

Actuators 2025, 14, 66 https://doi.org/10.3390/act14020066

Article

Encouraging Guidance: Floating Target Tracking Technology

for Airborne Robotic Arm Based on Reinforcement Learning

Jiying Wu 1, Zhong Yang 1,*, Haoze Zhuo 1, Changliang Xu 2, Luwei Liao 1, Danguo Cheng 1 and Zhiyong Wang 1

1 College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 211106, China; wujiying@nuaa.edu.cn (J.W.); zhuohaoze@nuaa.edu.cn (H.Z.);

llw@nuaa.edu.cn (L.L.); bx2403510@nuaa.edu.cn (D.C.); wangzhiyong@nuaa.edu.cn (Z.W.)
2 College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China;

xuchangliang@nuaa.edu.cn

* Correspondence: yangzhong@nuaa.edu.cn

Abstract: Aerial robots equipped with operational robotic arms are a powerful means of

achieving aerial contact operations, and their core competitiveness lies in target tracking

control at the end of the airborne robotic arm (ARA). In order to improve the learning

efficiency and flexibility of the ARA control algorithm, this paper proposes the encourag-

ing guidance of an actor–critic (Eg-ac) algorithm based on the actor–critic (AC) algorithm

and applies it to the floating target tracking control of ARA. It can quickly lock in the

exploration direction and achieve stable tracking without increasing the learning cost.

Firstly, this paper establishes approximate functions, policy functions, and encourage-

ment functions for the state value of ARA. Secondly, an adoption rate controller (ARC)

module was designed based on the concept of heavy rewards and light punishments

(HRLP). Then, the kinematic and dynamic models of ARA were established. Finally, sim-

ulation was conducted using stable baselines3 (SB3). The experimental results show that,

under the same computational cost, the convergence speed of the Eg-ac is improved by

21.4% compared to deep deterministic policy gradient (DDPG). Compared with soft ac-

tor–critic (SAC) and DDPG, Eg-ac has improved learning efficiency by at least 20% and

has a more agile and stable floating target tracking effect.

Keywords: airborne robotic arm; floating target tracking; reinforcement learning; inverse

kinematic solution

1. Introduction

With the continuous development of aerial robot technology, flying robots carrying

different onboard equipment to reach designated positions and complete high-altitude

tasks have gradually become a situation of interest in aerial operations [1–4]. Fast and safe

working methods are gradually replacing traditional manual operations. At present, there

is still a certain gap between the various applications of aerial robots and the widespread

applications in the concept [5]. There are still many technical issues that need to be further

addressed, such as designing specific robot configurations, operating tools, and operating

modes for different application goals [6–9]. Moreover, in-depth research and the optimi-

zation of control strategies for aerial work robots have become urgent technical challenges

that need to be addressed.

This article takes obstacle removal, line repair, bolt tightening, and other aerial con-

tact operations of high-altitude transmission lines as the research background. At present,

Received: 17 December 2024
Revised: 22 January 2025

Accepted: 29 January 2025

Published: 31 January 2025

Citation: Wu, J.; Yang, Z.; Zhuo, H.;

Xu, C.; Liao, L.; Cheng, D.; Wang, Z.

Encouraging Guidance: Floating

Target Tracking Technology for Air-

borne Robotic Arm Based on Rein-

forcement Learning. Actuators 2025,

14, 66. https://doi.org/10.3390/

act14020066

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Actuators 2025, 14, 66 2 of 26

these tasks still mainly rely on manual operations with significant safety hazards [10,11],

and the intelligent operation of airborne robotic arms is a powerful means to solve the

above problems. As shown in Figure 1, the aerial robot system studied in this article can

perform line hanging operations on high-altitude routes. This robot integrates a multi-

rotor unmanned aerial vehicle, a hanging line walking system, and an airborne multide-

gree of freedom robotic arm that can accurately reach the target position in complex aerial

environments and complete hanging line, walking, and line clearing tasks. Due to the

complex aerial operation environment and the constantly changing external disturbances,

the core competitiveness of this system lies in the precise control of the aerial operation

robotic arm. Only by improving positioning accuracy and tracking performance can the

accuracy and effectiveness of aerial operations be ensured. Based on this, this work aimed

to study the control problem of an airborne operation robotic arm in an aerial robot system

and conduct research on the target tracking task of the robotic arm tool end.

Quadcopter

Operating Arm

Hanging Wheels

Figure 1. Aerial robot system.

Prior to this, scholars both domestically and internationally have conducted exten-

sive research on the control issues of manipulator arms [12–17]. In recent years, control

algorithms based on machine learning [18,19] have gradually emerged, and reinforcement

learning frameworks have become a promising algorithmic tool for improving the control

of aerial robotic arms [20–22]. The resulting deep reinforcement learning [23–28] combines

the perceptual ability of deep learning with the decision-making ability of reinforcement

learning, achieving end-to-end control from input to output, attracting the attention of a

large number of researchers. And research on robotic arm control based on deep rein-

forcement learning is also becoming increasingly popular. After the successful application

of deep learning in object detection, H. Sekkat et al. [29] proposed a neural inverse kine-

matic solution based on deep reinforcement learning for object detection using deep learn-

ing models, which evolved grasping tasks by achieving expected goals. This method cal-

culates the joint angle of the detected position through inverse kinematics, causing the

robot arm to move toward the position of the target object. The simulation results showed

that the accuracy of the end effector grip joint angle and posture of the robot is satisfactory.

T. Lindner [30] studied six combinations of four reinforcement learning algorithms for

robot localization tasks. These algorithms were used for the positioning control of robot

arm models, taking into account the evaluation of positioning accuracy, motion trajectory,

and the number of steps required to achieve the target. The simulation and experimental

results indicated that the RL algorithm can be successfully applied to the learning of robot

arm positioning control. K. M. Oikonomou et al. [31] argued that although deep neural

networks (DNNs) have achieved significant results in many robot applications, energy

consumption remains a major limitation. They proposed a hybrid variant based on the

deep deterministic policy gradient (DDPG) learning method for training six-degree-of-

freedom robotic arms for target arrival tasks. Among them, a peak neural network was

introduced into the actor model, and a DNN was introduced into the critic model. Finally,

Actuators 2025, 14, 66 3 of 26

the hybrid DDPG model was compared with the classical DDPG model, demonstrating

the superiority of the hybrid method. Coincidentally, B. Y. Song [32] proposed a dual-

delay space robotic arm trajectory planning technique based on deep reinforcement learn-

ing to solve complex dynamics and control problems in the process of space debris re-

moval. This technique can achieve end-to-end control effects comparable to the human

grasping of objects. This study utilized joint and end effector control strategies developed

using trajectory planners, trajectory trackers, and seven different weighted reward func-

tions to implement a trajectory planning method for a floating space robotic arm to cap-

ture space debris. The experimental results indicated that this capture policy can maintain

a high capture success rate. P. Wu [33] believed that traditional robotic arm control algo-

rithms often struggle to adapt to the challenges posed by dynamic obstacles. Therefore, a

reinforcement learning-based dynamic obstacle avoidance method was proposed to solve

the real-time processing problem of dynamic obstacles. This method introduces a feature

extraction network with an integrated gating mechanism based on traditional reinforce-

ment learning algorithms. In addition, an adaptive dynamic reward mechanism was de-

signed to optimize obstacle avoidance strategies. Verification showed that this method

can effectively avoid randomly moving obstacles and significantly improved in conver-

gence speed compared to traditional algorithms.

