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Abstract: Aerial robots equipped with operational robotic arms are a powerful means of 

achieving aerial contact operations, and their core competitiveness lies in target tracking 

control at the end of the airborne robotic arm (ARA). In order to improve the learning 

efficiency and flexibility of the ARA control algorithm, this paper proposes the encourag-

ing guidance of an actor–critic (Eg-ac) algorithm based on the actor–critic (AC) algorithm 

and applies it to the floating target tracking control of ARA. It can quickly lock in the 

exploration direction and achieve stable tracking without increasing the learning cost. 

Firstly, this paper establishes approximate functions, policy functions, and encourage-

ment functions for the state value of ARA. Secondly, an adoption rate controller (ARC) 

module was designed based on the concept of heavy rewards and light punishments 

(HRLP). Then, the kinematic and dynamic models of ARA were established. Finally, sim-

ulation was conducted using stable baselines3 (SB3). The experimental results show that, 

under the same computational cost, the convergence speed of the Eg-ac is improved by 

21.4% compared to deep deterministic policy gradient (DDPG). Compared with soft ac-

tor–critic (SAC) and DDPG, Eg-ac has improved learning efficiency by at least 20% and 

has a more agile and stable floating target tracking effect. 

Keywords: airborne robotic arm; floating target tracking; reinforcement learning; inverse 

kinematic solution 

 

1. Introduction 

With the continuous development of aerial robot technology, flying robots carrying 

different onboard equipment to reach designated positions and complete high-altitude 

tasks have gradually become a situation of interest in aerial operations [1–4]. Fast and safe 

working methods are gradually replacing traditional manual operations. At present, there 

is still a certain gap between the various applications of aerial robots and the widespread 

applications in the concept [5]. There are still many technical issues that need to be further 

addressed, such as designing specific robot configurations, operating tools, and operating 

modes for different application goals [6–9]. Moreover, in-depth research and the optimi-

zation of control strategies for aerial work robots have become urgent technical challenges 

that need to be addressed. 

This article takes obstacle removal, line repair, bolt tightening, and other aerial con-

tact operations of high-altitude transmission lines as the research background. At present, 
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these tasks still mainly rely on manual operations with significant safety hazards [10,11], 

and the intelligent operation of airborne robotic arms is a powerful means to solve the 

above problems. As shown in Figure 1, the aerial robot system studied in this article can 

perform line hanging operations on high-altitude routes. This robot integrates a multi-

rotor unmanned aerial vehicle, a hanging line walking system, and an airborne multide-

gree of freedom robotic arm that can accurately reach the target position in complex aerial 

environments and complete hanging line, walking, and line clearing tasks. Due to the 

complex aerial operation environment and the constantly changing external disturbances, 

the core competitiveness of this system lies in the precise control of the aerial operation 

robotic arm. Only by improving positioning accuracy and tracking performance can the 

accuracy and effectiveness of aerial operations be ensured. Based on this, this work aimed 

to study the control problem of an airborne operation robotic arm in an aerial robot system 

and conduct research on the target tracking task of the robotic arm tool end. 

Quadcopter

Operating Arm

Hanging Wheels

 

Figure 1. Aerial robot system. 

Prior to this, scholars both domestically and internationally have conducted exten-

sive research on the control issues of manipulator arms [12–17]. In recent years, control 

algorithms based on machine learning [18,19] have gradually emerged, and reinforcement 

learning frameworks have become a promising algorithmic tool for improving the control 

of aerial robotic arms [20–22]. The resulting deep reinforcement learning [23–28] combines 

the perceptual ability of deep learning with the decision-making ability of reinforcement 

learning, achieving end-to-end control from input to output, attracting the attention of a 

large number of researchers. And research on robotic arm control based on deep rein-

forcement learning is also becoming increasingly popular. After the successful application 

of deep learning in object detection, H. Sekkat et al. [29] proposed a neural inverse kine-

matic solution based on deep reinforcement learning for object detection using deep learn-

ing models, which evolved grasping tasks by achieving expected goals. This method cal-

culates the joint angle of the detected position through inverse kinematics, causing the 

robot arm to move toward the position of the target object. The simulation results showed 

that the accuracy of the end effector grip joint angle and posture of the robot is satisfactory. 

T. Lindner [30] studied six combinations of four reinforcement learning algorithms for 

robot localization tasks. These algorithms were used for the positioning control of robot 

arm models, taking into account the evaluation of positioning accuracy, motion trajectory, 

and the number of steps required to achieve the target. The simulation and experimental 

results indicated that the RL algorithm can be successfully applied to the learning of robot 

arm positioning control. K. M. Oikonomou et al. [31] argued that although deep neural 

networks (DNNs) have achieved significant results in many robot applications, energy 

consumption remains a major limitation. They proposed a hybrid variant based on the 

deep deterministic policy gradient (DDPG) learning method for training six-degree-of-

freedom robotic arms for target arrival tasks. Among them, a peak neural network was 

introduced into the actor model, and a DNN was introduced into the critic model. Finally, 
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the hybrid DDPG model was compared with the classical DDPG model, demonstrating 

the superiority of the hybrid method. Coincidentally, B. Y. Song [32] proposed a dual-

delay space robotic arm trajectory planning technique based on deep reinforcement learn-

ing to solve complex dynamics and control problems in the process of space debris re-

moval. This technique can achieve end-to-end control effects comparable to the human 

grasping of objects. This study utilized joint and end effector control strategies developed 

using trajectory planners, trajectory trackers, and seven different weighted reward func-

tions to implement a trajectory planning method for a floating space robotic arm to cap-

ture space debris. The experimental results indicated that this capture policy can maintain 

a high capture success rate. P. Wu [33] believed that traditional robotic arm control algo-

rithms often struggle to adapt to the challenges posed by dynamic obstacles. Therefore, a 

reinforcement learning-based dynamic obstacle avoidance method was proposed to solve 

the real-time processing problem of dynamic obstacles. This method introduces a feature 

extraction network with an integrated gating mechanism based on traditional reinforce-

ment learning algorithms. In addition, an adaptive dynamic reward mechanism was de-

signed to optimize obstacle avoidance strategies. Verification showed that this method 

can effectively avoid randomly moving obstacles and significantly improved in conver-

gence speed compared to traditional algorithms. 

