A Focus on Soft Actuation
Abstract
:1. Introduction
2. Results and Discussion
- Theory: theoretical work, including calculations, modelling and computer simulations;
- Materials: chemical synthesis and/or material development;
- Design: design of an actuator or actuation system;
- Manufacturing: fabrication/manufacturing of an actuator or an entire robot with an actuator;
- Demonstration: demonstration of an actuator prototype in one or several actuation scenarios and/or as a part of a robot.
3. Conclusions
4. Methods
Conflicts of Interest
Appendix A
No | Reference | Title | Theory | Materials | Design | Manufacturing | Demonstration of Actuation | AI & Computation | Number of Actuation Cycles |
---|---|---|---|---|---|---|---|---|---|
1 | [2] | Shape Memory Polymer Composite Actuator: Modeling Approach for Preliminary Design and Validation | + | + | + | + | 1 | ||
2 | [8] | A Soft Master-Slave Robot Mimicking Octopus Arm Structure Using Thin Artificial Muscles and Wire Encoders | + | + | + | 1 | |||
3 | [3] | Mechanical Simplification of Variable-Stiffness Actuators Using Dielectric Elastomer Transducers | + | + | + | + | 3 | ||
4 | [9] | A Vacuum Powered Soft Textile-Based Clutch | + | + | + | 1 | |||
5 | [4] | Design of Soft Origami Mechanisms with Targeted Symmetries | + | + | 0 | ||||
6 | [5] | Force-Amplified Soft Electromagnetic Actuators | + | + | + | + | 1 | ||
7 | [6] | Directional Stiffness Control Through Geometric Patterning and Localized Heating of Field’s Metal Lattice Embedded in Silicone | + | + | + | 0 | |||
8 | [7] | Conductive Fabric Heaters for Heat-Activated Soft Actuators | + | + | + | + | 3 | ||
9 | [11] | Synthesis of solvent-free processable and on-demand cross-linkable dielectric elastomers for actuators | + | + | 1.8·105 | ||||
10 | [12] | A variable-stiffness tendril-like soft robot based on reversible osmotic actuation | + | + | + | + | 102 | ||
11 | [13] | Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3D Printing | + | + | + | 1 | |||
12 | [14] | Artificial Muscles: Dielectric Elastomers Responsive to Low Voltages | + | + | 5·104 | ||||
13 | [15] | Soft Haptic Actuator Based on Knitted PVC Gel Fabric | + | + | + | 0 | |||
14 | [16] | Fabrication and modeling of dielectric elastomer soft actuator with 3D printed thermoplastic frame | + | + | + | + | 1 | ||
15 | [17] | Multimaterial 3D Printed Soft Actuators Powered by Shape Memory Alloy Wires | + | + | + | + | 1 | ||
16 | [18] | Digital logic for soft devices | + | + | + | 1 | |||
17 | [19] | High-Performance Hierarchical Black-Phosphorous-Based Soft Electrochemical Actuators in Bioinspired Applications | + | + | + | + | 5·105 | ||
18 | [20] | Addressable, Stretchable Heating Silicone Sheets | + | + | + | + | 103 | ||
19 | [21] | Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper | + | + | + | + | 102 | ||
20 | [22] | Sensorized, Flat, Pneumatic Artificial Muscle Embedded with Biomimetic Microfluidic Sensors for Proprioceptive Feedback | + | + | + | 1 | |||
21 | [23] | Butterfly proboscis-inspired tight rolling tapered soft actuators | + | + | + | + | 1 | ||
22 | [24] | Kinematics and statics of eccentric soft bending actuators with external payloads | + | + | + | 0 | |||
23 | [25] | Photothermal Bimorph Actuators with In-Built Cooler for Light Mills, Frequency Switches, and Soft Robots | + | + | + | + | + | 104 | |
24 | [26] | A soft ring oscillator | + | + | + | + | 1.5·104 | ||
25 | [27] | Janus Soft Actuators with On–Off Switchable Behaviors for Controllable Manipulation Driven by Oil | + | + | + | + | 10 | ||
26 | [28] | Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae | + | + | + | + | 1 | ||
27 | [29] | Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields | + | + | + | 0 | |||