The summary above indicates that deep reinforcement learning has been widely ap-

plied in the research of space robotic arm control algorithms for tasks such as arrival,

grasping, and trajectory tracking. Most of the robotic arms studied are series-connected

with fixed bases, and the algorithms currently being researched can also achieve the basic

goal of completing tasks. However, most algorithms do not consider the training effi-

ciency and external disturbances of the robotic arm while pursuing positioning accuracy.

When it comes to the end positioning of unstable bases and tracking of dynamic target

objects, some algorithms seem inadequate and often yield unsatisfactory results.

The aerial operation-type robotic arm studied in this paper is mounted on the fuse-

lage of a rotary wing of an unmanned aerial vehicle. Due to the special working environ-

ment, its end tool will sway with the shaking of the base and fuselage. In the task of clear-

ing obstacles on the route studied in this article, most of the objects were floating objects

with irregular floating phenomena. Therefore, the positioning accuracy and flexibility re-

quirements of the tool end were high. Conventional control struggles to quickly locate the

target object due to lag, while current reinforcement learning algorithms for robotic arms

can achieve ideal results through learning. Generally speaking, value-based methods out-

put the values of actions and are typically used in environments with discrete action

spaces [23]. The policy-based approach, which outputs the probability of a direct action

or action, is usually more suitable for environments with high-dimensional or continuous

action spaces [26]. The behavior space of the airborne robotic arm (ARA) end positioning

control is continuous and large-scale, and basic algorithms such as Monte Carlo reinforce-

ment learning based on complete sampling and temporal differential reinforcement learn-

ing based on incomplete sampling may have low efficiency and even fail to achieve good

solutions [34]. In view of this, this study adopted a policy-based learning method that

regards the policy as a parameterized policy function of the ARA state and joint power

output. Through establishing an objective function and using the rewards generated by

the interaction between the ARA and the environment, the parameters of the policy func-

tion are learned. Currently, the most commonly used policy learning methods have a high

degree of randomness in the early stages of learning, which may result in useless explo-

ration or even completely opposite exploration paths to the target task. This situation can

lead to a slower iteration speed in the early stages of learning, thereby reducing the con-

vergence speed of the objective function. Although it ensures the exploration function of

the algorithm, it increases the computational cost as a result.

Actuators 2025, 14, 66 4 of 26

In summary, this article proposes an encouragement-guided policy learning algo-

rithm, Eg-ac, that adds an encourager to the actor–critic algorithm. The main function of

the encourager is to generate strategies consistent with the final target task direction based

on the current and target states of the ARA. In addition, the algorithm also incorporates a

heavy rewards and light punishments (HRLP) reward mechanism and an adoption rate

controller (ARC) module. The basic idea of HRLP is to increase rewards for good behavior

and reduce punishments for bad behavior, thereby accelerating learning and encouraging

exploration. The ARC is used to randomly generate adoption rates for the encourager un-

der certain constraints, and the final policy is for actors and the encourager to output the

ARA’s behavior strategies under the regulation of the ARC. The advantage of doing so is

that the ARA executes the policy and obtains the corrected state before the next training

begins. As the saying goes, ’a good start is half the battle’, and correcting the ARA status

at any time is beneficial for approaching the final target position more quickly in subse-

quent training, thereby shortening the number of training steps included in an experience

and improving training efficiency. Figure 2 illustrates the control policy for ARA’s floating

target tracking control learning using the Eg-ac algorithm proposed in this paper. Firstly,

this paper establishes approximate functions, policy functions, and encouragement func-

tions for the state value of the ARA. The value function can evaluate and optimize strate-

gies, and the optimized policy function, through the ARC joint encouragement function,

will output more reasonable behavioral strategies for the ARA, which will in turn make

the value function more accurate in reflecting the value of the state. The three function

types mutually promote each other and ultimately obtain the optimal tracking policy for

the ARA. Then, this paper establishes the kinematic and dynamic models of the ARA,

which obtain the joint positions through inverse kinematic calculation and input them

into the dynamic system to obtain the current state. Finally, this study conducted simula-

tions using the open source reinforcement learning library stable baselines3 (SB3) built on

the pytorch framework.

0,1X̂

2Ẑ2X̂

0,1Ẑ

3Ẑ

3Ŷ

3X̂ 4Ẑ

4X̂
5X̂

5Ẑ

2
a

3
a

1

2

3

5

4

1

4

Joint 1

Joint 2

Joint 3 Joint 4

Joint 5

Driver 1

Driver 2

Driver 3

Driver 4

Driver 5

State

Inverse

Kinematics

Dynamical

Model

()
0

h
f

()
1

h
f

()h
if

()
255

h
f

()
0

h
f

()
1

h
f

()h
nf

()
127

h
f

()
0

h
f

()
1

h
f

()
63

h
f

Actor

Critic

Action

Encourager

ARC

EAC Policy

Figure 2. Control policy of Eg-ac algorithm.

The following sections of this paper are arranged as follows. The second part elabo-

rates on the principle and process of the Eg-ac algorithm. The third part describes the

establishment of the ARA model and the setting of simulation parameters. The fourth part

presents the simulation details. The fifth part summarizes the results and the method.

Actuators 2025, 14, 66 5 of 26

2. Algorithm Principles and Processes

2.1. ARA Status Description

The ARA system is a continuous power system with state characteristic
s

ts  and

system input
a

ta  , denoted as Equation (1).

()1 , ()t t ts f s a g t+ = + (1)

Among them, 1ts + is the prediction of the next state based on the current state fea-

ture ts taking action ta
,

()f 
 is an unknown function, and

()g t
 is a random noise

function for exploring a small range around the control variable, where t represents all

the time steps recorded in the previous step during the training process.

Assuming that each temporal process of ARA has Markovian properties, establish a

Markov decision process tuple
, , , ,S A P R 

 for the ARA:

 

 

 

1 1

1

[, , , , , , , ,] ,

, , ,

| ,

| ,

0 1

t t

t

t ax ay az ax ay az tx ty tz t

x y z

a

s s t t t t

a

s t t t t

s p p p p p p p p p s S

a p p p a A

P P S S s A a

R R S s A a



+



+

+

 = 


 =   


= = =


=  = =



，

 (2)

Among them, ts is a set of state representations in state set S . axp
, ayp

, and azp

are the position coordinates of the ARA in the three axis directions of the end position in

the body coordinate system at the current time. axp
, ayp

, and azp
 are the velocities of

the ARA in the three coordinate axes of the end position in the body coordinate system.

txp
, typ

, and tzp
 are the target position coordinates of the ARA in the three coordinate

axis directions of the end position in the body coordinate system.

[, , , , , , , ,]t ax ay az ax ay az tx ty tzs p p p p p p p p p =
 describes the state parameters of the ARA in the

body coordinate system. Since the ARA operation object studied in this article is a floating

object ahead, the pitch angle of the ARA operation end position in the body coordinate

system was set to remain unchanged, and the state parameters do not need to consider

the end effector attitude. a is a set of control variables in control set A , where xp
, yp

, and zp
 represent the acceleration of the ARA in the three coordinate axis directions of

the end position in the body coordinate system. 1t t

a

s sP
+ represents a set of transition prob-

abilities in the state transition probability matrix P , which represents the transition prob-

ability from the current state ts to the next state t+1s
 through control variable a . The

reward obtained during this process is 1tR + . Subscripts t and 1t + in the above varia-

bles represent the current time step and the next time step, respectively. t

a

sR
 represents

a set of reward values in the reward function R , which are the rewards obtained from

the current state ts after passing through control variable a . The


 in tuple

, , , ,S A P R 
 is the decay factor, and tS

 is the finite set of states for the current time step

t . tA
 is a finite set of control variables for the current time step t .