The summary above indicates that deep reinforcement learning has been widely ap-

plied in the research of space robotic arm control algorithms for tasks such as arrival, 

grasping, and trajectory tracking. Most of the robotic arms studied are series-connected 

with fixed bases, and the algorithms currently being researched can also achieve the basic 

goal of completing tasks. However, most algorithms do not consider the training effi-

ciency and external disturbances of the robotic arm while pursuing positioning accuracy. 

When it comes to the end positioning of unstable bases and tracking of dynamic target 

objects, some algorithms seem inadequate and often yield unsatisfactory results. 

The aerial operation-type robotic arm studied in this paper is mounted on the fuse-

lage of a rotary wing of an unmanned aerial vehicle. Due to the special working environ-

ment, its end tool will sway with the shaking of the base and fuselage. In the task of clear-

ing obstacles on the route studied in this article, most of the objects were floating objects 

with irregular floating phenomena. Therefore, the positioning accuracy and flexibility re-

quirements of the tool end were high. Conventional control struggles to quickly locate the 

target object due to lag, while current reinforcement learning algorithms for robotic arms 

can achieve ideal results through learning. Generally speaking, value-based methods out-

put the values of actions and are typically used in environments with discrete action 

spaces [23]. The policy-based approach, which outputs the probability of a direct action 

or action, is usually more suitable for environments with high-dimensional or continuous 

action spaces [26]. The behavior space of the airborne robotic arm (ARA) end positioning 

control is continuous and large-scale, and basic algorithms such as Monte Carlo reinforce-

ment learning based on complete sampling and temporal differential reinforcement learn-

ing based on incomplete sampling may have low efficiency and even fail to achieve good 

solutions [34]. In view of this, this study adopted a policy-based learning method that 

regards the policy as a parameterized policy function of the ARA state and joint power 

output. Through establishing an objective function and using the rewards generated by 

the interaction between the ARA and the environment, the parameters of the policy func-

tion are learned. Currently, the most commonly used policy learning methods have a high 

degree of randomness in the early stages of learning, which may result in useless explo-

ration or even completely opposite exploration paths to the target task. This situation can 

lead to a slower iteration speed in the early stages of learning, thereby reducing the con-

vergence speed of the objective function. Although it ensures the exploration function of 

the algorithm, it increases the computational cost as a result. 
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In summary, this article proposes an encouragement-guided policy learning algo-

rithm, Eg-ac, that adds an encourager to the actor–critic algorithm. The main function of 

the encourager is to generate strategies consistent with the final target task direction based 

on the current and target states of the ARA. In addition, the algorithm also incorporates a 

heavy rewards and light punishments (HRLP) reward mechanism and an adoption rate 

controller (ARC) module. The basic idea of HRLP is to increase rewards for good behavior 

and reduce punishments for bad behavior, thereby accelerating learning and encouraging 

exploration. The ARC is used to randomly generate adoption rates for the encourager un-

der certain constraints, and the final policy is for actors and the encourager to output the 

ARA’s behavior strategies under the regulation of the ARC. The advantage of doing so is 

that the ARA executes the policy and obtains the corrected state before the next training 

begins. As the saying goes, ’a good start is half the battle’, and correcting the ARA status 

at any time is beneficial for approaching the final target position more quickly in subse-

quent training, thereby shortening the number of training steps included in an experience 

and improving training efficiency. Figure 2 illustrates the control policy for ARA’s floating 

target tracking control learning using the Eg-ac algorithm proposed in this paper. Firstly, 

this paper establishes approximate functions, policy functions, and encouragement func-

tions for the state value of the ARA. The value function can evaluate and optimize strate-

gies, and the optimized policy function, through the ARC joint encouragement function, 

will output more reasonable behavioral strategies for the ARA, which will in turn make 

the value function more accurate in reflecting the value of the state. The three function 

types mutually promote each other and ultimately obtain the optimal tracking policy for 

the ARA. Then, this paper establishes the kinematic and dynamic models of the ARA, 

which obtain the joint positions through inverse kinematic calculation and input them 

into the dynamic system to obtain the current state. Finally, this study conducted simula-

tions using the open source reinforcement learning library stable baselines3 (SB3) built on 

the pytorch framework. 
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3Ẑ

3Ŷ
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Figure 2. Control policy of Eg-ac algorithm. 

The following sections of this paper are arranged as follows. The second part elabo-

rates on the principle and process of the Eg-ac algorithm. The third part describes the 

establishment of the ARA model and the setting of simulation parameters. The fourth part 

presents the simulation details. The fifth part summarizes the results and the method. 
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2. Algorithm Principles and Processes 

2.1. ARA Status Description 

The ARA system is a continuous power system with state characteristic 
s

ts   and 

system input 
a

ta  , denoted as Equation (1). 

( )1 , ( )t t ts f s a g t+ = +  (1) 

Among them, 1ts +  is the prediction of the next state based on the current state fea-

ture ts  taking action ta
, 

( )f 
 is an unknown function, and 

( )g t
 is a random noise 

function for exploring a small range around the control variable, where t  represents all 

the time steps recorded in the previous step during the training process. 

Assuming that each temporal process of ARA has Markovian properties, establish a 

Markov decision process tuple 
, , , ,S A P R 

 for the ARA: 

 

 

 

1 1

1

[ , , , , , , , , ] ,

, , ,

| ,

| ,

0 1

t t

t

t ax ay az ax ay az tx ty tz t

x y z

a

s s t t t t

a

s t t t t

s p p p p p p p p p s S

a p p p a A

P P S S s A a

R R S s A a



+



+

+

 = 


 =   


= = =


=  = =



，

 (2) 

Among them, ts  is a set of state representations in state set S . axp
, ayp

, and azp
 

are the position coordinates of the ARA in the three axis directions of the end position in 

the body coordinate system at the current time. axp
, ayp

, and azp
 are the velocities of 

the ARA in the three coordinate axes of the end position in the body coordinate system. 

txp
, typ

, and tzp
 are the target position coordinates of the ARA in the three coordinate 

axis directions of the end position in the body coordinate system. 

