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Abstract: A self-bearing motor (SBM) is an electric motor with a magnetically integrated bearing
function, that is, it can provide levitation and rotation simultaneously as a single actuator. This paper
presents the design, operating principle and control system for the slotless self-bearing motor (SSBM).
In this design, the stator has no iron core but includes six-phase coils. The rotor consists of a permanent
magnet and an enclosed iron yoke. Magnetic forces generated by the interaction between stator
currents and the magnetic field of the permanent magnet are used to control the rotational speed
and radial position of the rotor. In this paper, the torque and radial bearing forces are analyzed
theoretically with the aim to develop an improved control system. In order to confirm the proposed
control method, an experimental system was constructed and tested. Simulation and measurement
results show that the SSBM can work stably in modes such as start, reverse, rotation load and external
radial pulse forces.
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1. Introduction

Recently, the magnetic bearing motor, with its non-contact levitating capability, has been of more
and more interest to many researchers, thanks to its advantages such as no friction loss, no abrasion
and lubrication-free operation. Conventional magnetic bearing motors (Figure 1) usually consist of a
rotary motor, two radial magnetic bearings to stabilize the rotor in the horizontal direction, and an
axial magnetic bearing to keep the rotor stable in the axial direction. Obviously, with this structure,
the magnetic bearing motor is large, heavy, suffers high losses and is difficult to apply for devices with
the limited space [1–3].
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Abstract: A self-bearing motor (SBM) is an electric motor with a magnetically integrated bearing 
function, that is, it can provide levitation and rotation simultaneously as a single actuator. This 
paper presents the design, operating principle and control system for the slotless self-bearing motor 
(SSBM). In this design, the stator has no iron core but includes six-phase coils. The rotor consists of 
a permanent magnet and an enclosed iron yoke. Magnetic forces generated by the interaction 
between stator currents and the magnetic field of the permanent magnet are used to control the 
rotational speed and radial position of the rotor. In this paper, the torque and radial bearing forces 
are analyzed theoretically with the aim to develop an improved control system. In order to confirm 
the proposed control method, an experimental system was constructed and tested. Simulation and 
measurement results show that the SSBM can work stably in modes such as start, reverse, rotation 
load and external radial pulse forces. 
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1. Introduction 

Recently, the magnetic bearing motor, with its non-contact levitating capability, has been of 
more and more interest to many researchers, thanks to its advantages such as no friction loss, no 
abrasion and lubrication-free operation. Conventional magnetic bearing motors (Figure 1) usually 
consist of a rotary motor, two radial magnetic bearings to stabilize the rotor in the horizontal 
direction, and an axial magnetic bearing to keep the rotor stable in the axial direction. Obviously, 
with this structure, the magnetic bearing motor is large, heavy, suffers high losses and is difficult to 
apply for devices with the limited space [1–3]. 

 
Figure 1. Structure of conventional magnetic bearing motor. Figure 1. Structure of conventional magnetic bearing motor.
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During recent years, studies have focused on reducing the size and the loss of magnetic bearing
motors. One of the solutions that has drawn a lot of attention is the combination of the axial magnetic
bearing to the motor [4–6]. An axial magnetic bearing is composed of a rotary disc fixed on a rotary shaft
and electromagnets arranged on both sides of the rotary disc with a small enough gap. This structure is
similar to that of the axial flux alternating current (AC) motor. Consequently, the axial gap self-bearing
motor (AGBM) was introduced, as shown in Figure 2. The AGBM is an electrical combination of
an axial flux motor and an axial magnetic bearing, which is simpler in structure and control than a
conventional magnetic-bearing motor, since the hardware components can be reduced. However, the
AGBM has lower torque density and higher material cost than the radial flux motor [7].
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Another solution is combining the radial magnetic bearing with the motor, as illustrated in
Figure 3 [8–10]. With the large power range, this method of combination has many advantages, such
as high stability, reliability and efficiency. However, in a small power range, the requirements for
increasing the power density and reducing losses are hard work because of the complexity in structure
and control.
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In order to overcome this drawback, the slotless, bearingless motors, which still assure the ability
to generate rotation and radial movement, have been introduced recently [11,12]. These kinds of motor
use toroidal iron cores, and the cooper coils are wound around the stator. By supplying a sufficient
amount of the torque and bearing currents, the motor can generate force and torque simultaneously.
Obviously, this structure is simpler and the motor has good passive bearing stiffness. However, the
enhancement of higher efficiency is still limited because of the stator’s iron core.