Establish the motion state update equation for the ARA as follows:

Actuators 2025, 14, 66 6 of 26

()()

()  

1 , | , ()

, | ,

t t t t t

t t t t

s f S s A a s a g t

s a P A a S s







 

+
 = = = +


= = =

 (3)

Among them,
(),ts a is the ARA control strategy.  is the strategy parameter.

 | ,t t tP A a S s = =
 is the probability distribution matrix of executing control variable a

under the given state ts and strategy parameter  .
()(), | ,t t t tf S s A a s a= =

 is the

dynamic equation obtained by continuously updating
() 1, ,t ts a s + of the strategy, and

()g t
 is the noise function.

2.2. Eg-ac Control Policy

The Eg-ac algorithm proposed in this article is based on the AC algorithm, and the

specific control policy is as follows:

()Eg-ac , | ,E E

t t t ts a P A a a S s    = =  = ， (4)

Among them,
 is the actor policy network parameter, and

E is the encourager

policy parameter. The Eg-ac policy advocates that the predicted behavior given is the dy-

namic weighted behavior value of the actor’s behavior and the encourager’s output be-

havior, i.e.,
E

tA a a=  , where the dynamic weight comes from the ARC module. The

symbol  represents weighted addition. The critic network estimates the behavior

value based on the ARC output behavior and calculates the gradient of the objective func-

tion and the loss of the critic, thereby updating the parameters of each network. It is worth

noting that the design of the Eg-ac control strategy references the HRLP reward mecha-

nism and incorporates the ARC model. The specific design details are as follows.

(a) ARC Module

In order to improve learning efficiency while also considering algorithm exploration

function, this paper proposes introducing an ARC before behavior output to randomly

generate adoption rates ARC
 for the encourager under certain constraints (e.g.,

30%ARC 
). N contains a set of data corresponding to the joint positions of the ARA that

will be described later. And the actor will also generate a probability of adoption with a

value of
1 ARC−

. And after training to a certain extent,
0ARC →

 is set. It is known that

the encourager produces controllable and directionally correct behaviors. In the initial

training stage, the actor network is not yet mature, and the output values generated are

irregular, even going against the expected values. In this situation, appropriately reducing

the adoption rate of the actor and partially accepting encourager’s suggestion output

value will correct the final output action value appropriately. In the actual execution pro-

cess, the output action value develops in a positive direction, that is, moving along the

expected trajectory. Firstly, the punishment level will be reduced, and the reward level

will be increased. Secondly, the corrected state will be obtained before the next training,

which is beneficial for approaching the final target position more quickly in subsequent

training, thereby shortening the number of training steps included in an experience and

improving training efficiency. The reason for setting
0ARC →

 after training to a certain

extent is that the encourager only plays a corrective guidance role in the initial stage, and

it adopts an error control method. When it comes to target tracking tasks, there will be lag

like in traditional control methods. Therefore, later participation will affect the explora-

tory ability of the actor itself, not only hindering the improvement of training effectiveness

Actuators 2025, 14, 66 7 of 26

but also limiting the flexibility of the algorithm. Therefore, with the real-time correction

of the ARA status, the next training step can approach the final target position more

quickly, thus completing an experience as soon as possible, shortening the training steps,

and improving training efficiency.

(b) HRLP Reward Mechanism

The presentation of the HRLP reward mechanism is based on the output behavior of

the ARC module mentioned above. Due to the regulation of the ARC, the positive behav-

ior output is amplified, which is then used as an execution strategy to obtain a positive

ARA state and generate greater reward values. Bad behavior can be corrected, and exe-

cuting the behavior will result in a less inappropriate state than before, thereby reducing

punishment. In summary, HRLP is responsible for determining rewards based on the out-

put values of policy functions. Its basic idea is to increase rewards for good behavior and

reduce punishments for bad behavior, thereby accelerating learning and encouraging ex-

ploration.

Let the actor network function be ()  , the critic network function be ()QQ  , the

encourager function be ()EE  , the target actor network function be () 
 , and the tar-

get critic network function be ()QQ 
 . The specific control process of the Eg-ac policy is

shown in Figure 3, and ()g t is the random noise function. In the randomly selected

state–action pairs ()1 1, , ,i i i is a r s+ + from the experience pool, state is generates a specific

behavior a through the actor network as one of the action input values for the ARC

module, and the next state 1is + generates a predicted behavior a through the target

actor network as the action input value for the target critic network to calculate the esti-

mated value. The encourager network inputs the pre and post state values and error val-

ues from historical data into the PD controller, generating specific behavior Ea as an-

other action input value for the ARC module. The ARC module uses a randomly gener-

ated set of adoption rates to integrate two sets of actions and outputs them to the critic

network to calculate the behavior value (),i iQ s a corresponding to the state is and the

integrated behavior
E

ia a a=  . The target critic network generates the behavioral value

()1,iQ s a+
  for calculating the target value argT etQ based on the subsequent states 1is +

and a .

In the above process, in assuming that the reward obtained from interacting with the

environment under strategy  is ,s aR , the objective function is designed as follows:

() ,s aJ R


  =   

(5)

The ultimate goal of the algorithm is to find the optimal behavior

(1) E

i ARC ARCa a a = − + output by the ARC to maximize the value of the output behavior,

where the reward obtained by executing ia
 is 1ir + , and this transformation process is

stored as
()1 1, , ,i i i is a r s+ + . In assuming that each batch has  execution steps, the system

carries out a certain amount of the conversion process and randomly selects X samples

to calculate the target value argT etQ
 and the loss cLoss

 of the critic network:

()()arg 1 , | | Q

T et i i iQ r Q s s    
 

+
 = +

(6)

()()
2

arg

1
, | Q

c T et i i

i

Loss Q Q s a
X

= −

(7)

Actuators 2025, 14, 66 8 of 26

Eg-AC Policy

Experience
Replay

Memory

(), , ,i i i is a r s+ +1 1

sample
()* , , ,i i i is a r s +

1

Optimizer

Actor

Policy Network

Update
Policy

Gradient

() : is a  →

Target
Policy Network

() : is a


+
→

1

Optimizer

Critic

Q Network

Update Q
Gradient

Target
Q Network

() (): ,Q

iQ s a


+
 

1()ia s +
 =

1

Soft
Update

Soft
Update iy

SImulation
Environment

Encourager

ARC

Error Value
e(i)

Current State
Si

Target State
Sd

In

In

Out

Proportional-Derivative
Controller

Historical Data

Historical Status

State Deviation

ARC

() (): ,Q E

i iQ s a a a = 

()E

ia E s=

1 ARC−

() ()ia s g t  = +



Figure 3. Eg-ac control policy.

The update method of the actor network adopts the gradient ascent method. Consid-

ering that most optimizers are designed for gradient descent, this study achieves the effect

of gradient ascent by minimizing the negative Q value and uses the average negative Q

value of all samples in the batch as the loss. The gradient A J


 of the objective function

and the loss aLoss of the actor network are as follows:

() () () (),

1
, | | | |A

ii i i

Q

a ss s a s E s
J Q s a s

X




 
  

= = 
   

(8)

()
1

, | Q

a i i

i

Loss Q s a
X

= − 

(9)

Target network update:

()1Q Q Q   
 

+ − → (10)

()1     
 

+ − → (11)

Among them,
()g t

 is the noise function,


 is the update parameter, and


 is the

learning rate.