[ , , , , , , , , ]t ax ay az ax ay az tx ty tzs p p p p p p p p p =
 describes the state parameters of the ARA in the 

body coordinate system. Since the ARA operation object studied in this article is a floating 

object ahead, the pitch angle of the ARA operation end position in the body coordinate 

system was set to remain unchanged, and the state parameters do not need to consider 

the end effector attitude. a  is a set of control variables in control set A , where xp
, yp

, and zp
 represent the acceleration of the ARA in the three coordinate axis directions of 

the end position in the body coordinate system. 1t t

a

s sP
+  represents a set of transition prob-

abilities in the state transition probability matrix P , which represents the transition prob-

ability from the current state ts  to the next state t+1s
 through control variable a . The 

reward obtained during this process is 1tR + . Subscripts t  and 1t +  in the above varia-

bles represent the current time step and the next time step, respectively. t

a

sR
 represents 

a set of reward values in the reward function R , which are the rewards obtained from 

the current state ts   after passing through control variable a  . The 


  in tuple 

, , , ,S A P R 
 is the decay factor, and tS

 is the finite set of states for the current time step 

t . tA
 is a finite set of control variables for the current time step t . 

Establish the motion state update equation for the ARA as follows: 
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( )( )

( )  

1 , | , ( )

, | ,

t t t t t

t t t t

s f S s A a s a g t

s a P A a S s







 

+
 = = = +


= = =

 (3) 

Among them, 
( ),ts a  is the ARA control strategy.   is the strategy parameter. 

 | ,t t tP A a S s = =
 is the probability distribution matrix of executing control variable a  

under the given state ts   and strategy parameter   . 
( )( ), | ,t t t tf S s A a s a= =

  is the 

dynamic equation obtained by continuously updating 
( ) 1, ,t ts a s +  of the strategy, and 

( )g t
 is the noise function. 

2.2. Eg-ac Control Policy 

The Eg-ac algorithm proposed in this article is based on the AC algorithm, and the 

specific control policy is as follows: 

( )Eg-ac , | ,E E

t t t ts a P A a a S s    = =  = ，  (4) 

Among them, 
  is the actor policy network parameter, and 

E  is the encourager 

policy parameter. The Eg-ac policy advocates that the predicted behavior given is the dy-

namic weighted behavior value of the actor’s behavior and the encourager’s output be-

havior, i.e., 
E

tA a a=  , where the dynamic weight comes from the ARC module. The 

symbol    represents weighted addition. The critic network estimates the behavior 

value based on the ARC output behavior and calculates the gradient of the objective func-

tion and the loss of the critic, thereby updating the parameters of each network. It is worth 

noting that the design of the Eg-ac control strategy references the HRLP reward mecha-

nism and incorporates the ARC model. The specific design details are as follows. 

(a) ARC Module 

In order to improve learning efficiency while also considering algorithm exploration 

function, this paper proposes introducing an ARC before behavior output to randomly 

generate adoption rates ARC
  for the encourager under certain constraints (e.g., 

30%ARC 
). N contains a set of data corresponding to the joint positions of the ARA that 

will be described later. And the actor will also generate a probability of adoption with a 

value of 
1 ARC−

. And after training to a certain extent, 
0ARC →

 is set. It is known that 

the encourager produces controllable and directionally correct behaviors. In the initial 

training stage, the actor network is not yet mature, and the output values generated are 

irregular, even going against the expected values. In this situation, appropriately reducing 

the adoption rate of the actor and partially accepting encourager’s suggestion output 

value will correct the final output action value appropriately. In the actual execution pro-

cess, the output action value develops in a positive direction, that is, moving along the 

expected trajectory. Firstly, the punishment level will be reduced, and the reward level 

will be increased. Secondly, the corrected state will be obtained before the next training, 

which is beneficial for approaching the final target position more quickly in subsequent 

training, thereby shortening the number of training steps included in an experience and 

improving training efficiency. The reason for setting 
0ARC →

 after training to a certain 

extent is that the encourager only plays a corrective guidance role in the initial stage, and 

it adopts an error control method. When it comes to target tracking tasks, there will be lag 

like in traditional control methods. Therefore, later participation will affect the explora-

tory ability of the actor itself, not only hindering the improvement of training effectiveness 
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but also limiting the flexibility of the algorithm. Therefore, with the real-time correction 

of the ARA status, the next training step can approach the final target position more 

quickly, thus completing an experience as soon as possible, shortening the training steps, 

and improving training efficiency. 

(b) HRLP Reward Mechanism 

The presentation of the HRLP reward mechanism is based on the output behavior of 

the ARC module mentioned above. Due to the regulation of the ARC, the positive behav-

ior output is amplified, which is then used as an execution strategy to obtain a positive 

ARA state and generate greater reward values. Bad behavior can be corrected, and exe-

cuting the behavior will result in a less inappropriate state than before, thereby reducing 

punishment. In summary, HRLP is responsible for determining rewards based on the out-

put values of policy functions. Its basic idea is to increase rewards for good behavior and 

reduce punishments for bad behavior, thereby accelerating learning and encouraging ex-

ploration. 

Let the actor network function be ( )  , the critic network function be ( )QQ  , the 

encourager function be ( )EE  , the target actor network function be ( ) 
 , and the tar-

get critic network function be ( )QQ 
 . The specific control process of the Eg-ac policy is 

shown in Figure 3, and ( )g t  is the random noise function. In the randomly selected 

state–action pairs ( )1 1, , ,i i i is a r s+ +  from the experience pool, state is  generates a specific 

behavior a  through the actor network as one of the action input values for the ARC 

module, and the next state 1is +  generates a predicted behavior a  through the target 

actor network as the action input value for the target critic network to calculate the esti-

mated value. The encourager network inputs the pre and post state values and error val-

ues from historical data into the PD controller, generating specific behavior Ea  as an-

other action input value for the ARC module. The ARC module uses a randomly gener-

ated set of adoption rates to integrate two sets of actions and outputs them to the critic 

network to calculate the behavior value ( ),i iQ s a  corresponding to the state is  and the 

integrated behavior 
E

ia a a=  . The target critic network generates the behavioral value 

( )1,iQ s a+
    for calculating the target value argT etQ   based on the subsequent states 1is +  

and a . 

