Modeling, Identification, and Control of a Discrete Variable Stiffness Actuator (DVSA)
Abstract
:1. Introduction
2. Design and Stiffness Model of the Discrete Variable Stiffness Actuator
- N: the gear ratio;
- β: binary number;
- θ: the angular position at present time;
- ϕ: the angular position at activation time;
- φ: the backlash angle.
3. System Identification of Discrete Variable Stiffness Actuator
- are the angular position, the angular velocity, and the angular acceleration of the motor, respectively;
- are the angular position, the angular velocity, and the angular acceleration of the motor, respectively;
- is the input torque of the motor;
- is the torque needed to lift the external load.
- : the peak amplitude corresponding to time ;
- the peak amplitude corresponding to time ;
- m: number of complete cycles between and ;
- : the logarithmic decrement for the motor side under the effect of initial condition (IC) .
- the inertia load;
- : the damping in the load side;
- : the damping ratio for the load side under the effect of the IC ;
- : the natural frequency under the constraints of the second experiment.
4. Control System Design of Discrete Variable Stiffness Actuator
4.1. Type-One Servo System Design Based on LQR
- is called the state vector and is called the input vector.
- C: the output matrix, which is an identity matrix.
- D: the feedforward matrix, which is a zero matrix.
- is the dynamic error on the new state space vector.
- - is the dynamic error on the input vector.
- is the output-tracking matrix.
- represents the desired responses.
- ;
- is a semi-positive definite weighting matrix or positive definite weighting matrix;
- is a positive definite weighting matrix.
4.2. Tracking System Based on Computed Torque Control (CTC)
- = is the mass matrix.;
- = is the damping matrix;
- = is the stiffness matrix;
- = is the torque input vector;
- = is the angular position for the motor and for the load, respectively.
- is the estimation error;
- is the gain matrix of derivative term;
- is the proportional gain matrix.
5. Numerical Simulations
5.1. Evaluation of the System Identifications Algorithm
5.2. Evaluation of the Servo System Design Based on a Linear Quadratic Regulator (LQR)
5.2.1. All Clutches Are Active () the Entire Time
5.2.2. Altering the Clutches’ Status While the System Is Running at Different Time Intervals
- In the first-time interval [0 ≤ t < 1] second, Bit 21 is on i.e., ( = 2).
- Bit 20 and Bit 22 are on i.e., ( = 5) in the next time interval [1 ≤ t < 2] second.
- In the third time interval [2 ≤ t ≤ 3] second, all clutches are activated ( = 7).
5.3. Evaluating the Tracking System Based on Computed Torque Control (CTC)
5.3.1. All Clutches Are Active () the Entire Time
5.3.2. Altering the Clutches Status at Different Time Intervals While the System Is Running
- In the first time interval [0 ≤ t < 1] second, the Bit 21 clutch is on.
- Bit 20 and Bit 22 are activated, i.e., ( = 5) in the second interval [1 ≤t < 2] second.
- In the third interval [2 ≤ t ≤ 3] second, all clutches are on ( = 7).
