manufacturing method is simpler, 

precise and economical. 

The effect of parameters 𝑠, 𝑎 şi 𝛼 is highlighted in Figures 28–30. For each of these 

parameters, a string of values was considered, between a minimum and maximum value, 

and the curve representing the dependence of the transmission ratio with respect to the 

angle of the driving element was traced. The curve corresponding to the minimum value 

was traced with blue, the one for the maximum value was black, and for the intermediate 

values the traces were red. As expected, the effect of increasing the parameters 𝑎 and 𝛼 

was an enlargement of the interval of variation in the transmission ratio, a fact confirmed 

by the plots from Figures 28 and 29. 
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Concerning the effect of parameter 𝑠 (common value of 𝑠1 and 𝑠2), it is remarked 

that for increased values of this parameter, the interval of variation in the transmission 

ratio narrows, as in Figure 30, and from here the conclusion is that for a range of variation 

in the transmission ratio, a value 𝑠𝑚𝑖𝑛 can be found, thus ensuring that the transmission 

ratio is within the imposed interval. 

 

Figure 28. The effect of the angle 2𝛼 between the in and out axes upon the transmission ratio 𝑖12. 

The white arrow shows the incressing angle 2𝛼. 

 

Figure 29. The effect of the distance 2𝑎 between the in and out axes upon the transmission ratio 

𝑖12. The white arrow shows increasing distance 2𝑎. 
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Figure 30. The effect of the distance 𝑠 between the in and out axes and the intermediate revolution 

axes upon the transmission ratio 𝑖12 (blue plot for 𝑠𝑚𝑖𝑛 and black plot for 𝑠𝑚𝑎𝑥). 

In order to obtain the value of 𝑠𝑚𝑖𝑛, the expression of the maximum and minimum 

values of the transmission ratio is required. To this end, the derivative of 𝑖12 is calculated: 

𝑑𝑖12

𝑑𝜃1
= −4𝑎

[𝑠 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 2𝜃−𝑎⋅𝑠𝑖𝑛𝛼 𝑠𝑖𝑛 2𝜃1] 𝑠𝑖𝑛 𝛼

𝑠2 𝑐𝑜𝑠2 𝛼
  (65) 

The solutions of the equation: 

𝑑𝑖12

𝑑𝜃1
= 0  (66) 

are: 

𝜃10𝑘 =
1

2
𝑎𝑡𝑎𝑛 [

1

𝑡𝑎𝑛𝛼

𝑠

𝑎
] + 𝑘

𝜋

2
, 𝑘 ∈ 𝒁  (67) 

and correspond to the positions of the driving element, 𝜃1, for the extreme values of 

the transmission ratio. The values obtained in relation (67) are replaced in relation (64) 

and the two extreme values are obtained, expressed with the aid of the function: 

𝑓(𝑠) = −
1

[√
𝑎2

𝑠2
+

1

𝑡𝑎𝑛2𝛼
+
𝑎

𝑠
]

2

𝑡𝑎𝑛2 𝛼

  
(68) 

As it follows: 

𝑖12𝑚𝑎𝑥(𝑠)  = 𝑓(𝑠);       𝑖12𝑚𝑖𝑛(𝑠)  = 1/𝑓(𝑠) (69) 

The goal is that the value of the transmission ratio is as close as possible to −1. There-

fore, if it is obligatory for the transmission ratio to be maintained within the interval [−1 −

𝛥𝑖12, −1 + 𝛥𝑖12], where the deviation 𝛥𝑖12 is imposed, the transcendent equation must be 

solved: 

𝑓(𝑠′) = −1 + 𝛥𝑖12;        𝑓(𝑠”) = −1 − 𝛥𝑖12 (70) 

Adopting for the parameter 𝑠 the value 𝑠0, the maximum value between 𝑠′and 𝑠”, 

the transmission ratio will be inside the interval [−1 − 𝛥𝑖12, −1 + 𝛥𝑖12]. The solving of the 

equations (70) is represented in Figure 31 where it is remarked that for values greater than 

𝑠0, the extreme values are contained in above mentioned interval. 
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Figure 31. The dependency of extreme values of the transmission ratio on the 𝑠  parameter and 

finding the minimum value 𝑠0 from the condition of imposed variation limits (maximum value in 

red, minimum value in blue). 

Once the minimum value 𝑠𝑚𝑖𝑛 of the common normal between the in/out axes and 

the rotation axes of intermediate pairs is found, one can proceed to adopt the final value 

of this parameter, and thus, the minimum contact surface between the elements of the 

planar pair is guaranteed, and the interference is avoided. As mentioned, the available 

regions for the contact between the elements of the planar pair were chosen to be rectan-

gular and of the same dimension, 𝑥0. Adopting a common value for the two parameters 

𝑠1 and 𝑠2 confirms the reversibility of the planar pair (the relative motion of an element 

with respect to the other is identical, when the roles of the two elements would be re-

versed). To reveal the zone occupied by one of the elements of the planar pair with respect 

to the other one, it is considered that both contact zones are rectangular, as in Figure 32, 

and using the Equations (45) and (46) the traces of one rectangle versus the second rectan-

gle were found; in Figure 33, these traces for different values of the 𝑥0 parameter are pre-

sented. In Figure 33a, the risk of non-contact exists, while in Figure 33d, the interference 

may occur. Therefore, the domain for 𝑥0 can be adopted to avoid the extreme situations 

mentioned. 