In the above process, in assuming that the reward obtained from interacting with the 

environment under strategy   is ,s aR , the objective function is designed as follows: 

( ) ,s aJ R


  =   
 

(5) 

The ultimate goal of the algorithm is to find the optimal behavior 

(1 ) E

i ARC ARCa a a = − +  output by the ARC to maximize the value of the output behavior, 

where the reward obtained by executing ia
 is 1ir + , and this transformation process is 

stored as 
( )1 1, , ,i i i is a r s+ + . In assuming that each batch has   execution steps, the system 

carries out a certain amount of the conversion process and randomly selects X  samples 

to calculate the target value argT etQ
 and the loss cLoss

 of the critic network: 

( )( )arg 1 , | | Q

T et i i iQ r Q s s    
 

+
 = +

 
(6) 

( )( )
2

arg

1
, | Q

c T et i i

i

Loss Q Q s a
X

= −
 

(7) 
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Figure 3. Eg-ac control policy. 

The update method of the actor network adopts the gradient ascent method. Consid-

ering that most optimizers are designed for gradient descent, this study achieves the effect 

of gradient ascent by minimizing the negative Q value and uses the average negative Q 

value of all samples in the batch as the loss. The gradient A J


  of the objective function 

and the loss aLoss  of the actor network are as follows: 

( ) ( ) ( ) ( ),

1
, | | | |A

ii i i

Q

a ss s a s E s
J Q s a s

X




 
  

= = 
   

 
(8) 

( )
1

, | Q

a i i

i

Loss Q s a
X

= − 
 

(9) 

Target network update: 

( )1Q Q Q   
 

+ − →  (10) 

( )1     
 

+ − →  (11) 

Among them, 
( )g t

 is the noise function, 


 is the update parameter, and 


 is the 

learning rate. 

The proportional proprietary controller corresponding to the encourager is defined 

as 

( ) ( )

( )

( )  
TE

i

i d

E s e k e k

e k s s

 =    


= −

 

(12) 
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Among them, 
E  is the controller adjustment parameter, 

( )e k
 is the error of state 

( )e k
, which is the derivative of the state error, and is  and ds  are the sampled state and 

its reference value, respectively. 

Algorithm 1 provides an overview of the proposed algorithm. 

Algorithm 1: Eg-ac Algorithm 

Input : , , , ,Q E      

Output : optimized ,Q     

initialize ( )| EE s   with weights E  by Equation (12) 

randomly initialize ARC with weights ARC   

randomly initialize ( ), | QQ s a  , ( )|s   , with weights Q ,   

initialize target network ( ), | QQ s a 
 , ( )|s  

  with weights Q Q 

 , A A 


  

initialize the experience cache space   

for episode from 1 to Limit do 

Initialize a noise function 

receive the initial state 

for t = 1 to   do 

Perform action ta  via ARC, get reward 1tr + , next state 1ts + , store transi-

tion ( ), 1 1, ,t t t ts a r s+ +  in   

            sample a batch of random X  transitions ( ), 1 1, ,i i i is a r s+ +  in  , where 

0,1,2,i X=  

        set target value function via Equation (6) 

update critic by minimizing the loss via Equation (7) 

update actor policy by policy gradient via Equations (8) and (9) 

update networks via Equations (10) and (11) 

end for 

end for 

This paper compares the performance of the SAC algorithm, DDPG algorithm, and 

Eg-ac algorithm in the following sections. 

3. Preparation Work for Simulation 

This section will elaborate on the simulation preparation work for the algorithm pro-

posed in the paper. Section 3.1 first describes conducting a kinematic analysis of the ARA 

based on the Denavi–Hartenberg (D-H) method [35] to obtain the inverse kinematic solu-

tion of the ARA. Next, a dynamic analysis of the ARA was conducted to prepare for sub-

sequent simulations. Section 3.2 introduces the simulation network structure and param-

eter settings. 

3.1. Establishment of ARA Mathematical Model 

In the Eg-ac algorithm, both the input and output of the ARC module are composed 

of the acceleration at the end of the ARA operation, while in the simulation process, the 

ARA power execution system requires inputs for each joint position. This requires the use 

of an inverse kinematic solution, and the ARA power system is required during the algo-

rithm training process, so this study conducted kinematic and dynamic analyses of the 

ARA. 
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3.1.1. ARA Kinematic Analysis 

The ARA operating mechanism of this paper was designed as a five-degree-of-free-

dom robotic arm, and Figure 4 is a three-dimensional schematic of the robotic arm. In 

order to enhance the structural stiffness of the main connecting rod and improve position-

ing accuracy, the motion chain of the robotic arm is not a simple open-loop system. In-

stead, a four-bar linkage mechanism is used to connect driving motor 3 to connecting rod 

3, and two four-bar linkage mechanisms are used to connect driving motor 4 to connecting 

rod 4. The movements of the other three driving motors are directly connected to the 

joints. The layout of the driver and connecting rod is shown in the figure. Drive motor 2 

controls the position of joint 2, while the posture of connecting rod 3 remains unchanged 

relative to the base; drive motor 3 can adjust the posture of connecting rod 3 relative to 

the base, while the posture of connecting rod 4 relative to the base remains unchanged. 

Similarly, driving motor 4 specifically adjusts the posture of connecting rod 4 relative to 

the base, regardless of the position of joints 2 and 3. The control of each joint is relatively 

independent, unlike serial joints where the movement of the latter joint is relative to the 

movement of the previous link. 

0,1X̂

2Ẑ

2X̂

0,1Ẑ

3Ẑ

3Ŷ

3X̂ 4Ẑ

4X̂
5X̂

5Ẑ

2
a

3
a

1

2

3

5

4

4

Joint 1

Joint 2

Joint 3 Joint 4

Joint 5

Driver 1

Driver 2

Driver 3

Driver 4

Driver 5

0,1,2O

3O

4,5O

1
ˆ

tZ

ˆ
tY

ˆ
tX

tO

 

Figure 4. Schematic of ARA structure design and coordinate establishment. 