The proportional proprietary controller corresponding to the encourager is defined

as

() ()

()

()
TE

i

i d

E s e k e k

e k s s

 =    


= −

(12)

Actuators 2025, 14, 66 9 of 26

Among them,
E is the controller adjustment parameter,

()e k
 is the error of state

()e k
, which is the derivative of the state error, and is and ds are the sampled state and

its reference value, respectively.

Algorithm 1 provides an overview of the proposed algorithm.

Algorithm 1: Eg-ac Algorithm

Input : , , , ,Q E    

Output : optimized ,Q  

initialize ()| EE s  with weights E by Equation (12)

randomly initialize ARC with weights ARC

randomly initialize (), | QQ s a  , ()|s   , with weights Q , 

initialize target network (), | QQ s a 
 , ()|s  

 with weights Q Q 

 , A A 




initialize the experience cache space 

for episode from 1 to Limit do

Initialize a noise function

receive the initial state

for t = 1 to  do

Perform action ta via ARC, get reward 1tr + , next state 1ts + , store transi-

tion (), 1 1, ,t t t ts a r s+ + in 

 sample a batch of random X transitions (), 1 1, ,i i i is a r s+ + in  , where

0,1,2,i X=

 set target value function via Equation (6)

update critic by minimizing the loss via Equation (7)

update actor policy by policy gradient via Equations (8) and (9)

update networks via Equations (10) and (11)

end for

end for

This paper compares the performance of the SAC algorithm, DDPG algorithm, and

Eg-ac algorithm in the following sections.

3. Preparation Work for Simulation

This section will elaborate on the simulation preparation work for the algorithm pro-

posed in the paper. Section 3.1 first describes conducting a kinematic analysis of the ARA

based on the Denavi–Hartenberg (D-H) method [35] to obtain the inverse kinematic solu-

tion of the ARA. Next, a dynamic analysis of the ARA was conducted to prepare for sub-

sequent simulations. Section 3.2 introduces the simulation network structure and param-

eter settings.

3.1. Establishment of ARA Mathematical Model

In the Eg-ac algorithm, both the input and output of the ARC module are composed

of the acceleration at the end of the ARA operation, while in the simulation process, the

ARA power execution system requires inputs for each joint position. This requires the use

of an inverse kinematic solution, and the ARA power system is required during the algo-

rithm training process, so this study conducted kinematic and dynamic analyses of the

ARA.

Actuators 2025, 14, 66 10 of 26

3.1.1. ARA Kinematic Analysis

The ARA operating mechanism of this paper was designed as a five-degree-of-free-

dom robotic arm, and Figure 4 is a three-dimensional schematic of the robotic arm. In

order to enhance the structural stiffness of the main connecting rod and improve position-

ing accuracy, the motion chain of the robotic arm is not a simple open-loop system. In-

stead, a four-bar linkage mechanism is used to connect driving motor 3 to connecting rod

3, and two four-bar linkage mechanisms are used to connect driving motor 4 to connecting

rod 4. The movements of the other three driving motors are directly connected to the

joints. The layout of the driver and connecting rod is shown in the figure. Drive motor 2

controls the position of joint 2, while the posture of connecting rod 3 remains unchanged

relative to the base; drive motor 3 can adjust the posture of connecting rod 3 relative to

the base, while the posture of connecting rod 4 relative to the base remains unchanged.

Similarly, driving motor 4 specifically adjusts the posture of connecting rod 4 relative to

the base, regardless of the position of joints 2 and 3. The control of each joint is relatively

independent, unlike serial joints where the movement of the latter joint is relative to the

movement of the previous link.

0,1X̂

2Ẑ

2X̂

0,1Ẑ

3Ẑ

3Ŷ

3X̂ 4Ẑ

4X̂
5X̂

5Ẑ

2
a

3
a

1

2

3

5

4

4

Joint 1

Joint 2

Joint 3 Joint 4

Joint 5

Driver 1

Driver 2

Driver 3

Driver 4

Driver 5

0,1,2O

3O

4,5O

1
ˆ

tZ

ˆ
tY

ˆ
tX

tO

Figure 4. Schematic of ARA structure design and coordinate establishment.

The coordinate systems of each connecting rod are marked in Figure 4. Among them,

the relative coordinate of the workbench coordinate system
ˆ ˆ ˆ ˆ

t t t tO X Y Z
 with respect to the

body coordinate system 0 0 0 0
ˆ ˆ ˆ ˆO X Y Z

 is
()3 ,0,0l

. The plane where the origin of each coor-

dinate system is located is designated as the operating arm plane. The position of the ARA

shown in the figure corresponds to joint vector
()0, 90 ,90 ,90 ,0 = −

. Table 1 describes

symbols used in the text.

Table 1. Symbol explanation.

Symbol Explanation

1i

iT
−

Transformation matrix of coordinate system  i relative to co-

ordinate system  1i −

ic or ic Abbreviation of ()cos i

Actuators 2025, 14, 66 11 of 26

is or is Abbreviation of ()sin i

12c ()12 1 2cosc  = +

12s ()12 1 2sins  = +

1i − Angle of rotation from 1
ˆ

iZ − to ˆ
iZ around axis 1

ˆ
iX −

1ia − Distance from 1
ˆ

iZ − to ˆ
iZ along axis 1

ˆ
iX −

id Distance from 1
ˆ

iX − to ˆ
iX along axis ˆ

iZ

i Angle of rotation from 1
ˆ

iX − to ˆ
iX around axis ˆ

iZ

Calculate the linkage transformation matrix based on the D-H parameters in Table 2.

Table 2. Connecting rod parameters of ARA.

i 1i − 1ia − id i

1 0 0 0 1

2 −90° 0 0 2

3 0 2l 0 3

4 0 3l 0 4

5 90° 0 0 5

1 1

1 10

1

0 0

0 0

0 0 1 0

0 0 0 1

c s

s c
T

 

 

− 
 
 =
 
 
 

,

2 2

1

2

2 2

0 0

0 0 1 0

0 0

0 0 0 1

c s

T
s c

 

 

− 
 
 =
 − −
 
 

,

3 3 2

3 32

3

0

0 0

0 0 1 0

0 0 0 1

c s l

s c
T

 

 

− 
 
 =
 
 
 

,

4 4 3

4 43

4

0

0 0

0 0 1 0

0 0 0 1

c s l

s c
T

 

 

− 
 
 =
 
 
 

,

5 5

4

5

5 5

0 0

0 0 1 0

0 0

0 0 0 1

c s

T
s c

 

 

− 
 

−
 =
 
 
 

(13)

The linkage transformation matrix
0

5T is multiplied by the matrices of Equation (13):

0 0 1 2 3 4

5 1 2 3 4 5T T T T T T= (14)

11 12 13

21 22 230

5

31 32 33

0 0 0 1

x

y

z

r r r p

r r r p
T

r r r p

 
 
 ==
 
 
 

 (15)

Actuators 2025, 14, 66 12 of 26

()

()

11 1 234 5 1 5

21 1 234 5 1 5

31 234 5

12 1 234 5 1 5

22 1 234 5 1 5

32 234 5

13 1 234

23 1 234

33 234

1 2 2 3 23

1 2 2 3 23

2 2 3 23

x

y

z

r c c c s s

r s c c c s

r s c

r c c s s c

r s c s c c

r s s

r c s

r s s

r c

p c l c l c

p s l c l c

p l s l s

= −

= +

= −

= − −

= − +

=

=

=

=

= +

= +

= − −

 (16)

By the kinematic equations of the ARA, the position and orientation of the end effec-

tor coordinate system can be calculated from the joint vectors. In order to simplify the

solution and avoid the occurrence of multiple solutions, this study chose to use partial

algebraic and partial geometric solutions for the inverse kinematic solution of the ARA.