28 | [30] | A general soft robot module driven by twisted and coiled actuators | + | + | + | + | 1 | ||
29 | [31] | Selectively aligned cellulose nanofibers towards high-performance soft actuators | + | + | + | + | + | 1 | |
30 | [32] | Controllable kinematics of soft polymer actuators induced by interfacial patterning | + | + | + | 0 | |||
31 | [10] | Soft robot perception using embedded soft sensors and recurrent neural networks | + | + | + | 4·102 | |||
32 | [33] | Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuators | + | + | + | 0 | |||
33 | [34] | 3D-Printed Silicone Soft Architectures with Programmed Magneto-Capillary Reconfiguration | + | + | + | + | 1 | ||
34 | [35] | Harnessing the Day–Night Rhythm of Humidity and Sunlight into Mechanical Work Using Recyclable and Reprogrammable Soft Actuators | + | + | + | + | 1 | ||
35 | [36] | Durable liquid-crystalline vitrimer actuators | + | + | + | 5·102 | |||
36 | [37] | Sew-free anisotropic textile composites for rapid design and manufacturing of soft wearable robots | + | + | + | + | 1 | ||
37 | [38] | Transparent Soft Robots for Effective Camouflage | + | + | + | + | 1 | ||
38 | [39] | Design of physical user–robot interactions for model identification of soft actuators on exoskeleton robots | + | + | 1 | ||||
39 | [40] | Ultra-programmable buckling-driven soft cellular mechanisms | + | + | + | + | 1 | ||
40 | [41] | Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators | + | + | + | + | 2.5·101 | ||
41 | [42] | Ultrastrong and High-Stroke Wireless Soft Actuators through Liquid-Gas Phase Change | + | + | + | 4 | |||
42 | [43] | Performance enhancement of cellulose-based biocomposite ionic actuator by doping with MWCNT | + | + | 10 | ||||
43 | [44] | Efficiency of Origami-Based Vacuum Pneumatic Artificial Muscle for Off-Grid Operation | + | + | + | + | 1 | ||
44 | [45] | Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system | + | + | + | 5 | |||
45 | [46] | Deformable Ionic Polymer Artificial Mechanotransducer with an Interpenetrating Nanofibrillar Network | + | + | + | + | 3·104 | ||
46 | [47] | A Triboelectric Nanogenerator as a Self-Powered Sensor for a Soft–Rigid Hybrid Actuator | + | + | + | + | 3·102 | ||
47 | [48] | Mobile Liquid Gating Membrane System for Smart Piston and Valve Applications | + | + | + | 1 | |||
48 | [49] | Anisotropic and self-healing hydrogels with multi-responsive actuating capability | + | + | + | + | 1 | ||
49 | [50] | Thermo- and Photoresponsive Actuators with Freestanding Carbon Nitride Films | + | + | + | + | 5·101 | ||
50 | [51] | Large-Magnitude Transformable Liquid-Metal Composites | + | + | + | + | 2.4·101 | ||
51 | [52] | Multifunctional Soft Actuators Based on Anisotropic Paper/Polymer Bilayer Toward Bioinspired Applications | + | + | + | + | 103 | ||
52 | [53] | Bio-Inspired Soft Proboscis Actuator Driven by Dielectric Elastomer Fluid Transducers | + | + | + | 5 | |||
53 | [54] | Graphene-Based Bimorph Actuators with Dual-Response and Large-Deformation by a Simple Method | + | + | + | + | 102 | ||
54 | [55] | Electrically induced soft actuators based on thermoplastic polyurethane and their actuation performances including tiny force measurement | + | + | + | 10 | |||
55 | [56] | Programmable soft robotics based on nano-textured thermo-responsive actuators | + | + | + | + | 10 | ||
56 | [57] | A computationally efficient dynamical model of fluidic soft actuators and its experimental verification | + | + | + | 4 | |||
57 | [58] | Robotic Glove with Soft-Elastic Composite Actuators for Assisting Activities of Daily Living | + | + | + | + | 1 | ||
58 | [59] | An Easy-to-Implement Toolkit to Create Versatile and High-Performance HASEL Actuators for Untethered Soft Robots | + | + | + | + | 50 | ||