The coordinate systems of each connecting rod are marked in Figure 4. Among them, 

the relative coordinate of the workbench coordinate system 
ˆ ˆ ˆ ˆ

t t t tO X Y Z
 with respect to the 

body coordinate system 0 0 0 0
ˆ ˆ ˆ ˆO X Y Z

 is 
( )3 ,0,0l

. The plane where the origin of each coor-

dinate system is located is designated as the operating arm plane. The position of the ARA 

shown in the figure corresponds to joint vector 
( )0, 90 ,90 ,90 ,0 = −

. Table 1 describes 

symbols used in the text. 

Table 1. Symbol explanation. 

Symbol Explanation 

1i

iT
−  

Transformation matrix of coordinate system  i  relative to co-

ordinate system  1i −  

ic  or ic  Abbreviation of ( )cos i  
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is  or is  Abbreviation of ( )sin i  

12c  ( )12 1 2cosc  = +  

12s  ( )12 1 2sins  = +  

1i −  Angle of rotation from 1
ˆ

iZ −  to ˆ
iZ  around axis 1

ˆ
iX −  

1ia −  Distance from 1
ˆ

iZ −  to ˆ
iZ  along axis 1

ˆ
iX −  

id  Distance from 1
ˆ

iX −  to ˆ
iX  along axis ˆ

iZ  

i  Angle of rotation from 1
ˆ

iX −  to ˆ
iX  around axis ˆ

iZ  

Calculate the linkage transformation matrix based on the D-H parameters in Table 2. 

Table 2. Connecting rod parameters of ARA. 

i  1i −  1ia −  id  i  

1 0 0 0 1  

2 −90° 0 0 2  

3 0 2l  0 3  

4 0 3l  0 4  

5 90° 0 0 5  

 

1 1

1 10

1

0 0

0 0

0 0 1 0

0 0 0 1

c s

s c
T

 

 

− 
 
 =
 
 
 

, 

2 2

1

2

2 2

0 0

0 0 1 0

0 0

0 0 0 1

c s

T
s c

 

 

− 
 
 =
 − −
 
 

, 

3 3 2

3 32

3

0

0 0

0 0 1 0

0 0 0 1

c s l

s c
T

 

 

− 
 
 =
 
 
 

, 

4 4 3

4 43

4

0

0 0

0 0 1 0

0 0 0 1

c s l

s c
T

 

 

− 
 
 =
 
 
 

, 

5 5

4

5

5 5

0 0

0 0 1 0

0 0

0 0 0 1

c s

T
s c

 

 

− 
 

−
 =
 
 
 

  

(13) 

The linkage transformation matrix 
0

5T  is multiplied by the matrices of Equation (13): 

0 0 1 2 3 4

5 1 2 3 4 5T T T T T T=  (14) 

11 12 13

21 22 230

5

31 32 33

0 0 0 1

x

y

z

r r r p

r r r p
T

r r r p

 
 
 ==
 
 
 

 (15) 
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( )

( )

11 1 234 5 1 5

21 1 234 5 1 5

31 234 5

12 1 234 5 1 5

22 1 234 5 1 5

32 234 5

13 1 234

23 1 234

33 234

1 2 2 3 23

1 2 2 3 23

2 2 3 23

x

y

z

r c c c s s

r s c c c s

r s c

r c c s s c

r s c s c c

r s s

r c s

r s s

r c

p c l c l c

p s l c l c

p l s l s

= −

= +

= −

= − −

= − +

=

=

=

=

= +

= +

= − −

 (16) 

By the kinematic equations of the ARA, the position and orientation of the end effec-

tor coordinate system can be calculated from the joint vectors. In order to simplify the 

solution and avoid the occurrence of multiple solutions, this study chose to use partial 

algebraic and partial geometric solutions for the inverse kinematic solution of the ARA. 

( )

( ) ( )

( )

( )

1

2 2

2 3 3 2 3 3

2

3 3 3

4 234 2 3

5 21 1 11 1 22 1 12 1

tan 2 ,

tan 2 , tan 2 sin , cos

tan 2 1 cos ,cos

tan 2 ,

y x

z x y

A p p

A p p p A l l l

A

A r c r s r c r s



  

  

   



 =

 = − + − +



= −


= − −


= − −


 (17) 

Among them, function 
tan 2( , )A y x

 is a bivariate arctangent function, and when cal-

culating 

1tan
y

x

−  
 
  , the quadrant where the angle is located can be determined based on 

the signs of x  and 
y

. 234
 and 

( )3cos 
 are, respectively, 

( )234 13 1 23 1 33tan 2 ,A r c r s r = +  (18) 

( )
2 2 2 2 2

2 3

3

2 3

cos
2

x y zp p p l l

l l


+ + − −
=  (19) 

3.1.2. ARA Dynamic Analysis 

Use Lagrange method to dynamically model the designed ARA. The joint position 

variable set 
( 1,2, ,5)iq i =

 of ARA is defined as a generalized coordinate system, and its 

Lagrange function is defined as 

5

1

5

1

i

i

i

i

L T U

T T

U U

=

=


 = −



=



=






 (20) 
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Among them, L  is the Lagrange function; T  and U  are the total kinetic energy 

and total potential energy of the obstacle-clearing operation mechanism, respectively; and 

iT
 and iU

 are the kinetic energy and potential energy of the first link of the robotic arm, 

respectively. Due to the fact that link 4 and link 5 are located at the end of the robotic arm, 

only the kinetic and potential energies of the first three links are considered. The total 

kinetic energy is 

( )

( ) ( )( ) ( ) ( )

2 2 2 2 2 2

1 1 2 2 1 2 2 2 2

2 22 2 2 2 2

3 1 2 2 3 2 3 3 2 2 3 3 2 3 3 2 3 2 2 3

1 1 1
cos

2 2 2

1 1 1
     sin sin

2 2 2

T I q m r q q m r q

m q a q r q q m a q m r q q m a r q q q

= + +

+ + + + + + + +

 

(21) 

The total potential energy is 

( ) ( ) ( )2 2 2 2 2 3 2 3 2 2 3 3 3 3 2 3cos cos cosU m gr m gr q m ga m ga q m gr m gr q q= − + − + − +  (22) 

Among them, iI  is the inertia tensor of joint i  ; iq
  is the generalized velocity of 

joint i ; im
 is the mass of joint i ; ia

 is the length of connecting rod i ; ir  is the dis-

tance from the centroid of joint i  to the joint axis; and 
g

 is the acceleration due to grav-

ity. 