()

() ()

()

()

1

2 2

2 3 3 2 3 3

2

3 3 3

4 234 2 3

5 21 1 11 1 22 1 12 1

tan 2 ,

tan 2 , tan 2 sin , cos

tan 2 1 cos ,cos

tan 2 ,

y x

z x y

A p p

A p p p A l l l

A

A r c r s r c r s



  

  

   



 =

 = − + − +



= −


= − −


= − −


 (17)

Among them, function
tan 2(,)A y x

 is a bivariate arctangent function, and when cal-

culating

1tan
y

x

−  
 
  , the quadrant where the angle is located can be determined based on

the signs of x and
y

. 234
 and

()3cos 
 are, respectively,

()234 13 1 23 1 33tan 2 ,A r c r s r = + (18)

()
2 2 2 2 2

2 3

3

2 3

cos
2

x y zp p p l l

l l


+ + − −
= (19)

3.1.2. ARA Dynamic Analysis

Use Lagrange method to dynamically model the designed ARA. The joint position

variable set
(1,2, ,5)iq i =

 of ARA is defined as a generalized coordinate system, and its

Lagrange function is defined as

5

1

5

1

i

i

i

i

L T U

T T

U U

=

=


 = −



=



=






 (20)

Actuators 2025, 14, 66 13 of 26

Among them, L is the Lagrange function; T and U are the total kinetic energy

and total potential energy of the obstacle-clearing operation mechanism, respectively; and

iT
 and iU

 are the kinetic energy and potential energy of the first link of the robotic arm,

respectively. Due to the fact that link 4 and link 5 are located at the end of the robotic arm,

only the kinetic and potential energies of the first three links are considered. The total

kinetic energy is

()

() ()() () ()

2 2 2 2 2 2

1 1 2 2 1 2 2 2 2

2 22 2 2 2 2

3 1 2 2 3 2 3 3 2 2 3 3 2 3 3 2 3 2 2 3

1 1 1
cos

2 2 2

1 1 1
 sin sin

2 2 2

T I q m r q q m r q

m q a q r q q m a q m r q q m a r q q q

= + +

+ + + + + + + +

(21)

The total potential energy is

() () ()2 2 2 2 2 3 2 3 2 2 3 3 3 3 2 3cos cos cosU m gr m gr q m ga m ga q m gr m gr q q= − + − + − + (22)

Among them, iI is the inertia tensor of joint i ; iq
 is the generalized velocity of

joint i ; im
 is the mass of joint i ; ia

 is the length of connecting rod i ; ir is the dis-

tance from the centroid of joint i to the joint axis; and
g

 is the acceleration due to grav-

ity.

The Lagrange equation can be expressed as Equations (23) and (24):

()
i i

d L L

dt q q


 
− =

 

(23)

()
d T T U

dt q q q


  
− + =

  

(24)

Among them,  is the joint torque, and i is the joint torque at joint i .

Calculate the relevant partial derivatives as follows:

() () ()()

() ()

()

22 2

2 2 2 3 2 2 3 2 3 1

2 2 2 2

2 2 3 2 3 3 3 2 3 2 3 3 3 2 3 3

2 2

3 3 3 2 3 2 3 3 3

1 cos sin sin

2

m r q m a q r q q q

T
m r m a m r m a r q m r m a r q

q

m r m a r q m

I

r q

 + + +
 
 



 +


= + + + + + 


 
+ +



 





 (25)

() () () ()

() () () ()

2 2 2 2 2 2 2

3 1 2 2 2 1 2 3 1 2 3 2 3 3 1 3 2 3

2 2 2

3 1 2 3 2 2 3 3 1 3 2 3 2 3

0

1 1
sin 2 sin 2 sin 2 2

2 2

sin cos sin cos

T
m q a m r q q m q a r q q m q r q q

q

m q a r q q q m q r q q q q

 
 

  = − + + + +
 
 

+ + + + 

 (26)

() () ()

()

2 2 2 3 2 2 3 3 2 3

3 3 2 3

0

sin sin sin

sin

U
m gr q m ga q m gr q q

q
m gr q q

 
 

= + + + 
  

+ 

 (27)

Obtain the dynamic equation of the ARA:

() () ()()

() ()() () ()()

() () () ()

22 2

1 2 2 2 3 2 2 3 2 3 1

2

3 2 2 3 3 2 3 2 2 3 2 3 2 2 2 1 2

2

3 2 3 2 3 2 3 3 2 3 1 3

1

3 2

cos sin sin

 2 sin 2 sin cos cos sin(2)

 2 cos sin 2 cos sin

m r q m a q r q q q

m a q m r q q a q r q q m r q q q

m a r q q q m r q q q q q

I

q

 = + + +

 + + + + + − 

 + + + +

 +
 

+









 (28)

Actuators 2025, 14, 66 14 of 26

() ()

() () () ()

() () ()

2 2 2 2

2 2 2 3 2 3 3 3 2 3 2 3 3 3 2 3 3

2 2 2 2 2 2 2

3 1 2 2 2 1 2 3 1 2 3 2 3 3 1 3 2 3

2 2 3 2 2 3 3 2 3

2

1 1
 sin 2 sin 2 sin 2 2

2 2

 sin sin

m r m a m r m a r q m r m a r q

m q a m r q q m q a r q q m q r q q

m r m a g q m r g q q

 = + + + + +

− − − + − +

+ + + +

 (29)

()

() () () ()

2 2

3 3 3 3 2 3 2 3 3 3

2 2 2

3 1 2 3 2 2 3 3 1 3 2 3 3 3 2 3

1
 sin cos sin 2 2 sin

2

m r m a r q m r q

m q a r q q q m q r q q m r g q q

 = + +

− + − + + +
 (30)

Simplify the dynamic equation and obtain the matrix form of the dynamic equation

for the ARA:

() (,) ()D q B q q G qq = ++ (31)

Among them,

() () ()()
22 2

2 2 2 3 2 2 3 2 3

2 2 2 2

2 2 3 2 3 3 3 2 3 3 3 3 2 3

2 2

3 3 3 2 3 3 3

1 cos sin sin 0 0

() 0 2

0

m r q m a q r q q

D q m r m a m r m a r m r m a r

m r m a r m r

I + + +
 
 = + + + +
 

+ 


+



 (32)

() ()() () ()()

() () () ()

() ()

2

3 2 2 3 3 2 3 2 2 3 2 3 2 2 2 1 2

2

3 2 3 2 3 2 3 3 2 3 2 3 1 3

2 2 2 2 2

3 1 2 2 2 1 2 3 1 2 3 2

2 sin 2 sin cos cos sin(2)

 2 cos sin 2 cos sin

(,) 1
sin 2 sin 2

2

m a q m r q q a q r q q m r q q q

m a r q q q m r q q q q q q

B q q
m q a m r q q m q a r q

 + + + + − 

 + + + + + 

=
− − − +() ()

() () ()

2 2

3 3 1 3 2 3

2 2 2

3 1 2 3 2 2 3 3 1 3 2 3

1
sin 2 2

2

1
sin cos sin 2 2

2

q m q r q q

m q a r q q q m q r q q

 
 
 
 
 

− + 
 
 
− + − +  

 (33)

() () ()

()

2 2 3 2 2 3 3 2 3

3 3 2 3

0

() sin sin

sin

G q m r m a g q m r g q q

m r g q q

 
 

= + + + 
 

+ 

 (34)

3.2. Network Architecture Design

Based on the preparation work analyzed by the above institutions, this study used

the open source reinforcement learning library SB3 built on the pytorch framework for

simulation. The real-time position
(), ,ax ay azp p p

 and velocity
(), ,ax ay azp p p

 of the ARA

were obtained in the workbench coordinate system through the ARA power system. Then,

the ARA state is fed into the input of the Eg-ac algorithm. The output behavior

, ,ax ay aza p p p =   describes the position control quantity under system control, and its

learning process is the iterative strategy function solving process. The ARA power system

will provide current status data and determine reward values at each time step.

