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Abstract: This paper presents the design and development of a novel mechanically overdamped
actuator with adjustable stiffness (MOD-AwAS). The novelty of MOD-AwAS compared to other
variable stiffness actuators relates to its mechanical design, which prevents oscillations at the output
link. Almost all variable stiffness actuators have an overshooting problem that require a sophisticated
control algorithm to be able to perform accurate positioning. MOD-AwAS can regulate the stiffness
from zero to its maximum (theoretically infinite) in less than 0.2 s by changing the position of
the pivot point of its lever mechanisms. MOD-AwAS employs only one rotational spring with no
pre-deflection, which gives it full accessibility to its energy storage capacity. Experimental results are
presented to show the ability of MOD-AwAS to control its position accurately with a wide range of
stiffness adjustment.

Keywords: variable stiffness; overdamped system; energy storage

1. Introduction

Variable stiffness actuators (VSAs) are a new generation of robotic actuators that are proposed
to allow for stiffness adjustment in addition to the ability to tune their position [1–6]. This stiffness
adjustability is essential in many applications, especially in physical human–robot-interactions (pHRI)
where robots and humans work in close vicinity [7–13]. Safety can be guaranteed as having an
elastic element, e.g., a spring, allows for inherent mechanical compliance to be built into traditionally
rigid components.

Despite the numerous advantages of VSAs, using them often leads to difficulty in applications,
necessitating high accuracy or precision [1,14]. By building in inherent mechanical compliance, the
true position of the end effector will differ from the position of the motor any time the system is
disturbed. This problem can be amplified considerably in joints that do not also incorporate some
type of damping in their control systems [15]. As a result, oscillation and over shooting is always
an unavoidable phenomenon in these type of actuators. This overshooting is also a critical concern
when safety is a prime goal. Overshooting signifies releasing the potential energy stored in the spring,
which in high-speed scenarios, e.g., step response, could lead to high and uncontrollable output power.
This would result in a chaotic motion of the output link that can easily pose a critical danger to around
human beings [16–18].

In order to address these issues, developers of VSAs have to implement sophisticated control
algorithms that take into account the output link’s velocity and model-based stiffness at each instance
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over time. Then, through some linearization techniques, the best performance of the system, i.e.,
the minimum overshooting or settling time, can be achieved [5,11,19–26]. These types of control
approaches always come along with their intrinsic constraints of maximum velocity and change in the
stiffness that limits their advantages in practical applications [22,27].

Here we propose a mechanically overdamped actuator with adjustable stiffness (MOD-AwAS) as
shown in Figure 1. This actuator tackles the oscillation problem with a different approach. Instead of
relying on the control part to accurately position the moving complaint link, the system is designed to
mechanically overdamp the motion. This is done by implementing stepwise impedance of the output
link by allowing the impact of two rigid bodies. In this case, part of the kinetic energy of the output
link will be dragged out from the system, and thus the output link will be immediately settled to its
target position without a need for any control. The intended application of this actuator is where safety
and accurate positioning are the critical determinants. Of course, killing the kinematic energy cannot
be geared towards energy optimization, especially for the applications that contain periodic motions.
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Figure 1. Prototype of the mechanically overdamped actuator with adjustable stiffness (MOD-AwAS).

In addition to being mechanically overdamped, the output link of MOD-AwAS has full access
to the energy storage capacity of its stiffness adjustment mechanism. The maximum energy that can
be stored inside stiffness adjustment mechanism in VSAs can be determined by (1): the number of
the springs; (2): the maximum deflection, and (3): the stiffness of each of them [10]. In antagonistic
VSAs [1,10], this maximum energy storage can never be fully accessible from the output link side as
part of this capacity is always taken for stiffness regulation and torque-generation purposes. In serial
VSAs [28–30], part of this energy should be assigned for torque-generation purposes as the tension of
the spring is the driving force of the output link. Also, in actuators with adjustable stiffness (AwAS) [31]
and AwAS-II [28], part of this capacity is wasted due to the required pre-deflection of the springs.
In these actuators, two springs are placed on both sides of a lever. Once the lever becomes fully
deflected in one direction, one spring become fully compressed while the other one reaches its no-load
length. That justifies the necessity of pre-deflection for the springs in these designs. MOD-AwAS,
however, employs only one rotational spring. The spring is placed with no pre-deflection, therefore,
no energy is wasted for this reason. It also employs a lever mechanism to regulate the stiffness,
therefore, the full amount of energy that can be stored inside the spring is accessible at the output link.
This implies that with a strong spring, the output link of MOD-AwAS can reach a high velocity which
is helpful in highly dynamic tasks, but it will continue not to have any, or minimal, oscillation around
its equilibrium position. This is a unique feature of MOD-AwAS.
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The rest of this paper is organized as follows: in Section 2 the modeling of the stiffness adjustment
mechanism will be presented. Section 3 explains the overdamping properties and its implementation
within the mechanical design of MOD-AwAS through some preliminary experiments. Finally, Section 4
talks about conclusion and future works.