The Lagrange equation can be expressed as Equations (23) and (24): 

( )
i i

d L L

dt q q


 
− =

 

 

(23) 

( )
d T T U

dt q q q


  
− + =

  

 

(24) 

Among them,   is the joint torque, and i  is the joint torque at joint i . 

Calculate the relevant partial derivatives as follows: 

( ) ( ) ( )( )

( ) ( )

( )

22 2

2 2 2 3 2 2 3 2 3 1

2 2 2 2

2 2 3 2 3 3 3 2 3 2 3 3 3 2 3 3

2 2

3 3 3 2 3 2 3 3 3

1 cos sin sin

2

m r q m a q r q q q

T
m r m a m r m a r q m r m a r q

q

m r m a r q m

I

r q

 + + +
 
 



 +


= + + + + + 


 
+ +



 





 (25) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 2 2 2

3 1 2 2 2 1 2 3 1 2 3 2 3 3 1 3 2 3

2 2 2

3 1 2 3 2 2 3 3 1 3 2 3 2 3

0

1 1
sin 2 sin 2 sin 2 2

2 2

sin cos sin cos

T
m q a m r q q m q a r q q m q r q q

q

m q a r q q q m q r q q q q

 
 

  = − + + + +
 
 

+ + + + 

 (26) 

( ) ( ) ( )

( )

2 2 2 3 2 2 3 3 2 3

3 3 2 3

0

sin sin sin

sin

U
m gr q m ga q m gr q q

q
m gr q q

 
 

= + + + 
  

+ 

 (27) 

Obtain the dynamic equation of the ARA: 

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

22 2

1 2 2 2 3 2 2 3 2 3 1

2

3 2 2 3 3 2 3 2 2 3 2 3 2 2 2 1 2

2

3 2 3 2 3 2 3 3 2 3 1 3

1

3 2

cos sin sin

      2 sin 2 sin cos cos sin(2 )

      2 cos sin 2 cos sin

m r q m a q r q q q

m a q m r q q a q r q q m r q q q

m a r q q q m r q q q q q

I

q

 = + + +

 + + + + + − 

 + + + +

 +
 

+









 (28) 
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( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

2 2 2 3 2 3 3 3 2 3 2 3 3 3 2 3 3

2 2 2 2 2 2 2

3 1 2 2 2 1 2 3 1 2 3 2 3 3 1 3 2 3

2 2 3 2 2 3 3 2 3

2

1 1
      sin 2 sin 2 sin 2 2

2 2

      sin sin

m r m a m r m a r q m r m a r q

m q a m r q q m q a r q q m q r q q

m r m a g q m r g q q

 = + + + + +

− − − + − +

+ + + +

 (29) 

( )

( ) ( ) ( ) ( )

2 2

3 3 3 3 2 3 2 3 3 3

2 2 2

3 1 2 3 2 2 3 3 1 3 2 3 3 3 2 3

1
       sin cos sin 2 2 sin

2

m r m a r q m r q

m q a r q q q m q r q q m r g q q

 = + +

− + − + + +
 (30) 

Simplify the dynamic equation and obtain the matrix form of the dynamic equation 

for the ARA: 

( ) ( , ) ( )D q B q q G qq = ++  (31) 

Among them, 

( ) ( ) ( )( )
22 2

2 2 2 3 2 2 3 2 3

2 2 2 2

2 2 3 2 3 3 3 2 3 3 3 3 2 3

2 2

3 3 3 2 3 3 3

1 cos sin sin 0 0

( ) 0 2

0

m r q m a q r q q

D q m r m a m r m a r m r m a r

m r m a r m r

I + + +
 
 = + + + +
 

+ 


+



 (32) 

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

2

3 2 2 3 3 2 3 2 2 3 2 3 2 2 2 1 2

2

3 2 3 2 3 2 3 3 2 3 2 3 1 3

2 2 2 2 2

3 1 2 2 2 1 2 3 1 2 3 2

2 sin 2 sin cos cos sin(2 )

                          2 cos sin 2 cos sin

( , ) 1
sin 2 sin 2

2

m a q m r q q a q r q q m r q q q

m a r q q q m r q q q q q q

B q q
m q a m r q q m q a r q

 + + + + − 

 + + + + + 

=
− − − +( ) ( )

( ) ( ) ( )

2 2

3 3 1 3 2 3

2 2 2

3 1 2 3 2 2 3 3 1 3 2 3

1
sin 2 2

2

1
sin cos sin 2 2

2

q m q r q q

m q a r q q q m q r q q

 
 
 
 
 

− + 
 
 
− + − +  

 (33) 

( ) ( ) ( )

( )

2 2 3 2 2 3 3 2 3

3 3 2 3

0

( ) sin sin

sin

G q m r m a g q m r g q q

m r g q q

 
 

= + + + 
 

+ 

 (34) 

3.2. Network Architecture Design 

Based on the preparation work analyzed by the above institutions, this study used 

the open source reinforcement learning library SB3 built on the pytorch framework for 

simulation. The real-time position 
( ), ,ax ay azp p p

 and velocity 
( ), ,ax ay azp p p

 of the ARA 

were obtained in the workbench coordinate system through the ARA power system. Then, 

the ARA state is fed into the input of the Eg-ac algorithm. The output behavior 

, ,ax ay aza p p p =     describes the position control quantity under system control, and its 

learning process is the iterative strategy function solving process. The ARA power system 

will provide current status data and determine reward values at each time step. 

The Eg-ac algorithm is based on the actor–critic algorithm, so this article refers to the 

processing method in DDPG. Target actor and target critic networks were added with the 

same structure as the actor and critic networks in the algorithm. The architectures of the 

actor and critic networks are shown in Figure 5. This study designed a critic with three 

hidden layers. The hidden layers for the processing states and behaviors are first operated 

separately, and the value of the state behavior is output by fully connecting them together 
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through the last hidden layer. The input received by the actor network is the number of 

ARA features, and the specific value of each behavioral feature is output to the ARC mod-

ule. The actor network is designed with three hidden layers, fully connected between lay-

ers. In order to achieve exploration, the algorithm adds a random noise with a mean of 0 

to the generated behavior, allowing it to explore a certain range around the exact behavior. 