Recently, miniaturized brush and brushless ironless direct current (DC) motors have been
developed [13,14]. Some examples of this motor type are available on the market (MOONS, ThinGap,
Maxon). Compared to the conventional iron-core motors, the coreless types have no iron losses
and acceptable thermal dissipation, which makes them extremely efficient. In addition, their linear
behavior fits well with simple drive circuits. Based on the structure of the brushless ironless DC
motors, a new type of slotless self-bearing motor (Figure 4) has been proposed [15,16]. By rationally
arranging the stator windings and by using of superposition principle, the currents in the coil interact
with magnetic field of the rotor’s permanent magnet to create torque and bearing force simultaneously.
This combination makes the self-bearing motor size smaller and increases the power density, as well as
performance, of the self-bearing motor. Simple open and closed-loop torque control methods have
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been implemented. The experimental results illustrate some characteristics of the motor. However,
these control structures are simple and not suitable for modern AC motor drives, as they lead to poor
dynamic and high displacement error.

Actuators 2019, 8, x 3 of 16 

density, as well as performance, of the self-bearing motor. Simple open and closed-loop torque 
control methods have been implemented. The experimental results illustrate some characteristics of 
the motor. However, these control structures are simple and not suitable for modern AC motor 
drives, as they lead to poor dynamic and high displacement error. 

 
Figure 4. Structure of the slotless self-bearing motor. 

Based on d-q axis current control of a bearingless motor [17,18], this paper presents 
improvements to the control system for the slotless self-bearing motor (SSBM), especially in updating 
the control structure and a suitable design method for position and speed controller. Moreover, in 
this manuscript, the calculation of torque and force is presented more clearly and in more detail. The 
design of speed and position controller by using the pole placement method is also presented to 
improve the performance of the SSBM. Additionally, the proposed control method and a simple 
experimental system have been tested. 

2. Design of the Control System for the SSBM 

2.1. Introduction of the SSBM 

The configuration of the SSBM is illustrated in Figure 4. The rotor consists of a shaft, a cylindrical 
two-pole permanent magnet, a back yoke, and one part to fix them together. The air gap between the 
permanent magnet and iron yoke is invariable, to make sure that the unstable attractive force of the 
permanent magnet becomes zero. In addition, the iron yoke has a great effect on reducing energy 
loss. The stator consists of a six-phase distributed winding without an iron core, and is inserted 
between the permanent magnet and the yoke of the rotor.  

The operating principle of the SSBM is shown in Figure 5. To makes it simple, the number of 
turns of the stator winding is illustrated as one circle, which indicates the direction of current. When 
the currents are applied to the stator coils, as shown in Figure 5a, a bearing force is generated.  On 
the other hand, when the currents are supplied to the stator coils as shown in Figure 5b, a torque is 
generated on the rotor as a reaction force. By supplying both kinds of current as shown in Figure 5c, 
the torque and bearing force are generated simultaneously.  

 
Figure 5. Generation of bearing force and rotating torque. 

Figure 4. Structure of the slotless self-bearing motor.

Based on d-q axis current control of a bearingless motor [17,18], this paper presents improvements
to the control system for the slotless self-bearing motor (SSBM), especially in updating the control
structure and a suitable design method for position and speed controller. Moreover, in this manuscript,
the calculation of torque and force is presented more clearly and in more detail. The design of speed and
position controller by using the pole placement method is also presented to improve the performance
of the SSBM. Additionally, the proposed control method and a simple experimental system have
been tested.