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Tsagarakis, N.G.; Sardellitti, I.; Caldwell, D.G. A new variable stiffness actuator (CompAct-VSA): Design and modelling. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 378–383. [Google Scholar]
- Bicchi, A.; Peshkin, M.; Colgate, J.E. Safety for Physical Human–Robot Interaction (Handbook of Robotics 2008); Springer: Berlin, Germany, 2008; pp. 1335–1348. [Google Scholar]
- Lasota, P.A.; Fong, T.; Shah, J.A. A survey of methods for safe human–robot interaction. Found. Trends Robot. 2017, 5, 261–349. [Google Scholar] [CrossRef]
- Hogan, N. Impedance control: An approach to manipulation: Part III—Applications. J. Dyn. Syst. Meas. Control 1985, 107, 8–16. [Google Scholar] [CrossRef]
- Shin, D.; Sardellitti, I.; Park, Y.-L.; Khatib, O.; Cutkosky, M. Design and Control of a Bio-inspired Human-friendly Robot. Int. J. Robot. Res. 2010, 9, 571–584. [Google Scholar] [CrossRef]
- Migliore, S.A.; Brown, E.A.; DeWeerth, S.P. Biologically inspired joint stiffness control. In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 4508–4513. [Google Scholar]
- Bischoff, R.; Kurth, J.; Schreiber, G.; Koeppe, R.; Albu-Schaeffer, A.; Beyer, A.; Eiberger, O.; Haddadin, S.; Stemmer, A.; Grunwald, G.; et al. The KUKA-DLR lightweight robot arm—A new reference platform for robotics research and manufacturing. In Proceedings of the 41st International Symposium on Robotics (ISR 2010) and 6th German Conference on Robotics (ROBOTIK 2010), Munich, Germany, 7–9 June 2010; pp. 1–8. [Google Scholar]
- Bianchi, M.; Valenza, G.; Greco, A.; Nardelli, M.; Battaglia, E.; Bicchi, A.; Scilingo, E.P. Towards a novel generation of haptic and robotic interfaces: Integrating affective physiology in human–robot interaction. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 125–131. [Google Scholar]
- Albu-Schaffer, A.; Haddadin, S.; Ott, C. The DLR lightweight robot: Design and control concepts for robots in human environments. Ind. Robot Int. J. 2007, 34, 376–385. [Google Scholar] [CrossRef]
- Haddadin, S.; Schaffer, A.A.; Hirzinger, G. Safety evaluation of physical human–robot interaction via crash testing. Robot. Sci. Syst. 2007, 3, 217–224. [Google Scholar]
- Pratt, G.; Williamson, M. Series Elastic Actuators. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA, 5–9 August 1995; Volume 1, pp. 399–406. [Google Scholar]
- Ogata, K. Modern Control Engineering, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009; pp. 793–806. [Google Scholar]
- Kirk, D. Optimal Control Theory: An Introduction; Courier Corporation: New York, NY, USA, 2012; pp. 209–227. [Google Scholar]
- Piltan, F.; Yarmahmoudi, M.; Shamsodini, M.; Mazlomian, E.; Hosainpour, A. PUMA-560 robot manipulator position computed torque control methods using Matlab/Simulink and their integration into graduate nonlinear control and Matlab courses. Int. J. Robot. Autom. 2012, 3, 167–191. [Google Scholar]
- Tonietti, G.; Schiavi, R.; Bicchi, A. Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 526–531. [Google Scholar]
- Schiavi, R.; Grioli, G.; Sen, S.; Bicchi, A. VSA-II: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena, CA, USA, 19–23 May 2008; pp. 2171–2176. [Google Scholar]
- Hurst, J.; Chestnutt, J.; Rizzi, A. The Actuator with Mechanically Adjustable Series Compliance. IEEE Trans. Robot. 2010, 26, 597–606. [Google Scholar] [CrossRef]
- Jafari, A.; Tsagarakis, N.; Vanderborght, B.; Caldwell, D. A novel actuator with adjustable stiffness (AwAS). In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 18–22 October 2010; pp. 4201–4206. [Google Scholar]