59 | [60] | Reachability Improvement of a Climbing Robot Based on Large Deformations Induced by Tri-Tube Soft Actuators | + | + | + | 1 | |||
60 | [61] | Modeling soft machines driven by buckling actuators | + | + | 0 | ||||
61 | [62] | A Fully Multi-Material Three-Dimensional Printed Soft Gripper with Variable Stiffness for Robust Grasping | + | + | + | 1 | |||
62 | [63] | 3D-Architected Soft Machines with Topologically Encoded Motion | + | + | + | + | 1 | ||
63 | [64] | Ionic Hydrogels with Biomimetic 4D-Printed Mechanical Gradients: Models for Soft-Bodied Aquatic Organisms | + | + | + | + | 1 | ||
64 | [65] | Soft Actuators with Stiffness and Shape Modulation Using 3D-Printed Conductive Polylactic Acid Material | + | + | + | + | 1 | ||
65 | [66] | 3D printing of structural gradient soft actuators by variation of bioinspired architectures | + | + | + | + | + | 0 | |
66 | [67] | Handedness-controlled and solvent-driven actuators with twisted fibers | + | + | + | + | 1 | ||
67 | [68] | Motion Simulation of Ionic Liquid Gel Soft Actuators Based on CPG Control | + | + | + | 0 | |||
68 | [69] | Design and Characterization of a Soft Robotic Therapeutic Glove for Rheumatoid Arthritis | + | + | + | 5 | |||
69 | [70] | Dynamic Morphological Computation Through Damping Design of Soft Continuum Robots | + | + | + | + | 1 | ||
70 | [71] | Pleated Film-Based Soft Twisting Actuator | + | + | + | 1 | |||
71 | [72] | Elastohydrodynamics of a pre-stretched finite elastic sheet lubricated by a thin viscous film with application to microfluidic soft actuators | + | + | 0 | ||||
72 | [73] | Multiple Inputs-Single Accumulated Output Mechanism for Soft Linear Actuators | + | + | + | + | 1 | ||
73 | [74] | Tough and electro-responsive hydrogel actuators with bidirectional bending behavior | + | + | + | + | 10 | ||
74 | [75] | Highly Dynamic Shape Memory Alloy Actuator for Fast Moving Soft Robots | + | + | + | 1.5·102 | |||
75 | [76] | Selective Decrosslinking in Liquid Crystal Polymer Actuators for Optical Reconfiguration of Origami and Light-Fueled Locomotion | + | + | + | + | 10 | ||
76 | [77] | Additive Manufacturing of Silicone Composites for Soft Actuation | + | + | + | + | 1 | ||
77 | [78] | The effect of gold electrode thicknesses on electromechanical performance of Nafion-based Ionic Polymer Metal Composite actuators | + | + | + | 1 | |||
78 | [79] | An Untethered Magnetic- and Light-Responsive Rotary Gripper: Shedding Light on Photoresponsive Liquid Crystal Actuators | + | + | + | + | 1 | ||
79 | [80] | Soft Somatosensitive Actuators via Embedded 3D Printing | + | + | + | + | 1.1·101 | ||
80 | [81] | Hydraulically amplified self-healing electrostatic actuators with muscle-like performance | + | + | + | + | 106 | ||
81 | [82] | 4D Printed Actuators with Soft-Robotic Functions | + | + | + | + | 1 | ||
82 | [83] | 3D printing of robotic soft actuators with programmable bioinspired architectures | + | + | + | + | + | 1.5·101 | |
83 | [84] | A soft, bistable valve for autonomous control of soft actuators | + | + | + | 105 | |||
84 | [85] | Biomimetic Color Changing Anisotropic Soft Actuators with Integrated Metal Nanowire Percolation Network Transparent Heaters for Soft Robotics | + | + | + | + | 104 | ||
85 | [86] | Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots | + | + | + | + | 6 | ||
86 | [87] | Rejuvenation of soft material–actuator | + | + | + | + | + | 10 | |
87 | [88] | Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators | + | + | + | + | 10 | ||
88 | [89] | 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order | + | + | + | + | 102 | ||
89 | [90] | Untethered soft robot capable of stable locomotion using soft electrostatic actuators | + | + | + | 5·101 | |||