2. Design of the Control System for the SSBM

2.1. Introduction of the SSBM

The configuration of the SSBM is illustrated in Figure 4. The rotor consists of a shaft, a cylindrical
two-pole permanent magnet, a back yoke, and one part to fix them together. The air gap between the
permanent magnet and iron yoke is invariable, to make sure that the unstable attractive force of the
permanent magnet becomes zero. In addition, the iron yoke has a great effect on reducing energy loss.
The stator consists of a six-phase distributed winding without an iron core, and is inserted between the
permanent magnet and the yoke of the rotor.

The operating principle of the SSBM is shown in Figure 5. To makes it simple, the number
of turns of the stator winding is illustrated as one circle, which indicates the direction of current.
When the currents are applied to the stator coils, as shown in Figure 5a, a bearing force is generated.
On the other hand, when the currents are supplied to the stator coils as shown in Figure 5b, a torque is
generated on the rotor as a reaction force. By supplying both kinds of current as shown in Figure 5c,
the torque and bearing force are generated simultaneously.
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2.2. Calculation of Bearing Force and Torque

Figure 6 describes the coordinate axis used for the analysis of the bearing force and torque.
Figure 6a presents the section perpendicular to the SSBM shaft, while the development along the
circumference of the stator winding is shown in Figure 6b. The 6-phase coil is evenly distributed
around the coordinate axis, a-phase symmetry with d-phase through the origin coordinate, b-phase
symmetry with e-phase and c-phase symmetry with f -phase, respectively. The stator windings are
wound according to a hexagonal frame. Hence, it can be divided into two parts: one is the parallel
part, that is, parallel to the axial direction; the other comprises the top and the bottom parts of the
winding, called the serial part.
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The angular positions of the parallel part are expressed as follows:

phase k

 θk
+phase = θ0 +

k−1
3n π+ 2m

6 π

θk
−phase = θ0 +

k−1
3n π+ 2m+3

6 π
(1)

where m is the coefficient corresponding to each phase, a-phase: m = 0 and f -phase: m = 5, k is the turn
number, n is the total number of turns, and θ0 is the angular position of the +a-phase winding. n must
be an odd number so that the wires will not overlap.

For simplicity, it is assumed that the magnetic field generated by the current is much smaller than
that generated by the permanent magnet of the rotor, which means that the magnetic field in the air
gap is distributed according to the sinusoidal rule and calculated as follows:

Bg(θ) = B cos(θ−ψ) (2)

where B is the amplitude of the magnetic flux density, and ψ is the angular position of the rotor.
The analysis only considers the pair of forces caused by two symmetric phases a and d. The bearing

force has an additional symbol “f ” above to distinguish it from the motor torque with the symbol
“T” above.

2.2.1. Bearing Force

In order to generate the bearing force and balance the rotor, the reaction force generated by the
current of two symmetrical phases must have the same direction and amplitude, as shown in Figure 7.
Hence, the bearing current of two symmetrical phases must be in the same direction and amplitude.

In general, the Lorentz force for a wire loop is calculated as:

fp,±phase = ∓Bg(θ±phase)iphasel (3)
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where l is the length of the impacted wire. The amplitudes of the Lorentz force of each phase are
calculated as:  F f

+a = F f
+d =

∣∣∣∣Bli f
a cos(θ0 −ψ)

∣∣∣∣
F f
−a = F f

−d =
∣∣∣∣Bli f

a sin(θ0 −ψ)
∣∣∣∣ (4)

where i f
a is the current component which generates the bearing force of a-phase. Then, as shown in

Figure 7, the total amplitude of the Lorentz force for symmetrical phase a-d is calculated as:

Fa =
√

F2
+ad + F2

−ad =

√
(F f

+a + F f
+d)

2
+ (F f

−a + F f
−d)

2
= 2Bli f

a (5)

Correspondingly, the bearing forces generated by the remaining symmetrical phase are:

Fb = 2Bli f
b (6)

Fc = 2Bli f
c (7)

In order to balance the rotor, the total amplitude of the forces must be zero, so:

i f
a + i f

b + i f
c = 0 (8)

Hence, the bearing currents are expressed as:
i f
a,d = id cos(ψ) + iq sin(ψ)

i f
b,e = id cos(ψ− 2π/3) + iq sin(ψ− 2π/3)

i f
c, f = id cos(ψ− 4π/3) + iq sin(ψ− 4π/3)