2. Stiffness Modeling and Design

As mentioned previously, the stiffness adjustment mechanism of MOD-AwAS is the same as that
of AwAS-II [28]. A lever is connected to a rotary spring from one end and perceives force from its other
end, while being able to rotate around a pivot point. The lever has a U-shaped structure where the
pivot can travel inside from one end to the other. The rotary spring also forms a U-shape and is placed
concentrically with the lever. This is geared toward the compactness of the system. The schematic of
stiffness adjustment mechanism of MOD-AwAS is shown in Figure 2.
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Figure 2. Schematic of stiffness adjustment principle. The lever and rotary spring with stiffness K are
concentrically placed while they are unidirectionally attached at their leg sides. The pivot can travel
inside the lever. (a) shows equilibrium configuration, while in (b) the lever is deflected due to the
applied force F by angle θ.

2.1. Stiffness Formulation

Once force F is applied to the lever at the tip of its leg, the lever becomes deflected. The lever is
connected to the rotary spring at the tip of the leg (Figure 2.). However, this connection is unidirectional.
It means that depending of the direction of force F and consequently the rotation of the lever, only one
of the spring’s legs become deflected at a time, while the other leg losses the connection with the lever
(as shown in Figure 2).

Let us assume that the pivot is located at the distance of L1 from the center of rotation of the lever,
and L2 from the force point. The distance between center of rotation of the lever and that of the output
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link is L, as depicted in Figure 2. The rotary spring has a stiffness of K. As the link become deflected by
θ, the lever rotates around the pivot by α:

α = tan−1
(

L tan θ

L1

)
(1)

and thus, springs become deflected by x:

x = L2(tan α) = (L tan θ)
L2

L1
(2)

and the spring’s rotary deflection β will be:

β = tan−1 x
L1 + L2

(3)

Therefore, the torque acting on the spring Ts can be found as:

Ts = Kβ (4)

and thus, for small deflections, the force acting on the spring at its connection point with the lever,
would be:

Fs =
Ts

L1 + L2
= K

x

(L1 + L2)
2 (5)

This force will balance the force acting on the other side of the lever F, therefore:

F = Fs
L2

L1
(6)

This force will be acting on the output link at the distance of L from its center of rotation.
Consequently, the torque on the output link will be:

T = FL (7)

Therefore, using Equations (1)–(7), the rotary stiffness perceived at the link side Klink can be
simplified as

Klink =
T
θ
= K

L2

(L1 + L2)
2

L2
2

L2
1

(8)

for small deflections. As shown in Figure 3, a mechanical block around the lever limits the deflation to
small amounts.
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2.2. Damping Specification

The rigid collision between the spring’s “undeflected” leg and the lever is the underlying principle
which helps the system to be mechanically overdamped. As the force is removed and the lever bounces
back to its equilibrium point, there will be a rigid-rigid collision between the spring leg and that
of the lever. This impact between two rigid elements will suddenly “kill” the kinetic energy and,
consequently, the lever will stop right at its equilibrium position.

From the energy point of view, the kinetic Ekinetic and potential Epotential energy of the output
link are:

Ekinetic =
1
2 Ilink

(
dθ
dt

)2

Epotential =
1
2 Klinkθ2

(9)

where Ilink and dθ/dt are the inertia and velocity of the output link, respectively. Initially when the link
is deflected due to an external force, kinetic energy is zero and zero potential energy is:

Ekinetic = 0

Epotential =
1
2 Klinkθ2

max

(10)

where θmax is the maximum deflection of the link (~0.3 rad). Once the force is removed, the link will
accelerate, and the speed increases accordingly. The increase in speed, increases the kinetic energy,
and simultaneously the potential energy will be reduced as the deflection decreases. The total energy
will remain constant. Just before the link reaches its equilibrium position (before collision), its speed
reaches the maximum level and deflection tends to zero, therefore:

Ekinetic =
1
2 Ilink

(
dθ
dt

)2

max

Epotential = 0

(11)

The total energy of the link will remain constant until the collision. Therefore, we using
Equations (10) and (11), we can determine the link maximum velocity as:

dθ

dt
|max =

√
Klink
Ilink

θmax (12)