90 | [91] | Functional properties of silicone/ethanol soft-actuator composites | + | + | + | + | 5·101 | ||
91 | [92] | All-soft material system for strong soft actuators | + | + | + | + | 1 | ||
92 | [93] | Miniature Soft Electromagnetic Actuators for Robotic Applications | + | + | + | + | 1 | ||
93 | [94] | Printing ferromagnetic domains for untethered fast-transforming soft materials | + | + | + | + | + | 1 | |
94 | [95] | Bioinspired Anisotropic Hydrogel Actuators with On-Off Switchable and Color-Tunable Fluorescence Behaviors | + | + | + | + | 10 | ||
95 | [96] | Programmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions | + | + | + | + | 1 | ||
96 | [97] | A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators | + | + | + | + | 1 | ||
97 | [98] | A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators | + | + | + | + | + | 10 | |
98 | [99] | Dielectric elastomer actuators with increased dielectric permittivity and low leakage current capable of suppressing electromechanical instability | + | + | 5·104 | ||||
99 | [100] | Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators | + | + | + | + | 1 | ||
100 | [101] | Stretchable composite monolayer electrodes for low voltage dielectric elastomer actuators | + | + | + | + | 10 |
Focus Area Combination | Amount of Works, % |
---|---|
Materials, Design, Manufacturing, Demonstration | 34 |
Theory, Design, Manufacturing, Demonstration | 22 |
Design, Manufacturing, Demonstration | 15 |
Theory, Materials, Design, Manufacturing, Demonstration | 7 |
Theory, Design, Demonstration | 4 |
Materials, Manufacturing, Demonstration | 3 |
Materials, Demonstration | 3 |
Materials, Design, Manufacturing | 2 |
Theory, Design | 2 |
Materials, Manufacturing | 2 |
Theory, Materials, Manufacturing, Demonstration | 1 |
Theory, Design, Manufacturing | 1 |
Theory, Manufacturing, Demonstration | 1 |
Theory, Materials, Design | 1 |
Theory, Manufacturing, AI | 1 |
Theory, Demonstration | 1 |
References
- Miriyev, A.; Stack, K.; Lipson, H. Soft material for soft actuators. Nat. Commun. 2017, 8, 596. [Google Scholar] [CrossRef]
- Ameduri, S.; Ciminello, M.; Concilio, A.; Quadrini, F.; Santo, L.; Ameduri, S.; Ciminello, M.; Concilio, A.; Quadrini, F.; Santo, L. Shape Memory Polymer Composite Actuator: Modeling Approach for Preliminary Design and Validation. Actuators 2019, 8, 51. [Google Scholar] [CrossRef]
- Allen, D.P.; Bolívar, E.; Farmer, S.; Voit, W.; Gregg, R.D.; Allen, D.P.; Bolívar, E.; Farmer, S.; Voit, W.; Gregg, R.D. Mechanical Simplification of Variable-Stiffness Actuators Using Dielectric Elastomer Transducers. Actuators 2019, 8, 44. [Google Scholar] [CrossRef]
- Gillman, A.; Wilson, G.; Fuchi, K.; Hartl, D.; Pankonien, A.; Buskohl, P.; Gillman, A.; Wilson, G.; Fuchi, K.; Hartl, D.; et al. Design of Soft Origami Mechanisms with Targeted Symmetries. Actuators 2018, 8, 3. [Google Scholar] [CrossRef]
- Doerger, S.; Harnett, C. Force-Amplified Soft Electromagnetic Actuators. Actuators 2018, 7, 76. [Google Scholar] [CrossRef]
- Allen, E.; Swensen, J.; Allen, E.A.; Swensen, J.P. Directional Stiffness Control Through Geometric Patterning and Localized Heating of Field’s Metal Lattice Embedded in Silicone. Actuators 2018, 7, 80. [Google Scholar] [CrossRef]
- Cartolano, M.; Xia, B.; Miriyev, A.; Lipson, H. Conductive Fabric Heaters for Heat-Activated Soft Actuators. Actuators 2019, 8, 9. [Google Scholar] [CrossRef]
- Furukawa, S.; Wakimoto, S.; Kanda, T.; Hagihara, H.; Furukawa, S.; Wakimoto, S.; Kanda, T.; Hagihara, H. A Soft Master-Slave Robot Mimicking Octopus Arm Structure Using Thin Artificial Muscles and Wire Encoders. Actuators 2019, 8, 40. [Google Scholar] [CrossRef]
- Sadeghi, A.; Mondini, A.; Mazzolai, B.; Sadeghi, A.; Mondini, A.; Mazzolai, B. A Vacuum Powered Soft Textile-Based Clutch. Actuators 2019, 8, 47. [Google Scholar] [CrossRef]