- Jafari, A.; Tsagarakis, N.; Caldwell, D. AwAS-II: A New Actuator with Adjustable Stiffness based on the Novel Principle of Adaptable Pivot point and Variable Lever ratio. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 4638–4643. [Google Scholar]
- Visser, L.C.; Carloni, R.; Stramigioli, S. Energy efficient variable stiffness actuators. IEEE Trans. Robot. 2011, 27, 865–875. [Google Scholar] [CrossRef]
- Fumagalli, M.; Barrett, E.; Stramigioli, S.; Carloni, R. The mVSA-UT: A miniaturized differential mechanism for a continuous rotational variable stiffness actuator. In Proceedings of the 2012 4th IEEE RAS&EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1943–1948. [Google Scholar]
- Groothuis, S.S.; Rusticelli, G.; Zucchelli, A.; Stramigioli, S.; Carloni, R. The Variable Stiffness Actuator vsaUT-II: Mechanical Design, Modeling, and Identification. IEEE/ASME Trans. Mechatron. 2014, 19, 589–597. [Google Scholar] [CrossRef]
- Awad, M.I.; Gan, D.; Cempini, M.; Cortese, M.; Vitiello, N.; Dias, J.; Dario, P.; Seneviratne, L. Modeling, Design and Characterization of A Novel Passive Variable Stiffness Joint (pVSJ). In Proceedings of the IEEE International Conference of Intelligent Robotics & Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 323–329. [Google Scholar]
- Awad, M.I.; Gan, D.; Thattamparambil, J.; Az-zu’bi, A.; Stefanini, C.; Dias, J.; Seneviratne, L. Novel Passive Discrete Variable Stiffness Joint (pDVSJ): Modeling, Design, and Characterization. In Proceedings of the IEEE International Conference of Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 1808–1813. [Google Scholar]
- Mathijssen, G.; Lefeber, D.; Vanderborght, B. Variable Recruitment of Parallel Elastic Elements: Series–Parallel Elastic Actuators (SPEA) With Dephased Mutilated Gears. IEEE/ASME Trans. Mechatron. 2015, 20, 594–602. [Google Scholar] [CrossRef]
- Mathijssen, G.; Furnémont, R.; Beckers, S.; Verstraten, T.; Lefeber, D.; Vanderborght, B. Cylindrical cam mechanism for unlimited subsequent spring recruitment in Series-Parallel Elastic Actuators. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 857–862. [Google Scholar]
- Mathijssen, G.; Furnémont, R.; Verstraten, T.; Brackx, B.; Premec, J.; Jiménez, R.; Lefeber, D.; Vanderborght, B. +SPEA introduction: Drastic actuator energy requirement reduction by symbiosis of parallel motors, springs and locking mechanisms. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 676–681. [Google Scholar]
- Awad, M.I.; Gan, D.; Hussain, I.; Az-zu’bi, A.; Stefanini, C.; Khalaf, K.; Zweiri, Y.; Taha, T.; Dias, J.; Seneviratne, L. Design of A Novel Passive Binary-Controlled Variable Stiffness Joint (BpVSJ) Towards Passive Haptic Interface Application. IEEE Access 2018, 6, 63045–63057. [Google Scholar] [CrossRef]
- Awad, M.I.; Hussain, I.; Gan, D.; Az-zu’bi, A.; Stefanini, C.; Khalaf, K.; Zweiri, Y.; Taha, T.; Dias, J.; Seneviratne, L. Passive Discrete Variable Stiffness Joint (pDVSJ-II): Modeling, Design, Characterization and Testing Towards Passive Haptic Interface. ASME. J. Mech. Robot. 2018, 11, 011005. [Google Scholar] [CrossRef]
- Hussain, I.; Albalasie, A.; Awad, M.I.; Gan, D.; Seneviratne, L. Modeling, Multiple Model Predictive Control and Numerical Simulations of a Novel Binary-Controlled Variable Stiffness Actuator (BcVSA). Front. Robot. AI 2018, 5, 68. [Google Scholar] [CrossRef]
- Rao, S. Mechanical Vibrations, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2011; pp. 164–166. [Google Scholar]
- Magalas, L.; Malinowski, T. Measurement techniques of the logarithmic decrement. Solid State Phenom. 2003, 89, 247–260. [Google Scholar] [CrossRef]