Right after the collision, the output link velocity will be dropped to (dθ/dt)ac. Therefore, the link
kinetic and potential energy after collision will be:

Ekineticac =
1
2 Ilink

(
dθ
dt

)2

ac

Epotentialac = 0

(13)

The total energy of the system will reduce after the collision. We define a parameter as damping
scale DS as:

DS =
dθ
dt |ac

dθ
dt |max

(14)



Actuators 2017, 6, 22 6 of 13

DS is a function of link stiffness. In our system, the DS parameter is usually very small (see
Section 4), particularly for high stiffness values. The higher the stiffness, the more energy will be taken
out from the system at the moment of the collision. The link overshoot θos can be found as:

θos =

√
Klink
Ilink

dθ

dt
|ac (15)

A small DS implies a large reduction in the speed after the collision, and that would lead to
a small link overshoot, which is negligible for high stiffness values. This means that our system
is mechanically overdamped particularly when the output link is highly compliant. This is geared
toward safety since a low compliance link will have no oscillation as it will be overdamped. A high
compliance link with a small amount of overshooting will also be safe to interact with as it will not
pose any danger during a collision with a human body. The accuracy of positioning, however, will be
affected by the link overshooting.

2.3. Accessibility of the Link to Energy Storage Capacity

Safety of interaction is a critical factor when a robotic arm touches a human body. In such cases, the
arm should be easily deflectable to guarantee that the impact is controlled and not harmful. The more
range of allowable deflection of the output link gives more time to the robot, sensors and controller to
react, thus a more safe interaction can be achieved. Deflection of the output link is due to the deflection
of the spring. In other word, the potential energy of the output link is linked to the potential energy
of the spring. In most of VSAs, the link has very limited accessibility to the potential energy of the
springs, which can greatly limit the deflection range of the output link or output power.

In MOD-AwAS, the maximum potential energy that can be stored into spring is:

Epotentials =
1
2

Kβ2
max (16)

where βmax is the maximum angular deflection of the spring. Using Equation (3), the maximum linear
deflection of the spring leg at its contact point with the lever for small deflections can be found as:

xmax = (L1 + L2)βmax (17)

and using Equation (2), the maximum link deflection will be:

θmax = xmax
L1

LL2
(18)

By plugging Equations (8), (17) and (18) into Equation (10), the maximum potential energy of the
output link can be found as:

Epotential =
1
2

Klinkθ2
max =

1
2

Kθβ2
max (19)

It is clear that this energy is exactly the same as potential energy of the spring in Equation (16).
Therefore, theoretically, the output link in MOD-AwAS has full access to the energy storage capacity of
the spring.

3. Physical Implementation and Preliminarily Experiments

3.1. Physical Implementation

The MOD-AwAS prototype has two motors: one motor is dedicated to link positioning and the
other smaller motor is assigned to stiffness regulation. In order to move the pivot point inside the
lever using the second motor, we employed a rack and pinion mechanism. The rack is mounted on the
lever and the pinion is assembled on the second motor shaft. The output link is attached to a light
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aluminum bar with the length of 50 cm in order to achieve a more distinguishable overshooting. We
use a rotational spring with the stiffness of 10 Nm/rad as the elastic element. The maximum deflection
of this rotary spring is around 60◦. The system is mounted on a table for the purpose of experiments.
The physical specifications of MOD-AwAS are presented in Table 1. The angular position of the two
motors is measured through their built-in position sensors, while the position of the output link can be
read using a rotary encoder attached to it. The difference between the first motor position and that of
the output link, the angular deflection of the output link, can be calculated.

Table 1. Physical specification of MOD-AwAS.

Specification Value Specification Value

Height 10 cm Length 50 cm
Width 10 cm Weight 200 g

Min. Stiffness 32 Nm/rad Rotation Range (Min. Stiffness) +/−0.3 rad
Max. Stiffness 350 Nm/rad Rotation Range (Max. Stiffness) +/−0.3 rad

Min. Deflection (Min. Stiffness) 0.2 rad Max. Torque 3.2 Nm
Max. Deflection (Max. Stiffness) 0.15 rad Max. Velocity 0.5 rad/s