- Thuruthel, T.G.; Shih, B.; Laschi, C.; Tolley, M.T. Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 2019, 4, eaav1488. [Google Scholar] [CrossRef]
- Caspari, P.; Nüesch, F.A.; Opris, D.M. Synthesis of solvent-free processable and on-demand cross-linkable dielectric elastomers for actuators. J. Mater. Chem. C 2019, 7, 12139–12150. [Google Scholar] [CrossRef]
- Must, I.; Sinibaldi, E.; Mazzolai, B. A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nat. Commun. 2019, 10, 344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, N.; Hingorani, H.; Ding, N.; Wang, D.; Yuan, C.; Zhang, B.; Gu, G.; Ge, Q. Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3D Printing. Adv. Funct. Mater. 2019, 29, 1806698. [Google Scholar] [CrossRef]
- Sheima, Y.; Caspari, P.; Opris, D.M. Artificial Muscles: Dielectric Elastomers Responsive to Low Voltages. Macromol. Rapid Commun. 2019, 40, 1900205. [Google Scholar] [CrossRef]
- Park, W.-H.; Shin, E.-J.; Yoo, Y.; Choi, S.; Kim, S.-Y. Soft Haptic Actuator Based on Knitted PVC Gel Fabric. IEEE Trans. Ind. Electron. 2019, 67, 677–685. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, M.; Cao, X.; Zhang, Z.; Chen, X.; Xiao, Y.; Liang, Y.; Wong, T.-W.; Li, T.; Xu, Z. Fabrication and modeling of dielectric elastomer soft actuator with 3D printed thermoplastic frame. Sens. Actuators A Phys. 2019, 292, 112–120. [Google Scholar] [CrossRef]
- Akbari, S.; Sakhaei, A.H.; Panjwani, S.; Kowsari, K.; Serjouei, A.; Ge, Q. Multimaterial 3D Printed Soft Actuators Powered by Shape Memory Alloy Wires. Sens. Actuators A Phys. 2019, 290, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Preston, D.J.; Rothemund, P.; Jiang, H.J.; Nemitz, M.P.; Rawson, J.; Suo, Z.; Whitesides, G.M. Digital logic for soft devices. Proc. Natl. Acad. Sci. USA 2019, 116, 7750–7759. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Wu, X.; Xu, Y.; Cheng, H.; Meng, J.; Yu, Q.; Shi, X.; Zhang, K.; Chen, W.; Chen, S. High-Performance Hierarchical Black-Phosphorous-Based Soft Electrochemical Actuators in Bioinspired Applications. Adv. Mater. 2019, 31, 1806492. [Google Scholar] [CrossRef]
- Bilodeau, R.A.; Yuen, M.C.; Kramer-Bottiglio, R. Addressable, Stretchable Heating Silicone Sheets. Adv. Mater. Technol. 2019, 4, 1900276. [Google Scholar] [CrossRef]
- Lee, J.-H.; Chung, Y.S.; Rodrigue, H. Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper. Sci. Rep. 2019, 9, 11251. [Google Scholar] [CrossRef]
- Wirekoh, J.; Valle, L.; Pol, N.; Park, Y.-L. Sensorized, Flat, Pneumatic Artificial Muscle Embedded with Biomimetic Microfluidic Sensors for Proprioceptive Feedback. Soft Robot. 2019. [Google Scholar] [CrossRef]
- Sol, J.A.H.P.; Peeketi, A.R.; Vyas, N.; Schenning, A.P.H.J.; Annabattula, R.K.; Debije, M.G. Butterfly proboscis-inspired tight rolling tapered soft actuators. Chem. Commun. 2019, 55, 1726–1729. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Kang, R.; Branson, D.T.; Chen, L.; Dai, J.S. Kinematics and statics of eccentric soft bending actuators with external payloads. Mech. Mach. Theory 2019, 139, 526–541. [Google Scholar] [CrossRef]
- Li, J.; Zhang, R.; Mou, L.; Jung de Andrade, M.; Hu, X.; Yu, K.; Sun, J.; Jia, T.; Dou, Y.; Chen, H.; et al. Photothermal Bimorph Actuators with In-Built Cooler for Light Mills, Frequency Switches, and Soft Robots. Adv. Funct. Mater. 2019, 29, 1808995. [Google Scholar] [CrossRef]
- Preston, D.J.; Jiang, H.J.; Sanchez, V.; Rothemund, P.; Rawson, J.; Nemitz, M.P.; Lee, W.-K.; Suo, Z.; Walsh, C.J.; Whitesides, G.M. A soft ring oscillator. Sci. Robot. 2019, 4, eaaw5496. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Y.; Jiang, H.; Xue, J.; Yu, Z.; Li, S.; Han, Z.; Ren, L. Janus Soft Actuators with On–Off Switchable Behaviors for Controllable Manipulation Driven by Oil. ACS Appl. Mater. Interfaces 2019, 11, 13742–13751. [Google Scholar] [CrossRef]