The Eg-ac algorithm is based on the actor–critic algorithm, so this article refers to the

processing method in DDPG. Target actor and target critic networks were added with the

same structure as the actor and critic networks in the algorithm. The architectures of the

actor and critic networks are shown in Figure 5. This study designed a critic with three

hidden layers. The hidden layers for the processing states and behaviors are first operated

separately, and the value of the state behavior is output by fully connecting them together

Actuators 2025, 14, 66 15 of 26

through the last hidden layer. The input received by the actor network is the number of

ARA features, and the specific value of each behavioral feature is output to the ARC mod-

ule. The actor network is designed with three hidden layers, fully connected between lay-

ers. In order to achieve exploration, the algorithm adds a random noise with a mean of 0

to the generated behavior, allowing it to explore a certain range around the exact behavior.

To prevent overfitting during the optimization process, the dropout algorithm is intro-

duced to regularize the network. The dropout algorithm was proposed by Hinton [36] in

2012. In each training batch, through ignoring half of the feature detectors (setting half of

the hidden layer nodes to 0), it can effectively alleviate the occurrence of overfitting and

achieve regularization to a certain extent.

...

...

Position Velocity

256

128

Action

Actor Net

64...

...

...256

128

Critic Net

...128

...

Value

Target Position

State

ARC

Fully connected

Fully connected

Fully connected

Fully connected

128

Figure 5. Network architecture settings in simulation.

Before simulation, the following parameters were set as follows:

(1) The definition of the reward value is the negative value of the distance between the

end of the ARA and the target position, which means that the larger the error, the

lower the reward value.

() () ()
22 2

i tx ax ty ay tz azr p p p p p p= − − + − + − (35)

(2) Each training batch is executed 256 = times. When there is an error 0.05e  be-

tween the end of the ARA task and the target position during an experience, the task

is considered completed, and the current experience is stopped and reset to enter the

next experience.

(3) Let the simulation time step be t and the total training steps be 20000 = .

(4) Set learning rates 0.001 = , 0.99 = , and batch sampling quantity 100X = .

(5) Controller parameters in the encourager:
 0.5 0.05E =

.

(6) Output range setting:
() (), | 10,10QQ s a   −

 ,
() ()| 0.05,0.05s    −

 ,

() ()| 0.05,0.05EE s   −
.

(7) Set the random noise range to
()() 0.002,0.002g t  −

.

(8) The size of the ARA connecting rod is 2 30.2(), 0.15()l m l m= =
.

(9) To ensure that the pitch and roll angles of the ARA end remain unchanged, and to

make the end face of joint 5 perpendicular to the plane of the operating arm, the fol-

lowing settings are used:
()4 2 3  = − +

， 5 0 =
.

Actuators 2025, 14, 66 16 of 26

(10) The adoption rate parameter of the ARC is composed of a set of random numbers

()1 2 5, 30%, 1,2, 5i i     =
 with five elements generated by the computer. The

process diagram is shown in Figure 6. In this process, the input variables are first

subjected to inverse kinematics (IK) to obtain the joint positions
()1,2, 5i i =

 of

the ARA and then integrated into
()1,2, 5E

i i  =
 through adoption rate calcula-

tion. Finally, the final behavior is output through kinematic calculations (KCs).

Among them,
() ()1 1,2, 5E E

i i i i i i     = + − =
 . Set

0ARC →
 when the train-

ing steps are 3000t  .

(11) The simulated computer configuration used an Intel(R) Core (TM) i5-7300HQ (ASUS,

Taipei, China).

ARC

In

In

Out

Parameter
Generator

IK

IK ()1 2 5,    

()1 2 5,E E E  

()1 2 5,  

KC ia

Ea

a

ARC

1 ARC−

Figure 6. Schematic of ARC processing process.

4. Simulation Results and Analysis

The ARA was trained using the SAC, DDPG, and Eg-ac algorithms. During the pro-

cess, every four episodes were grouped together, and the reward values obtained for each

episode were recorded and averaged as an average reward value, as shown in Figure 7.

For clarity and intuitiveness, the green boxes in the images represent enlarged areas. The

trend of the reward episode lines for the three algorithms in the figure is basically the

same, but compared with the three phases, Eg-ac has a faster learning efficiency and the

fastest and most stable reward rise slope, followed by DDPG, and SAC converges the

slowest and fluctuates slightly near convergence. When the reward values of the three

algorithms reach their highest, the horizontal axis position shows that the learning speed

of Eg-ac is at least 20% faster than that of the other two algorithms. The figure shows that

for the same number of training steps, the numbers of episodes for the three algorithms

are approximately as follows: SAC (4100), DDPG (4800), and Eg-ac (5800). The reason why

Eg-ac has the most episodes is because it can quickly find the direction, reach the target

position, and move on to the next experience with fewer steps in each episode. The same

conclusion can also be drawn from the more intuitive table in Figure 8. In Figure 8, as

mentioned above, every four episodes form a group, and the average number of time steps

contained in each episode is taken as the average step count. It can be seen that Eg-ac has

shown significant advantages in ARA training, as it can shorten learning time and con-

verge quickly.

Actuators 2025, 14, 66 17 of 26

Figure 7. Comparison of rewards.

Figure 8. Comparison of episode steps.

To evaluate the training cost of the proposed algorithm, the training time and execu-

tion frequency of the three algorithms were recorded. Figure 9 shows the comparison of

the training time. The training time consumed by the Eg-ac algorithm is between that of

the other two algorithms, and the training time of the three algorithms is almost the same.

The average number of steps taken per unit time was calculated, i.e., the execution fre-

quency, in groups of four episodes. As shown in Figure 10, the large initial values are due

to factors such as network and parameter initialization time. In terms of execution fre-

quency, the DDPG algorithm has the highest number of training steps per unit time. SAC

is the lowest, while Eg-ac values are between the two. The three sets of values are quite

close, so it can be concluded that Eg-ac does not have significant differences in computa-

tional cost compared to the other algorithms, and the training time difference between the

three is not significant, which is within an acceptable range.

Actuators 2025, 14, 66 18 of 26

10,000 12,500 15,000 17,500 20,000

Figure 9. Comparison of training time.

Figure 10. Execution frequency.