To prevent overfitting during the optimization process, the dropout algorithm is intro-

duced to regularize the network. The dropout algorithm was proposed by Hinton [36] in 

2012. In each training batch, through ignoring half of the feature detectors (setting half of 

the hidden layer nodes to 0), it can effectively alleviate the occurrence of overfitting and 

achieve regularization to a certain extent. 

...

...

Position Velocity

256

128

Action

Actor Net

64...

...

...256

128

Critic Net

...128

...

Value

Target Position

State

ARC

Fully connected

Fully connected

Fully connected

Fully connected

128

 

Figure 5. Network architecture settings in simulation. 

Before simulation, the following parameters were set as follows: 

(1) The definition of the reward value is the negative value of the distance between the 

end of the ARA and the target position, which means that the larger the error, the 

lower the reward value. 

( ) ( ) ( )
22 2

i tx ax ty ay tz azr p p p p p p= − − + − + −  (35) 

(2) Each training batch is executed 256 =  times. When there is an error 0.05e   be-

tween the end of the ARA task and the target position during an experience, the task 

is considered completed, and the current experience is stopped and reset to enter the 

next experience. 

(3) Let the simulation time step be t  and the total training steps be 20000 = . 

(4) Set learning rates 0.001 = , 0.99 = , and batch sampling quantity 100X = . 

(5) Controller parameters in the encourager: 
 0.5 0.05E =

. 

(6) Output range setting: 
( ) ( ), | 10,10QQ s a   −

 , 
( ) ( )| 0.05,0.05s    −

 , 

( ) ( )| 0.05,0.05EE s   −
. 

(7) Set the random noise range to 
( )( ) 0.002,0.002g t  −

. 

(8) The size of the ARA connecting rod is 2 30.2( ), 0.15( )l m l m= =
. 

(9) To ensure that the pitch and roll angles of the ARA end remain unchanged, and to 

make the end face of joint 5 perpendicular to the plane of the operating arm, the fol-

lowing settings are used: 
( )4 2 3  = − +

， 5 0 =
. 



Actuators 2025, 14, 66 16 of 26 
 

 

(10) The adoption rate parameter of the ARC is composed of a set of random numbers 

( )1 2 5, 30%, 1,2, 5i i     =
 with five elements generated by the computer. The 

process diagram is shown in Figure 6. In this process, the input variables are first 

subjected to inverse kinematics (IK) to obtain the joint positions 
( )1,2, 5i i =

 of 

the ARA and then integrated into 
( )1,2, 5E

i i  =
 through adoption rate calcula-

tion. Finally, the final behavior is output through kinematic calculations (KCs). 

Among them, 
( ) ( )1    1,2, 5E E

i i i i i i     = + − =
 . Set 

0ARC →
  when the train-

ing steps are 3000t  . 

(11) The simulated computer configuration used an Intel(R) Core (TM) i5-7300HQ (ASUS, 

Taipei, China). 

ARC

In

In

Out

Parameter
Generator

IK

IK ( )1 2 5,    

( )1 2 5,E E E  

( )1 2 5,  

KC ia

Ea

a

ARC

1 ARC−

 

Figure 6. Schematic of ARC processing process. 

4. Simulation Results and Analysis 

The ARA was trained using the SAC, DDPG, and Eg-ac algorithms. During the pro-

cess, every four episodes were grouped together, and the reward values obtained for each 

episode were recorded and averaged as an average reward value, as shown in Figure 7. 

For clarity and intuitiveness, the green boxes in the images represent enlarged areas. The 

trend of the reward episode lines for the three algorithms in the figure is basically the 

same, but compared with the three phases, Eg-ac has a faster learning efficiency and the 

fastest and most stable reward rise slope, followed by DDPG, and SAC converges the 

slowest and fluctuates slightly near convergence. When the reward values of the three 

algorithms reach their highest, the horizontal axis position shows that the learning speed 

of Eg-ac is at least 20% faster than that of the other two algorithms. The figure shows that 

for the same number of training steps, the numbers of episodes for the three algorithms 

are approximately as follows: SAC (4100), DDPG (4800), and Eg-ac (5800). The reason why 

Eg-ac has the most episodes is because it can quickly find the direction, reach the target 

position, and move on to the next experience with fewer steps in each episode. The same 

conclusion can also be drawn from the more intuitive table in Figure 8. In Figure 8, as 

mentioned above, every four episodes form a group, and the average number of time steps 

contained in each episode is taken as the average step count. It can be seen that Eg-ac has 

shown significant advantages in ARA training, as it can shorten learning time and con-

verge quickly. 
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Figure 7. Comparison of rewards. 

 

Figure 8. Comparison of episode steps. 

To evaluate the training cost of the proposed algorithm, the training time and execu-

tion frequency of the three algorithms were recorded. Figure 9 shows the comparison of 

the training time. The training time consumed by the Eg-ac algorithm is between that of 

the other two algorithms, and the training time of the three algorithms is almost the same. 

The average number of steps taken per unit time was calculated, i.e., the execution fre-

quency, in groups of four episodes. As shown in Figure 10, the large initial values are due 

to factors such as network and parameter initialization time. In terms of execution fre-

quency, the DDPG algorithm has the highest number of training steps per unit time. SAC 

is the lowest, while Eg-ac values are between the two. The three sets of values are quite 

close, so it can be concluded that Eg-ac does not have significant differences in computa-

tional cost compared to the other algorithms, and the training time difference between the 

three is not significant, which is within an acceptable range. 
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10,000 12,500 15,000 17,500 20,000

 

Figure 9. Comparison of training time. 

 

Figure 10. Execution frequency. 

Due to the fact that both the Eg-ac and DDPG algorithms have two target networks 

in their network structures, while the critic loss function uses mean squared error (MSE) 

loss, the MSE loss will cause the prediction of the critic network to approach the target 

value, so its convergence speed is related to the training efficiency and learning effect of 

the algorithm. Figure 11 shows the loss comparison curves between the Eg-ac algorithm 

and the DDPG algorithm. The loss trend of both algorithms first increases and then de-

creases, with MSE loss decreasing and gradually lowering the loss value. The difference 

between the two curves is that the peak of Eg-ac is relatively earlier, indicating a faster 

reaction and a consistently lower loss than DDPG, ultimately remaining at around 0.1, 

while DDPG is around 0.2. It can be seen that the designs of the ARC module and HRLP 

reward mechanism in the Eg-ac algorithm effectively increase the training efficiency of 

the algorithm and improve the convergence speed by about 21.4%. 
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Figure 11. Loss curve of critic network. 