- Kim, S.Y.; Baines, R.; Booth, J.; Vasios, N.; Bertoldi, K.; Kramer-Bottiglio, R. Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae. Nat. Commun. 2019, 10, 3464. [Google Scholar] [CrossRef]
- Chen, F.; Liu, K.; Wang, Y.; Zou, J.; Gu, G.; Zhu, X. Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields. IEEE Trans. Robot. 2019, 35, 1150–1165. [Google Scholar] [CrossRef]
- Tang, X.; Li, K.; Liu, Y.; Zhou, D.; Zhao, J. A general soft robot module driven by twisted and coiled actuators. Smart Mater. Struct. 2019, 28, 035019. [Google Scholar] [CrossRef]
- Kuang, Y.; Chen, C.; Cheng, J.; Pastel, G.; Li, T.; Song, J.; Jiang, F.; Li, Y.; Zhang, Y.; Jang, S.-H.; et al. Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extrem. Mech. Lett. 2019, 29, 100463. [Google Scholar] [CrossRef]
- Tan, H.; Liang, S.; Yu, X.; Song, X.; Huang, W.; Zhang, L. Controllable kinematics of soft polymer actuators induced by interfacial patterning. J. Mater. Chem. C 2019, 7, 5410–5417. [Google Scholar] [CrossRef]
- Correia, D.M.; Barbosa, J.C.; Costa, C.M.; Reis, P.M.; Esperança, J.M.S.S.; De Zea Bermudez, V.; Lanceros-Méndez, S. Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuators. J. Phys. Chem. C 2019, 123, 12744–12752. [Google Scholar] [CrossRef]
- Roh, S.; Okello, L.B.; Golbasi, N.; Hankwitz, J.P.; Liu, J.A.-C.; Tracy, J.B.; Velev, O.D. 3D-Printed Silicone Soft Architectures with Programmed Magneto-Capillary Reconfiguration. Adv. Mater. Technol. 2019, 4, 1800528. [Google Scholar] [CrossRef]
- Chen, Q.; Qian, X.; Xu, Y.; Yang, Y.; Wei, Y.; Ji, Y. Harnessing the Day–Night Rhythm of Humidity and Sunlight into Mechanical Work Using Recyclable and Reprogrammable Soft Actuators. ACS Appl. Mater. Interfaces 2019, 11, 29290–29297. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Y.; Yang, Y.; Xu, Y.; Qian, X.; Wei, Y.; Ji, Y. Durable liquid-crystalline vitrimer actuators. Chem. Sci. 2019, 10, 3025–3030. [Google Scholar] [CrossRef] [Green Version]
- Connolly, F.; Wagner, D.A.; Walsh, C.J.; Bertoldi, K. Sew-free anisotropic textile composites for rapid design and manufacturing of soft wearable robots. Extrem. Mech. Lett. 2019, 27, 52–58. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Gupta, U.; Liu, J.; Zhang, L.; Du, D.; Foo, C.C.; Ouyang, J.; Zhu, J. Transparent Soft Robots for Effective Camouflage. Adv. Funct. Mater. 2019, 29, 1901908. [Google Scholar] [CrossRef]
- Hamaya, M.; Matsubara, T.; Teramae, T.; Noda, T.; Morimoto, J. Design of physical user–robot interactions for model identification of soft actuators on exoskeleton robots. Int. J. Robot. Res. 2019. [Google Scholar] [CrossRef]
- Janbaz, S.; Bobbert, F.S.L.; Mirzaali, M.J.; Zadpoor, A.A. Ultra-programmable buckling-driven soft cellular mechanisms. Mater. Horizons 2019, 6, 1138–1147. [Google Scholar] [CrossRef] [Green Version]
- Saed, M.O.; Ambulo, C.P.; Kim, H.; De, R.; Raval, V.; Searles, K.; Siddiqui, D.A.; Cue, J.M.O.; Stefan, M.C.; Shankar, M.R.; et al. Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators. Adv. Funct. Mater. 2019, 29, 1806412. [Google Scholar] [CrossRef]
- Boyvat, M.; Vogt, D.M.; Wood, R.J. Ultrastrong and High-Stroke Wireless Soft Actuators through Liquid-Gas Phase Change. Adv. Mater. Technol. 2019, 4, 1800381. [Google Scholar] [CrossRef]
- Yang, L.; Sun, Z.; Li, F.; Du, S.; Song, W. Performance enhancement of cellulose-based biocomposite ionic actuator by doping with MWCNT. Appl. Phys. A 2019, 125, 547. [Google Scholar] [CrossRef]
- Lee, J.-G.; Rodrigue, H. Efficiency of Origami-Based Vacuum Pneumatic Artificial Muscle for Off-Grid Operation. Int. J. Precis. Eng. Manuf. Technol. 2019, 6, 789–797. [Google Scholar] [CrossRef]