- Aribowo, W.; Yamashita, T.; Terashima, K.; Masui, Y.; Saeki, T.; Kamigaki, T.; Kawamura, H. Vibration control of semiconductor wafer transfer robot by building an integrated tool of parameter identification and input shaping. IFAC Proc. 2011, 44, 14367–14373. [Google Scholar] [CrossRef]
- Tsetserukou, D.; Kawakami, N.; Tachi, S. Vibration damping control of robot arm intended for service application in human environment. In Proceedings of the 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea, 1–3 December 2008; pp. 441–446. [Google Scholar]
- Park, J.; Kim, K. Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control. In Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, 20–20 May 1998; Volume 4, pp. 3528–3533. [Google Scholar]
- Lammerts, I. Adaptive Computed Reference Computed Torque Control of Flexible Manipulators; Eindhoven University of Technology: Eindhoven, The Netherlands, 1993. [Google Scholar]
- Spong, M. Partial feedback linearization of underactuated mechanical systems. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94), Munich, Germany, 12–16 September 1994; Volume 1. [Google Scholar]
Stiffness Bit 22 (4K0) | Stiffness Bit 21 (2K0) | Stiffness Bit 20 (K0) | Stiffness Level |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 1 | K0 |
0 | 1 | 0 | 2 K0 |
0 | 1 | 1 | 3 K0 |
1 | 0 | 0 | 4 K0 |
1 | 0 | 1 | 5 K0 |
1 | 1 | 0 | 6 K0 |
No. | Stiffness Bit 22 (4K0) | Stiffness Bit 21 (2K0) | Stiffness Bit 20 (K0) | ||
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0.3938 | 0.1075 |
2 | 0 | 0 | 1 | 0.3584 | 0.1160 |
3 | 0 | 1 | 0 | 0.1986 | 0.0445 |
4 | 0 | 1 | 1 | 0.1562 | 0.0451 |
5 | 1 | 0 | 0 | 0.2444 | 0.1348 |
6 | 1 | 0 | 1 | 0.0278 | 0.0235 |
7 | 1 | 1 | 0 | 0.0111 | 0.0035 |
No. | Stiffness Bit 22 (4K0) | Stiffness Bit 21 (2K0) | Stiffness Bit 20 (K0) | ||
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0.0098 | 0.0853 |
2 | 0 | 0 | 1 | 0.5582 | 0.2997 |
3 | 0 | 1 | 0 | 0.1269 | 0.1097 |
4 | 0 | 1 | 1 | 0.2821 | 0.1274 |
5 | 1 | 0 | 0 | 0.4679 | 0.2155 |
6 | 1 | 0 | 1 | 0.3062 | 0.1494 |
7 | 1 | 1 | 0 | 0.2116 | 0.1056 |
Clutches Status | The Mean of the Consumed Power [W] | The Energy Consumption [J] | ||||
---|---|---|---|---|---|---|
2DOFs | 2DOF | |||||
5.2.1 All Clutches are Active () the Entire Time (LQR) | 0.96 | 0.63 | 1.59 | 2.90 | 1.90 | 4.8 |
5.2.2 Altering the Clutches’ Status while the System is Running At Different Time Intervals (LQR) | 0.82 | 0.52 | 1.34 | 2.47 | 1.55 | 4.02 |
5.3.1 All Clutches are Active () the Entire Time (CTC) | 0.77 | 0.96 | 1.73 | 2.32 | 2.88 | 5.2 |
5.3.2 Altering the Clutches Status at Different Time Intervals while The System is Running (CTC) | 0.63 | 0.80 | 1.43 | 1.88 | 2.40 | 4.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, I.; Albalasie, A.; Awad, M.I.; Gan, D. Modeling, Identification, and Control of a Discrete Variable Stiffness Actuator (DVSA). Actuators 2019, 8, 50. https://doi.org/10.3390/act8030050
Hussain I, Albalasie A, Awad MI, Gan D. Modeling, Identification, and Control of a Discrete Variable Stiffness Actuator (DVSA). Actuators. 2019; 8(3):50. https://doi.org/10.3390/act8030050
Chicago/Turabian StyleHussain, Irfan, Ahmad Albalasie, Mohammad I. Awad, and Dongming Gan. 2019. "Modeling, Identification, and Control of a Discrete Variable Stiffness Actuator (DVSA)" Actuators 8, no. 3: 50. https://doi.org/10.3390/act8030050
APA StyleHussain, I., Albalasie, A., Awad, M. I., & Gan, D. (2019). Modeling, Identification, and Control of a Discrete Variable Stiffness Actuator (DVSA). Actuators, 8(3), 50. https://doi.org/10.3390/act8030050