In Figure 34 is presented the actual symmetrical RRPRR mechanisms, designed and 

manufactured according to the results obtained from analytical calculus and applying the 

geometrical optimization considerations. The prototype we fabricated confirmed the pos-

sibility of transmitting the rotation motion between two shafts with crossed axes with var-

iable position and also, the fact that the presence of the planar pair ensures a silent oper-

ation of the transmission. The simple surfaces (plane and cylinder) that border the ele-

ments ensure good manufacturing technology and all the elements can be manufactured 

on universal machine tools, a fact that leads to a low transmission cost price. 

The dynamic and energy aspects of the operation of the proposed transmission are 

goals for future work. It is obvious that the major problem consists in the study of the 

phenomena occurring in the planar pair, where the sliding friction must be accepted 

(similar to accepting sliding friction on cam mechanisms with a flat face follower or in the 

gear mechanisms). We believe it is important that the obtained relations allow finding the 

relative motions between any of the surfaces of the pairs from the structure of the 

mechanism, which is essential in the estimation of normal reactions and implicitly in 

friction forces which in the end, are decisive in the calculus of wear and efficiency. 
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Figure 32. The two rectangular regions of possible contact, magenta for element 3 and black for 

element 4. 
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Figure 33. Traces obtained for one rectangle (in black) versus the second rectangle (in magenta): (a) 

𝑥0 = 110 mm; (𝐛) 𝑥0 = 130 mm; (𝐜) 𝑥0 = 160 mm; ( d) 𝑥0 = 190 mm.  Red traces are described by 

points belonging to lateral edges and the blue traces are described by the front egde.  

 

Figure 34. The actual symmetrical RRPRR mechanisms designed and executed applying these re-

sults from the paper. 

4. Conclusions 

This paper presents a new coupling solution, which contains in the structure a planar 

pair, for transmitting the rotation motion between two shafts with crossed axes. The pres-

ence of the planar joint is founded on structural considerations. The planar pair has a high 

degree of possibilities of motion and then conducts to structural solutions that have lesser 

elements compared to the classical solutions which contain in their structure a cylindrical, 

revolute of translational pairs. The first solution possible from structural considerations 

must have at least an intermediate element with the role of connecting the input and out-

put shafts through at least one planar pair. 

The constructive solutions presented in previous works specify difficulties of manu-

facturing and constructive motives. From these reasons, we aimed at a structural solution 

by which, the two shafts, input and output, are coupled via a kinematic linkage made 

between two elements, which contain a planar joint. Accepting that the planar pair should 

be formed between the elements of the intermediate chain, it is shown that the pairs be-

tween it and the elements linked to the ground (the driven and driving ones) can be only 

rotational, and thus the mechanism is a structurally symmetric of the RRPRR type. The 

structural symmetry simplifies substantially the construction of the mechanism. The con-

structive parameters of the mechanism are the angle and distance between the driving 

and driven shaft and also the length of the common normal between the axes of in and 

out pairs, and the axes of the revolute pairs of the coupling chain, respectively. 

Due to the presence of the planar pair, the mechanisms cannot be placed in the cate-

gory of Hartenberg–Denavit mechanisms, for which the motion from any pair has a well-

stipulated axis, and thus, the method of homogenous operators is not applicable. 

The kinematic analysis of the mechanism for a specified motion of the driving ele-

ment supposes the completion of two steps: finding the relative motions from the revolute 

pairs and then, finding the motions from the planar pair. 

In order to determine the motions from revolute pairs, the geometrical conditions of 

planar pair creation were expressed in vector form in the coordinate frame of the ground. 

Homogenous operators were used for expressing all the elements occurring in the equa-

tions of constraint of the planar pair. Three scalar equations were obtained which allowed 

for finding the motions from the revolute pairs as a function of the motion of the driving 
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element. The motion from the exit pair is a rotatory motion, while in the inner revolute 

pairs, the motions are oscillations. 

For finding the motions from the planar pair, the revolute motion was first deter-

mined, and it was also of the oscillatory type; and after that, the motion from the contact 

plane, for a point belonging to an element of the planar pair with respect to the other 

element was found. It was observed that by interchanging the elements of the planar pair, 

a different motion was obtained. By equalising the values of the constructive parameters 

corresponding to the positions of the inner revolute pairs with respect to the in and out 

positions, it is remarked that the two motions from the planar pair became identical and 

the pair had a reversible character. In this particular situation, the relations characteristic 

to the motions from kinematical pairs were substantially reduced. 

From a technical point of view, an extremely important problem is the adoption of 

the dimensions of the elements of the planar pair. Assuming a symmetrical geometric 

mechanism, it is shown with that the selection of the distance between the axes of outer 

and inner pairs with values greater than a minimum value, the transmission ratio of the 

mechanism can be maintained within a pre-defined variation interval. 

Supposing that the possible contact surfaces from the planar pair are two identical 

rectangles, the geometrical locus described by one of these rectangles with respect to the 

other, was found. The result allows for adopting the constrictive parameter such as to 

avoid the interference between the elements of the planar pair, on one side, and to ensure 

a minimum contact region capable of adequately transmitting the forces from the elements 

of the pair, on the other side. 

As a final conclusion, this paper presents anew constructive solution, simple and ro-

bust for the transmission of motion between two shafts with crossed axes. For future work, 

concerning the pairs of the mechanism, the problem of optimization from a tribological 

point of view is envisaged—the employment of rolling bearings for revolute pairs and the 

use of a pair of materials with antifriction properties for the elements of the planar pair, 

with the target of a higher transmission efficiency. 
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