- Song, K.; Kim, S.H.; Jin, S.; Kim, S.; Lee, S.; Kim, J.-S.; Park, J.-M.; Cha, Y. Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci. Rep. 2019, 9, 8988. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, Y.; Cho, C.; Choi, H.; Park, H.W.; Lee, D.; Heo, E.; Park, S.; Lee, H.; Kim, D.H. Deformable Ionic Polymer Artificial Mechanotransducer with an Interpenetrating Nanofibrillar Network. ACS Appl. Mater. Interfaces 2019, 11, 29350–29359. [Google Scholar] [CrossRef]
- Chen, J.; Chen, B.; Han, K.; Tang, W.; Wang, Z.L. A Triboelectric Nanogenerator as a Self-Powered Sensor for a Soft–Rigid Hybrid Actuator. Adv. Mater. Technol. 2019, 4, 1900337. [Google Scholar] [CrossRef]
- Liu, W.; Wang, M.; Sheng, Z.; Zhang, Y.; Wang, S.; Qiao, L.; Hou, Y.; Zhang, M.; Chen, X.; Hou, X. Mobile Liquid Gating Membrane System for Smart Piston and Valve Applications. Ind. Eng. Chem. Res. 2019, 58, 11976–11984. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, T.; Li, N.; Cong, H.-P.; Yu, S.-H. Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat. Commun. 2019, 10, 2202. [Google Scholar] [CrossRef]
- Cai, Z.; Song, Z.; Guo, L. Thermo- and Photoresponsive Actuators with Freestanding Carbon Nitride Films. ACS Appl. Mater. Interfaces 2019, 11, 12770–12776. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Y.; Wang, X.; Sheng, L.; Yang, X.-H.; Cui, Y.; Zhang, P.; Rao, W.; Guo, R.; Liang, S.; et al. Large-Magnitude Transformable Liquid-Metal Composites. ACS Omega 2019, 4, 2311–2319. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, A.; Liu, J.; Yang, L.; Chang, L.; Huang, M.; Gu, W.; Wu, G.; Lu, P.; Chen, W.; et al. Multifunctional Soft Actuators Based on Anisotropic Paper/Polymer Bilayer Toward Bioinspired Applications. Adv. Mater. Technol. 2019, 4, 1800674. [Google Scholar] [CrossRef]
- Lin, P.-W.; Liu, C.-H.; Lin, P.-W.; Liu, C.-H. Bio-Inspired Soft Proboscis Actuator Driven by Dielectric Elastomer Fluid Transducers. Polymers 2019, 11, 142. [Google Scholar] [CrossRef]
- Chang, L.; Huang, M.; Qi, K.; Jing, Z.; Yang, L.; Lu, P.; Hu, Y.; Wu, Y. Graphene-Based Bimorph Actuators with Dual-Response and Large-Deformation by a Simple Method. Macromol. Mater. Eng. 2019, 304, 1800688. [Google Scholar] [CrossRef]
- Li, C.; Xia, H.; Yao, J.; Ni, Q.-Q. Electrically induced soft actuators based on thermoplastic polyurethane and their actuation performances including tiny force measurement. Polymer 2019, 180, 121678. [Google Scholar] [CrossRef]
- Kang, D.J.; An, S.; Yarin, A.L.; Anand, S. Programmable soft robotics based on nano-textured thermo-responsive actuators. Nanoscale 2019, 11, 2065–2070. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Zhu, Y.; Zhu, S. A computationally efficient dynamical model of fluidic soft actuators and its experimental verification. Mechatronics 2019, 58, 1–8. [Google Scholar] [CrossRef]
- Heung, K.H.L.; Tong, R.K.Y.; Lau, A.T.H.; Li, Z. Robotic Glove with Soft-Elastic Composite Actuators for Assisting Activities of Daily Living. Soft Robot. 2019, 6, 289–304. [Google Scholar] [CrossRef]
- Mitchell, S.K.; Wang, X.; Acome, E.; Martin, T.; Ly, K.; Kellaris, N.; Venkata, V.G.; Keplinger, C. An Easy-to-Implement Toolkit to Create Versatile and High-Performance HASEL Actuators for Untethered Soft Robots. Adv. Sci. 2019, 6, 1900178. [Google Scholar] [CrossRef]
- Kanada, A.; Giardina, F.; Howison, T.; Mashimo, T.; Iida, F. Reachability Improvement of a Climbing Robot Based on Large Deformations Induced by Tri-Tube Soft Actuators. Soft Robot. 2019, 6, 483–494. [Google Scholar] [CrossRef]
- Wang, G.; Li, M.; Zhou, J. Modeling soft machines driven by buckling actuators. Int. J. Mech. Sci. 2019, 157–158, 662–667. [Google Scholar] [CrossRef]