Based on the above analysis, this study selected two sets of floating target trajectories 

for algorithm model validation experiments. Experiment 1 used a spatial spiral curve as 

the floating trajectory to simulate ARA tracking when the aircraft body shakes due to 

wind disturbance. Experiment 2 used a planar curve as the floating trajectory to simulate 

ARA tracking when the aircraft is stationary. 

In Experiment 1, it is assumed that the floating trajectory of the obstacle to be cleared by 

the ARA under the dual effects of the base and wind disturbance is a spatial arc. The models 

were trained using three different algorithms, and the motion parameters of the ARA were 

recorded. Figure 12 shows the tracking trajectories after the execution of the three algo-

rithms. It can be intuitively analyzed that the trajectory of SAC is the most unstable, with 

position jitter occurring during the tracking process, while the stability of the Eg-ac and 

DDPG algorithms was better. Figure 13 shows the tracking errors of three algorithms dur-

ing execution. Analysis shows that Eg-ac has a smaller tracking error compared to DDPG, 

which is basically stable at around 0.01 m, while DDP is about 0.03 m. Figures 14 and 15, 

respectively, show the displacement and velocity curves of the ARA in the three coordi-

nate axes of the workbench during Experiment 1. From the analysis of the simulation 

curve above, it can be seen that under the same number of training steps and training 

time, the algorithm proposed in this paper exhibits more accurate and stable tracking per-

formance in the process of floating target tracking. 

 

Figure 12. Three-dimensional curve of ARA tracking trajectory in Experiment 1. 
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Figure 13. Tracking error curve in Experiment 1. 

  
(a) (b) 

 
(c) 

Figure 14. Displacement curves in each coordinate axis direction in Experiment 1: (a) X-axis dis-

placement; (b) Y-axis displacement; (c) Z-axis displacement. 

  
(a) (b) 
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Figure 15. Tracking speed curve in Experiment 1: (a) X-axis velocity; (b) Y-axis velocity; (c) Z-axis 

velocity; (d) tracking linear velocity. 

In Experiment 2, it is assumed that the obstacle to be cleared by the ARA will generate 

a floating trajectory as a planar arc without external disturbance. The models were trained 

using three different algorithms, and the motion parameters of the ARA were recorded. 

Figure 16 shows the tracking trajectories after the execution of the three algorithms. Figure 

17 shows the tracking errors of three algorithms during execution. As shown in the figure, 

during the planar tracking process, the tracking error of Eg-ac is basically stable at around 

0.01 m, while DDPG is about 0.02 m. Figures 18 and 19, respectively, show the displace-

ment and velocity curves of the ARA in the three coordinate axes of the workbench during 

Experiment 2. Based on the analysis of the simulation curve above, it can be concluded 

that, similar to the conclusion of Experiment 1, the algorithm proposed in this paper ex-

hibits more accurate and stable tracking performance in floating target tracking under the 

same number of training steps and training time. 

 

Figure 16. ARA tracking trajectory in Experiment 2. 
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Figure 17. Tracking error curve in Experiment 2. 

  
(a) (b) 

 
(c) 

Figure 18. Displacement curves in each coordinate axis direction in Experiment 2: (a) X-axis dis-

placement; (b) Y-axis displacement; (c) Z-axis displacement. 

  

(a) (b) 
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Figure 19. Tracking speed curve in Experiment 2: (a) X-axis velocity; (b) Y-axis velocity; (c) Z-axis 

velocity; (d) tracking linear velocity. 

In order to more intuitively demonstrate the computational costs during the execu-

tion of the three algorithms, this study recorded the computation time during the execu-

tion of each algorithm. Figure 20 shows the partial single-step computation time of three 

algorithms. The average computation time of the three algorithms is 
( )997 s

, which fur-

ther proves that the algorithm proposed in this paper does not waste too much computa-

tional cost while improving learning efficiency and tracking performance. 

 

Figure 20. Comparison of running time. 

5. Conclusions 

This article proposes an Eg-ac algorithm based on the AC algorithm and applies it to 

the floating target tracking control of the ARA. The research objectives of the algorithm 

proposed in this paper were to quickly lock the exploration direction during the process 

of the ARA reaching the floating target position, improve learning efficiency, and obtain 

stable tracking results without increasing learning costs. Based on the above objectives, 

this study established approximate functions, strategy functions, and incentive functions 

for ARA state values in algorithm construction and designed an ARC module. Among 

them, the ARC generates the adoption rate for the encourager and outputs the ARA be-

havior strategy under the regulation of the ARC. Given that the inverse kinematic settle-

ment and dynamic system execution of the ARA are required during the algorithm model 

training process, this paper establishes the kinematic and dynamic models of the ARA 

based on the D-H method. The target positions of each joint are obtained through inverse 

kinematic calculation, and the current state is obtained through the dynamic system. Fi-

nally, simulation was conducted using the open source reinforcement learning library SB3 
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built on the pytorch framework. The experimental results show that under the same com-

putational cost, the loss function convergence speed of the Eg-ac algorithm designed in 

this study was improved by 21.4% compared to that of DDPG. Compared with SAC and 

DDPG, Eg-ac improved learning efficiency by at least 20% and has a more agile and stable 

floating target tracking performance. 

While proposing a better algorithm in this article, there are some inevitable aspects 

that need improvement or can make the proposed algorithm better, such as the following: 

(1) Significant oscillation phenomena when approaching the target need to be improved 

upon. (2) The simulation did not consider the end effector attitude of the ARA. If it is 

necessary to consider the end effector attitude, research on attitude angles needs to be 

conducted. (3) There are various types of airborne disturbances, and in future work, it is 

necessary to further refine the disturbance effects and improve system stability. The au-

thors will focus on addressing these areas in future research. 
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