(9)

here, id is the direct axis current and iq is the quadrate axis current.
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2.2.2. Torque

To create the motor torque, the reaction forces generated by the currents of two symmetrical
phases must be in the opposite direction as shown in Figure 8. Hence, the torque currents of two
symmetrical phases must be in the opposite direction. The force couples: (FT

a − FT
d ) and (FT

−a − FT
−d)

have the same amplitude but opposite direction, thus from the Equation (3), a relating equation is
expressed as:  FT

+a = FT
+d =

∣∣∣BliTa cos(θ0 −ψ)
∣∣∣

FT
−a = FT

−d =
∣∣∣BliTa sin(θ0 −ψ)

∣∣∣ (10)
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The total torque is:
τa = BliTa

{
cos(θ0 −ψ) + sin(θ0 −ψ)

}
R (11)

where iTa is the current component which generates the torque of a-phase and R is the radius of the
rotor. Correspondingly, we have:

τb = BliTb

{
cos

(
θ0 +

π
3
−ψ

)
+ sin

(
θ0 +

π
3
−ψ

)}
R (12)

τc = BliTc
{
cos

(
θ0 +

2π
3
−ψ

)
+ sin

(
θ0 +

2π
3
−ψ

)}
R (13)

In order for the total force acting on the rotor not to be zero, the motor currents are expressed
as follows: 

iTa,d = ±Am cos(φm)

iTb,e = ±Am cos(φm + π/3)
iTc, f = ±Am cos(φm + 2π/3)

(14)

here, Am is the amplitude of the motor current, and φm is its phase. The total current stator is the
summation of Equations (8) and (14). Then, we have:

ia,d = id cos(ψ) + iq sin(ψ) ±Am cos(φm)

ib,e = id cos(ψ− 2π/3) + iq sin(ψ− 2π/3) ±Am cos(φm + π/3)
ic, f = id cos(ψ− 4π/3) + iq sin(ψ− 4π/3) ±Am cos(φm + 2π/3)

(15)

We combined the Equation (15) with the properties of the stator winding in order to calculate the
total force acting on the rotor and the generated torque.

• The parallel component lp

The bearing force is calculated as follows: fpx,±phase = − fp,±phase sin
(
θ±phase

)
fpy,±phase = − fp,±phase cos

(
θ±phase

) (16)

The motor torque becomes:
τp,±phase = r fp,±phase (17)
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here r is the radius of the winding. The total force and torque are derived from (3), (15), (16) and (17),
respectively. The results are expressed as:

τp = −3
√

2rlpBAm sin(φm −ψ+ θ0 + π/4)
fpx = 3lpB

{
id sin(2θ0) − iq cos(2θ0)

}
fpy = −3lpB

{
id cos(2θ0) + iq sin(2θ0)

} (18)

• The serial component lt:

The serial components are divided into small parts depending on the variable z. Following the
Figure 6, the angular position of the serial part can be expressed as follows: θt,+phase(z) = π

4lt
z + 2m

6 π+ θ0

θt,−phase(z) = − π
4lt

z + 2m+3
6 π+ θ0

(19)

where lt is the projection length of the serial part on the z-axis.
The Lorentz force of a small distance in this part is calculated as:

∆ ft,±phase = ∓Bg(θt,phase(z))iphase
∆z

sinα
(20)

where α is a wire angle with its horizontal axis passing through the serial part. As illustrated in
Figure 9, the α angle can be expressed as follows:

α = tan−1
θ+phase − θ−phase

2lp
r = tan−1 πr

4lp
(21)
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The Lorentz force in the serial part consists of two components in the axial direction, ∆ ftz, and
force in the radial direction, ∆ ftt. Each force is expressed as:

∆ ftz,±phase = ∆ ft,±phase cosα
∆ ftt,±phase = ∆ ft,±phase sinα

(22)

The force in the radial direction becomes:

∆ ftt,±phase = ∓Bg
(
θt,phase(z)

)
iphase∆z (23)
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and the torque generated by this part is calculated as:

τt,±phase =

lt∫
0

r ftt,±phase (24)