Due to the fact that both the Eg-ac and DDPG algorithms have two target networks

in their network structures, while the critic loss function uses mean squared error (MSE)

loss, the MSE loss will cause the prediction of the critic network to approach the target

value, so its convergence speed is related to the training efficiency and learning effect of

the algorithm. Figure 11 shows the loss comparison curves between the Eg-ac algorithm

and the DDPG algorithm. The loss trend of both algorithms first increases and then de-

creases, with MSE loss decreasing and gradually lowering the loss value. The difference

between the two curves is that the peak of Eg-ac is relatively earlier, indicating a faster

reaction and a consistently lower loss than DDPG, ultimately remaining at around 0.1,

while DDPG is around 0.2. It can be seen that the designs of the ARC module and HRLP

reward mechanism in the Eg-ac algorithm effectively increase the training efficiency of

the algorithm and improve the convergence speed by about 21.4%.

Actuators 2025, 14, 66 19 of 26

10,000 12,500 15,000 17,500 20,000

Figure 11. Loss curve of critic network.

Based on the above analysis, this study selected two sets of floating target trajectories

for algorithm model validation experiments. Experiment 1 used a spatial spiral curve as

the floating trajectory to simulate ARA tracking when the aircraft body shakes due to

wind disturbance. Experiment 2 used a planar curve as the floating trajectory to simulate

ARA tracking when the aircraft is stationary.

In Experiment 1, it is assumed that the floating trajectory of the obstacle to be cleared by

the ARA under the dual effects of the base and wind disturbance is a spatial arc. The models

were trained using three different algorithms, and the motion parameters of the ARA were

recorded. Figure 12 shows the tracking trajectories after the execution of the three algo-

rithms. It can be intuitively analyzed that the trajectory of SAC is the most unstable, with

position jitter occurring during the tracking process, while the stability of the Eg-ac and

DDPG algorithms was better. Figure 13 shows the tracking errors of three algorithms dur-

ing execution. Analysis shows that Eg-ac has a smaller tracking error compared to DDPG,

which is basically stable at around 0.01 m, while DDP is about 0.03 m. Figures 14 and 15,

respectively, show the displacement and velocity curves of the ARA in the three coordi-

nate axes of the workbench during Experiment 1. From the analysis of the simulation

curve above, it can be seen that under the same number of training steps and training

time, the algorithm proposed in this paper exhibits more accurate and stable tracking per-

formance in the process of floating target tracking.

Figure 12. Three-dimensional curve of ARA tracking trajectory in Experiment 1.

Actuators 2025, 14, 66 20 of 26

Figure 13. Tracking error curve in Experiment 1.

(a) (b)

(c)

Figure 14. Displacement curves in each coordinate axis direction in Experiment 1: (a) X-axis dis-

placement; (b) Y-axis displacement; (c) Z-axis displacement.

(a) (b)

Actuators 2025, 14, 66 21 of 26

(c) (d)

Figure 15. Tracking speed curve in Experiment 1: (a) X-axis velocity; (b) Y-axis velocity; (c) Z-axis

velocity; (d) tracking linear velocity.

In Experiment 2, it is assumed that the obstacle to be cleared by the ARA will generate

a floating trajectory as a planar arc without external disturbance. The models were trained

using three different algorithms, and the motion parameters of the ARA were recorded.

Figure 16 shows the tracking trajectories after the execution of the three algorithms. Figure

17 shows the tracking errors of three algorithms during execution. As shown in the figure,

during the planar tracking process, the tracking error of Eg-ac is basically stable at around

0.01 m, while DDPG is about 0.02 m. Figures 18 and 19, respectively, show the displace-

ment and velocity curves of the ARA in the three coordinate axes of the workbench during

Experiment 2. Based on the analysis of the simulation curve above, it can be concluded

that, similar to the conclusion of Experiment 1, the algorithm proposed in this paper ex-

hibits more accurate and stable tracking performance in floating target tracking under the

same number of training steps and training time.

Figure 16. ARA tracking trajectory in Experiment 2.

Actuators 2025, 14, 66 22 of 26

Figure 17. Tracking error curve in Experiment 2.

(a) (b)

(c)

Figure 18. Displacement curves in each coordinate axis direction in Experiment 2: (a) X-axis dis-

placement; (b) Y-axis displacement; (c) Z-axis displacement.

(a) (b)

Actuators 2025, 14, 66 23 of 26

(c) (d)

Figure 19. Tracking speed curve in Experiment 2: (a) X-axis velocity; (b) Y-axis velocity; (c) Z-axis

velocity; (d) tracking linear velocity.

In order to more intuitively demonstrate the computational costs during the execu-

tion of the three algorithms, this study recorded the computation time during the execu-

tion of each algorithm. Figure 20 shows the partial single-step computation time of three

algorithms. The average computation time of the three algorithms is
()997 s

, which fur-

ther proves that the algorithm proposed in this paper does not waste too much computa-

tional cost while improving learning efficiency and tracking performance.

Figure 20. Comparison of running time.

5. Conclusions

This article proposes an Eg-ac algorithm based on the AC algorithm and applies it to

the floating target tracking control of the ARA. The research objectives of the algorithm

proposed in this paper were to quickly lock the exploration direction during the process

of the ARA reaching the floating target position, improve learning efficiency, and obtain

stable tracking results without increasing learning costs. Based on the above objectives,

this study established approximate functions, strategy functions, and incentive functions

for ARA state values in algorithm construction and designed an ARC module. Among

them, the ARC generates the adoption rate for the encourager and outputs the ARA be-

havior strategy under the regulation of the ARC. Given that the inverse kinematic settle-

ment and dynamic system execution of the ARA are required during the algorithm model

training process, this paper establishes the kinematic and dynamic models of the ARA

based on the D-H method. The target positions of each joint are obtained through inverse

kinematic calculation, and the current state is obtained through the dynamic system. Fi-

nally, simulation was conducted using the open source reinforcement learning library SB3

Actuators 2025, 14, 66 24 of 26

built on the pytorch framework. The experimental results show that under the same com-

putational cost, the loss function convergence speed of the Eg-ac algorithm designed in

this study was improved by 21.4% compared to that of DDPG. Compared with SAC and

DDPG, Eg-ac improved learning efficiency by at least 20% and has a more agile and stable

floating target tracking performance.

While proposing a better algorithm in this article, there are some inevitable aspects

that need improvement or can make the proposed algorithm better, such as the following:

(1) Significant oscillation phenomena when approaching the target need to be improved

upon. (2) The simulation did not consider the end effector attitude of the ARA. If it is

necessary to consider the end effector attitude, research on attitude angles needs to be

conducted. (3) There are various types of airborne disturbances, and in future work, it is

necessary to further refine the disturbance effects and improve system stability. The au-

thors will focus on addressing these areas in future research.

Author Contributions: Conceptualization, J.W. and Z.Y.; methodology, J.W.; software, J.W. and

H.Z.; validation, L.L. and D.C.; formal analysis, J.W.; investigation, H.Z., C.X., and J.W.; resources,

Z.Y.; data curation, J.W.; writing—original draft preparation, J.W.; writing—review and editing,

J.W., C.X., and Z.Y.; visualization, J.W., D.C., and Z.W.; supervision, Z.Y.; project administration,

Z.Y.; funding acquisition, Z.Y. All authors have read and agreed to the published version of the

manuscript.

Funding: This research was funded in part by the Guangxi Power Grid Company’s 2023 Science

and Technology Innovation Project under Grant GXKJXM20230169 and in part by the Guizhou Pro-

vincial Science and Technology Projects, grant number Guizhou-Sci-Co-Supp [2020]2Y044.