3.2. Preliminarily Experiments

First, we test the stiffness adjustability and range of MOD-AwAS. For this purpose, we first
set the stiffness to different values by controlling the position of the pivot inside the lever using the
second motor. For each stiffness value, we attached a known set of different weights to the output link
and measure the defection of output link due to the gravitational force. Stiffness is then calculated
by dividing the force to angular deflection of the link. Figure 4 shows the stiffness as a function of
pivot position p = L2/Llever inside the lever compared to the stimulated stiffness based on Equation (8).
As shown by the graph, the stiffness of MOD-AwAS can vary from almost 32 Nm/rad to 350 Nm/rad.
The reason we cannot achieve infinite stiffness is due to the backlash between the pivot and the lever.
Furthermore, zero stiffness cannot be achieved because the actual connection between the lever and
spring is not a point contact.
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We then set the stiffness to three different values, very low (35 Nm/rad), low (50 Nm/rad),
and high (300 Nm/rad), and commanded the output link to follow a sinusoidal trajectory with the
amplitude of 0.2 rad and a frequency of 2 Hz. Figure 5 shows how the output link followed the
reference trajectories for these stiffness values.
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Figure 5. Tracking a sine wave trajectory; very low stiffness K = 35 Nm/rad (a); low stiffness
K = 50 Nm/rad (b); and high stiffness K = 300 Nm/rad (c).

As shown in Figure 5, when the link stiffness is very low, there is a considerable phase delay
between the reference trajectory and the link actual trajectory. There is also a little bit of overshooting
when the link stiffness is very low. When the link stiffness is low, there is a very small phase delay
between the reference trajectory and the link actual trajectory, while no overshooting is experienced.
At high stiffness, no overshooting and phase delay between the actual link and reference trajectories
is noticed.

We also commanded the output link to follow the same reference trajectory, while the stiffness in
changing on-line follows a sinusoidal trajectory from 35 Nm/rad to 300 Nm/rad with 4 Hz frequency.
The result is depicted in Figure 6. As shown in the graph, the stiffness motor is able to follow its
reference trajectory accurately. While the stiffness is low, the output link has some deviation from its
reference trajectory. However, as the stiffness increased, the output link deviation tended to vanish.

In order to show the over damping capability of MOD-AwAS, particularly at high stiffness, we
set the position of the output link to a certain angle and manually pulled it away from its equilibrium
configuration by 1.5 rad and released it. As a result of deflection, the link moved back to its equilibrium
position. We record the link trajectory for three different stiffness values using its dedicated rotary
encoder. Figure 7 shows the link trajectory for very low and low stiffness values of 35 Nm/rad and
50 Nm/rad, respectively.
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Figure 6. Output link is tracking a sine wave trajectory (a) while the stiffness is changing on-line
following the sinusoidal trajectory from very low stiffness K = 35 Nm/rad to high stiffness
K = 300 Nm/rad with 4 Hz frequency (b).

The damping scale, DS, as defined by Equation (14), is the ratio of the link maximum velocity
right before it reaches its equilibrium position over its velocity right after that (Figure 6).

As Figure 7 makes clear, the DS parameter greatly decreases when the stiffness increases from
K = 3 Nm/rad to K = 50 Nm/rad. We performed this experiment for different values of link stiffness
and calculated the DS parameters in each case. Figure 8 shows the calculated DS parameter for different
values of stiffness.

As shown in Figure 8, the DS parameter starts from 0.7 at minimum stiffness. This DS ratio results
in a little bit of overshooting as illustrated in Figure 6. However, by increasing the stiffness, the DS
parameter radically tends to zero. This implies the ability of MOD-AwAS to mechanically overdamp
the oscillation around its equilibrium position.
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In this paper, we explained the design and development of MOD-AwAS. This novel actuator
allows for adjustable stiffness and has the capability of mechanically overdamp the link oscillation,



Actuators 2017, 6, 22 11 of 13

especially when the stiffness increases. MOD-AwAS employs a lever mechanism to regulate the
stiffness. By changing the position of the pivot inside the lever, the stiffness of the output link can
change from 32 Nm/rad to 350 Nm/rad in 0.2 s.

Since MOD-AwAS uses a lever mechanism with only one spring as compliant element, the output
link can have full access to the energy storage capacity of the spring. This resulted in achieving a large
range of deflection in a small size.

Using only one spring to regulate the stiffness brings an additional unique feature to MOD-AwAS,
that is, discontinuity in the velocity as a result of an impact between lever and spring. This sudden
change in the velocity greatly reduces the total energy of the link, which in turn forces the link to
behave like an overdamped system.

The ability of MOD-AwAS in tracking a sine wave, as well as step trajectories, has been shown
experimentally. Furthermore, the overdamping capability of MOD-AwAS has also been proven
through calculating the damping scale parameter at different stiffness values.

As for future works, a multi-dof robotic arm from this actuator will be developed in order to
explore the capability of MOD-AwAS in accurate pick and place tasks, as well as safely integrating
with humans.
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