Then the total torque becomes:

τt = −
4rltBAm

π

(
6− 3

√

2
)

sin(φm −ψ+ θ0 + π/4) (25)

The bearing force of each phase is calculated as follows:
ftx,±phase = −

lt∫
0

ftt±phase sin
(
θt±phase(z)

)
fty,±phase = −

lt∫
0

ftt±phase cos
(
θt±phase(z)

) (26)

Hence, the total bearing force is: ftx = 6ltB
π

{
id sin(2θ0) − iq cos(2θ0)

}
fty = − 6ltB

π

{
id cos(2θ0) + iq sin(2θ0)

} (27)

While the turn part comprises two parts, the total torque and radial force become:
τ = kmAm sin(φm −ψ+ θ0 + π/4)
fx = −kb

{
id sin(2θ0) − iq cos(2θ0)

}
fy = kb

{
id cos(2θ0) + iq sin(2θ0)

} (28)

where:
km = −

(
3
√

2lp +
8(6−3

√
2)

π lt
)
rB

kb = −
(
3lp + 12

π lt
)
B

(29)

The rotating torque and radial forces in case of n turns are obtained as follows:
τ = knmkmAm sin(φm −ψ+ θ0 + π/4)
fx = −knbkb

{
id sin(2θ0) − iq cos(2θ0)

}
fy = knbkb

{
id cos(2θ0) + iq sin(2θ0)

} (30)

where knm and knb are calculated as:

knm = 1 + 2 cos
(
π
3n

)
+ 2 cos

(
2 π

3n

)
+ · · ·+ 2 cos

(
(n−1)

2
π
3n

)
knb = 1 + 2 cos

(
2 π

3n

)
+ 2 cos

(
4 π

3n

)
+ · · ·+ 2 cos

(
(n− 1) π3n

) (31)

From Equation (30), the mathematical model of the SSBM is completely constructed with force
and torque equations. It can be seen that these are simple linear equations. Thus, the control system
can be easily implemented with conventional controllers.
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2.3. Designing the Control System

2.3.1. Control Structure

When the angular position of the rotor can be obtained, the stator current can be calculated by
Equation (15), and then the force and torque can be calculated. θ0 is the angular position of the
+a-phase winding so if +a-phase coincides with x-axis then θ0 = 0. φm is the phase of the torque current
and depends on the control strategy. To conduct the clear control algorithm, we can assume that θ0 = 0
and φm = ψ+ π

4 or φm −ψ+ θ0 +
π
4 = π

2 , then the Equation (30) becomes:
τ = knmkmAm

Fx = knbkbiq
Fy = knbkbid

(32)

It is easy to see that the rotating torque is produced by Am and the bearing force is produced by id
and iq. Therefore, the rotating torque can be controlled by Am and the bearing force can be controlled
by id and iq. On the other hand, the two components force and torque are mathematically independent
from each other, thus, the control structure is introduced as shown in Figure 10. In this control structure
a proportional-integral (PI) controller is used for the speed control, while the displacement position
controller is a proportional-integral-derivative (PID).
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2.3.2. Designing Speed and Position Controller

Setting: KT = knmkm and K f x = K f y = knbkb, the Equation (32) becomes:
τ = KTAm

Fx = K f xiq
Fy = K f yid

(33)

The dynamic equation of the rotor is:

τ− Tl = J
dω
dt

(34)

F− Fl = Ma (35)

where M is the weight of the rotor, a is the acceleration of the rotor, Tl is the load torque and Fl is the
load force.