Data Availability Statement: The data supporting the findings of this study are available within

the article.

Acknowledgments: The authors would like to thank the reviewers for their constructive comments

and suggestions that helped improve this paper.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Liao, L.; Yang, Z.; Wang, C.; Xu, C.; Xu, H.; Wang, Z.; Zhang, Q. Flight Control Method of Aerial Robot for Tree Obstacle

Clearing with Hanging Telescopic Cutter. Control Theory Appl. 2023, 40, 343–352.

2. Wang, M.; Chen, Z.; Guo, K.; Yu, X.; Zhang, Y.; Guo, L.; Wang, W. Millimeter-Level Pick and Peg-in-Hole Task Achieved by

Aerial Manipulator. IEEE Trans. Robot. 2024, 40, 1242–1260.

3. Kang, K.; Prasad, J.V.R.; Johnson, E. Active Control of a UAV Helicopter with a Slung Load for Precision Airborne Cargo De-

livery. Unmanned Syst. 2016, 4, 213–226.

4. Amri bin Suhaimi, M.S.; Matsushita, K.; Kitamura, T.; Laksono, P.W.; Sasaki, M. Object Grasp Control of a 3D Robot Arm by

Combining EOG Gaze Estimation and Camera-Based Object Recognition. Biomimetic 2023, 8, 208.

5. Villa, D.K.D.; Brandão, A.S.; Sarcinelli-Filho, M. A Survey on Load Transportation Using Multirotor UAVs. J. Intell. Robot. Syst.

2020, 98, 267–296.

6. Tagliabue, A.; Kamel, M.; Verling, S.; Siegwart, R.; Nieto, J. Collaborative transportation using MAVs via passive force control.

In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017.

7. Darivianakis, G.; Alexis, K.; Burri, M.; Siegwart, R. Hybrid Predictive Control for Aerial Robotic Physical Interaction towards

Inspection Operations. In Proceedings of the IEEE International Conference on Robotics & Automation, Hong Kong, China, 31

May–7 June 2014.

8. Molina, J.; Hirai, S. Aerial pruning mechanism, initial real environment test. Robot. Biomim. 2018, 7, 127–132.

9. Roderick, W.R.T.; Cutkosky, M.R.; Lentink, D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci.

Robot. 2021, 6, eabj7562.

Actuators 2025, 14, 66 25 of 26

10. Sun, X. Application of Intelligent Operation and Maintenance Technology in Power System. Integr. Circuit Appl. 2023, 40, 398–

399.

11. Zhang, Q.; Liao, L.; Xiao, S.; Yang, Z.; Chen, K.; Wang, Z.; Xu, H. Research on the aerial robot flight control technology for

transmission line obstacle clearance. Appl. Sci. Technol. 2023, 50, 57–63.

12. Suarez, A.; Heredia, G.; Ollero, A. Physical-Virtual impedance control in ultralightweight and compliant Dual-Arm aerial ma-

nipulators. IEEE Robot. Autom. Lett. 2018, 3, 2553–2560.

13. Zhang, G.; He, Y.; Dai, B.; Gu, F.; Yang, L.; Han, J.; Liu, G. Aerial Grasping of an Object in the Strong Wind: Robust Control of

an Aerial Manipulator. Appl. Sci. 2019, 9, 2230.

14. Nguyen, H.; Lee, D. Hybrid force/motion control and internal dynamics of quadrotors for tool operation. In Proceedings of the

2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013.

15. Zhong, H.; Miao, Z.; Wang, Y.; Mao, J.; Li, L.; Zhang, H.; Chen, Y.; Fierro, R. A Practical Visual Servo Control for Aerial Manip-

ulation Using a Spherical Projection Model. IEEE Trans. Ind. Electron. 2020, 67, 10564–10574.

16. Alexis, K.; Huerzeler, C.; Siegwart, R. Hybrid predictive control of a coaxial aerial robot for physical interaction through contact.

Control. Eng. Pract. 2014, 32, 96–112.

17. Zhuo, H.; Yang, Z.; You, Y.; Xu, N.; Liao, L.; Wu, J.; He, J. A Hierarchical Control Method for Trajectory Tracking of Aerial

Manipulators Arms. Actuators 2024, 13, 333.

18. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Os-

trovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529.

19. Hasselt, H.V.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. arXiv 2015, arXiv.1509.06461.

20. Qiu, Z.; Liu, Y.; Zhang, X. Reinforcement Learning Vibration Control and Trajectory Planning Optimization of Translational

Flexible Hinged Plate System. Eng. Appl. Artif. Intell. 2024, 133, 108630.

21. Yang, A.; Chen, Y.; Naeem, W.; Fei, M.; Chen, L. Humanoid motion planning of robotic arm based on human arm action feature

and reinforcement learning. Mechatronics 2024, 7, 102630.

22. Zhang, S.; Xia, Q.; Chen, M.; Cheng, S. Multi-Objective Optimal Trajectory Planning for Robotic Arms Using Deep Reinforce-

ment Learning. Sensors 2023, 23, 5974.

23. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep Rein-

forcement Learning. arXiv 2013, arXiv:1312.5602.

24. Peters, J.; Schaal, S. Policy Gradient Methods for Robotics. In Proceedings of the 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 2219–2225.

25. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. In Proceedings

of the 31st International Conference on Machine Learning (ICML-14), Beijing, China, 21–26 June 2014; pp. 387–395.

26. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; Levine, S. Soft

Actor-Critic Algorithms and Applications. arXiv 2019, arXiv:1812.05905.

27. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep rein-

forcement learning. arXiv 2015, arXiv:1509.02971.

28. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018,

arXiv:1802.09477.

29. Sekkat, H.; Tigani, S.; Saadane, R.; Chehri, A. Vision-based robotic arm control algorithm using deep reinforcement learning for

autonomous objects grasping. Appl. Sci. 2021, 11, 7917.

30. Lindner, T.; Milecki, A.; Wyrwał, D. Positioning of the Robotic Arm Using Different Reinforcement Learning Algorithms. Int. J.

Control. Autom. Syst. 2021, 19, 1661–1676.

31. Oikonomou, K.M.; Kansizoglou, I.; Gasteratos, A. A Hybrid Reinforcement Learning Approach with a Spiking Actor Network

for Efficient Robotic Arm Target Reaching. IEEE Robot. Autom. Lett. 2023, 8, 3007–3014.

32. Song, B.Y.; Wang, G.L. A Trajectory Planning Method for Capture Operation of Space Robotic Arm Based on Deep Reinforce-

ment Learning. J. Comput. Inf. Sci. Eng. 2024, 24, 091003-1.

33. Wu, P.; Su, H.; Dong, H.; Liu, T.; Li, M.; Chen, Z. An obstacle avoidance method for robotic arm based on reinforcement learning.

Ind. Robot 2024, 52, 9–17.

34. Wu, J.; Yang, Z.; Liao, L.; He, N.; Wang, Z.; Wang, C. A State-Compensated Deep Deterministic Policy Gradient Algorithm for

UAV Trajectory Tracking. Machines 2022, 10, 496.

Actuators 2025, 14, 66 26 of 26

35. Denavit, J.; Hartenberg, R.S. A kinematic notation for lower-pair mechanisms based on matrices. Trans ASME J. Appl. Mech.

1955, 22, 215–221.

36. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing

coadaptation of feature detectors. Comput. Sci. 2012, 3, 212–223.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