From Equations (33)–(35), the transfer function models can be set up as shown in Figures 11 and 12.
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(a) Designing Position Controller

From the model in Figure 11, setting:

K f =
K f x

m
=

K f y

m
(36)

The PID controller transfer function is expressed as:

kP

(
1 +

1
TIs

+ TDs
)

(37)

Then, the transfer function of close-loop is:

Gk(s) =
R(s)S(s)

1 + R(s)S(s)
=

K f kPTDTIs2 + K f kPTIs + K f kP

TIs3 + K f kPTDTIs2 + K f kPTIs + K f kP
=

B(s)
A(s)

(38)

The system becomes stable only when all the constant coefficients of the polynomial function
have the same sign, that is, they satisfy the condition:{

TI > 0, K f kPTD > 0, K f kP > 0
K f kPTITD > 1

(39)

To determine the PID parameters, the pole-placement method will be used. The order of
polynomial function is 3, so the poles should be chosen as s1 = s2 = s3 = s0. Then, the polynomial
function becomes:

(s + s0)
3 = s3 + 3s0s2 + 3s2

0s + s3
0 (40)

From Equations (38) and (40), we have:

A(s) = s3 + K f kPTDs2 + K f kPs +
K f kP

TI
(41)

Hence, the PID parameters are calculated as:

kP =
3s2

0

K f
, TI =

3
s0

, TD =
1
s0

(42)

where:
s0 > 0 , s0 ∈ R (43)
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The condition in Equation (43) determines the stability of the system, so the greater the value of
s0, the smaller the stability time and the better the quality of the system. However, the system needs to
be provided with an extremely large energy. In fact, it is necessary to choose the optimal poles that suit
the limit energy source. Meaning that the pole can only be selected for a finite value.

(b) Designing Speed Controller

From the models in Figure 11, setting:

KTω =
KT

J
(44)

Similar to the position controller, the pole-placement method is also used to determine the PI
parameters. The PI controller transfer function is expressed as:

kPω

(
1 +

1
TIωs

)
(45)

Then, the transfer function of close-loop is:

Gk(s) =
R(s)S(s)

1 + R(s)S(s)
=

KTωkPωTIωs + KTωkPω

TIs2 + KTωkPωTIωs + KTωkPω
=

B(s)
A(s)

(46)

The polynomial function has the form:

(s + s0ω)
2 = s2 + 2s0ωs + s2

0ω (47)

From Equations (46) and (47), we have:

A(s) = TIs2 + KTωkPωTIωs + KTωkPω (48)

The PI parameters are calculated as:

kPω =
2s0ω

KTω
, TIω =

2
s0ω

(49)

Similar to the position control design, it is important to choose s0ω which is suitable for the limit
energy source and working ability of the system.

3. Simulation and Experimental Results

3.1. Control Hardware

To confirm the abovementioned control method, an experimental system was set up, as shown in
Figure 13. It included a PC, a dSPACE DS1104 board, a Sentec’s displacement sensor, a power amplifier
and a slotless self-bearing motor attached to a rotary encoder (Figure 13). In this paper, only rotational
motion along the z-axis and the horizontal translations along x and y axes of the rotor were considered;
that is, the axial translation along z axis was mechanically constrained. The permanent magnet of the
rotor had a diameter of 22 mm. The magnetic flux density was sinusoidal, and its maximum amplitude
was approximately 0.59 T. The copper wire had a diameter of 27 mm and the number of turns was 55.
The length of the parallel part lp was 8 mm and the length of the serial part was 6 mm, respectively.
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The control system used a dSPACE DS1104 board dedicated to the control of electrical drives. It included
pulse width modulation (PWM) units, general purpose input/output units (eight analog-to-digital converters
(ADC) and eight digital-to-analog converters (DAC)), and an encoder interface. The DS1104 read the
displacement signals from the displacement sensors via the ADC, and the rotor angle position and speed
from the encoder via an encoder interface. The DS1104 calculated the stator reference currents and sent its
commands to the power amplifier through a DAC. The current source amplifier was used to supply the
stator current. When the starting current was limited to 1 A, for the speed control, the pole value s0ω = 5
was chosen and the controllers’ coefficients were: kPω = −0.0228, TIω = 0.4 and for position control the
PID controllers’ coefficients were kP = −1167, TI = 0.0857, TD = 0.0268 when the pole value s0 = 35
was chosen.

3.2. Simulation Results

In order to confirm the proposed control method, the simulation model of the SSBM drives was
implemented on Matlab/Simulink. Figure 14a shows the radial displacements of the rotor in x,y
directions and the currents id,iq respectively when the motor has no load. The original displacement
error was set up x = 0.13 mm and y = 0.59 mm, then when the position controller started to work, the
displacements jumped to zero after about 0.1 s. Figure 14b illustrates the displacements and the speed
under no-load conditions when the position controller was working. The rotor speed reached 4500 rpm
after about 1.1 s and during the acceleration, therefore, there was no influence on the displacements.

Figure 15 shows the influence of the external impulse force when the motor is rotating. When the
rotor speed was 4000 rpm, there were external impulse forces (Flx = 1 N, Fly = 0.3 N) acting on the rotor
in the horizontal direction at the time of 3 s. At this time, displacement errors occurred, but quickly
returned to zero and the rotor speed was not changed. Obviously, there was no influence between
radial position and speed.

Figure 16 shows the change in the rotating speed and torque current (Am) at the start and reverse
when the motor had load (Tl = 0.02 Nm). The starting current was limited to 1 A. The speed reached
2000 rpm after 0.9 s and the rotating direction was changed after about 1.4 s.
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3.3. Experimental Results

First, the position controller was tested. Figure 17a shows the displacement responses of the rotor
while the motor speed was 0 rpm and Figure 17b shows the currents id, iq, respectively. The original
displacement errors were set up x = 0.13 mm and y = 0.59 mm, then when the position controller
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started to work, the displacements jumped to zero after about 0.1 s. At this time, the shaft of the rotor
aligned with the origin coordinates.
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Figure 20 presents the trajectories of the rotor motion at 2000 rpm, 4000 rpm and 4500 rpm.
In all cases, the maximum amplitude of vibration was about 0.1 mm, and the rotor rotated stably.
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Next, the acceleration of speed was tested. Figure 21a shows the change in the rotating speed
at the start and reverse when the motor had load. Figure 21b describes the respective current Am.
The starting current was limited to 1 A. The loaded speed reached 2000 rpm after 1 s and the rotating
direction was changed after about 1.4 s.

The results confirm that the proposed control system for the SSBM has the capability to control
both the radial position and the rotor speed using PID and PI controller, and that the SSBM works
stably in modes such as start, reverse, rotation load and external radial pulse forces.
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4. Conclusions

The SSBM is a potential product for the specialized motor manufacturing industry, which requires
high performance, large power density and simple structures. This paper analyzed the operating
principle and the calculation method of torque and bearing forces for the SSBM. In addition, the analysis
and design of controllers for rotating speed and radial position were also presented in more detail.
The experimental results showed that the rotating speed and rotor position are controllable and the
SSBM could operate stably using the proposed control method.
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Nomenclature

Symbol Unit Description
ψ Rad The angular position of the rotor
θ Rad The angular around origin coordinate
θ0 Rad The angular position of the +a-phase winding
τ Nm The total torque of the motor

F f
+a, F f

+d, F f
−a, F f

−d
N The amplitude of bearing force of +a, +d, −a, −d phase

FT
+a, FT

+d, FT
−a, FT

−d N The amplitude of torque force of +a, +d, −a, −d phase
Fa, Fb, Fc N The total forces acting on the rotor by two symmetrical phases a and d, b and e, c and f, respective

i f
a ,i f

b ,i f
c A The bearing currents of a-phase, b-phase and c-phase

id,iq A The amplitude of direct axis bearing current and the quadrate axis bearing current
iTa ,iTb ,iTc A The torque currents of a-phase, b-phase and c-phase
Am A The amplitude of the torque current
τa, τb, τc Nm The total torque generated by two symmetrical phases a and d, b and e, c and f, respective
φm Rad The phase of the torque current
lp,lt m The parallel component and the serial component of the winding
km, knm current-torque coefficients
kb, knb current-force coefficients
M Kg Weight of the rotor
R m The radius of the rotor
r m The radius of the winding
a m/s2 The acceleration of the rotor
Fx, Fy N Bearing forces on the x-axis and y-axis
Fl, Flx, Fly N Load Forces
Tl Nm Load Torque
kPω,TIω PI controllers’ coefficients
kP,TI,TD PID controllers’ coefficients
s0 Pole point of the position controller
s0ω Pole point of the speed controller
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