- Zhu, M.; Mori, Y.; Wakayama, T.; Wada, A.; Kawamura, S. A Fully Multi-Material Three-Dimensional Printed Soft Gripper with Variable Stiffness for Robust Grasping. Soft Robot. 2019, 6, 507–519. [Google Scholar] [CrossRef]
- Goswami, D.; Liu, S.; Pal, A.; Silva, L.G.; Martinez, R.V. 3D-Architected Soft Machines with Topologically Encoded Motion. Adv. Funct. Mater. 2019, 29, 1808713. [Google Scholar] [CrossRef]
- McCracken, J.M.; Rauzan, B.M.; Kjellman, J.C.E.; Su, H.; Rogers, S.A.; Nuzzo, R.G. Ionic Hydrogels with Biomimetic 4D-Printed Mechanical Gradients: Models for Soft-Bodied Aquatic Organisms. Adv. Funct. Mater. 2019, 29, 1806723. [Google Scholar] [CrossRef]
- Al-Rubaiai, M.; Pinto, T.; Qian, C.; Tan, X. Soft Actuators with Stiffness and Shape Modulation Using 3D-Printed Conductive Polylactic Acid Material. Soft Robot. 2019, 6, 318–332. [Google Scholar] [CrossRef]
- Ren, L.; Li, B.; Song, Z.; Liu, Q.; Ren, L.; Zhou, X. 3D printing of structural gradient soft actuators by variation of bioinspired architectures. J. Mater. Sci. 2019, 54, 6542–6551. [Google Scholar] [CrossRef]
- Fang, B.; Xiao, Y.; Xu, Z.; Chang, D.; Wang, B.; Gao, W.; Gao, C. Handedness-controlled and solvent-driven actuators with twisted fibers. Mater. Horizons 2019, 6, 1207–1214. [Google Scholar] [CrossRef]
- Zhang, C.; He, B.; Ding, A.; Xu, S.; Wang, Z.; Zhou, Y. Motion Simulation of Ionic Liquid Gel Soft Actuators Based on CPG Control. Comput. Intell. Neurosci. 2019, 2019, 8256723. [Google Scholar] [CrossRef]
- Chua, M.C.H.; Lim, J.H.; Yeow, R.C.H. Design and Characterization of a Soft Robotic Therapeutic Glove for Rheumatoid Arthritis. Assist. Technol. 2019, 31, 44–52. [Google Scholar] [CrossRef]
- Di Lallo, A.; Catalano, M.G.; Garabini, M.; Grioli, G.; Gabiccini, M.; Bicchi, A. Dynamic Morphological Computation Through Damping Design of Soft Continuum Robots. Front. Robot. AI 2019, 6, 23. [Google Scholar] [CrossRef]
- Ahn, C.H.; Wang, W.; Jung, J.; Rodrigue, H. Pleated Film-Based Soft Twisting Actuator. Int. J. Precis. Eng. Manuf. 2019, 20, 1149–1158. [Google Scholar] [CrossRef]
- Boyko, E.; Eshel, R.; Gommed, K.; Gat, A.D.; Bercovici, M. Elastohydrodynamics of a pre-stretched finite elastic sheet lubricated by a thin viscous film with application to microfluidic soft actuators. J. Fluid Mech. 2019, 862, 732–752. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.H.; Kim, H.M.; Kim, Y.; Yang, S.Y.; Choi, H.R. Multiple Inputs-Single Accumulated Output Mechanism for Soft Linear Actuators. J. Mech. Robot. 2018, 11, 011007. [Google Scholar] [CrossRef]
- Jiang, H.; Fan, L.; Yan, S.; Li, F.; Li, H.; Tang, J. Tough and electro-responsive hydrogel actuators with bidirectional bending behavior. Nanoscale 2019, 11, 2231–2237. [Google Scholar] [CrossRef]
- Huang, X.; Kumar, K.; Jawed, M.K.; Mohammadi Nasab, A.; Ye, Z.; Shan, W.; Majidi, C. Highly Dynamic Shape Memory Alloy Actuator for Fast Moving Soft Robots. Adv. Mater. Technol. 2019, 4, 1800540. [Google Scholar] [CrossRef]
- Jiang, Z.-C.; Xiao, Y.-Y.; Tong, X.; Zhao, Y. Selective Decrosslinking in Liquid Crystal Polymer Actuators for Optical Reconfiguration of Origami and Light-Fueled Locomotion. Angew. Chem. Int. Ed. 2019, 58, 5332–5337. [Google Scholar] [CrossRef]
- Miriyev, A.; Xia, B.; Joseph, J.C.; Lipson, H. Additive Manufacturing of Silicone Composites for Soft Actuation. 3D Print Addit. Manuf. 2019, in press. [Google Scholar]
- Yilmaz, O.C.; Sen, I.; Gurses, B.O.; Ozdemir, O.; Cetin, L.; Sarıkanat, M.; Seki, Y.; Sever, K.; Altinkaya, E. The effect of gold electrode thicknesses on electromechanical performance of Nafion-based Ionic Polymer Metal Composite actuators. Compos. Part B Eng. 2019, 165, 747–753. [Google Scholar] [CrossRef]
- Pilz da Cunha, M.; Foelen, Y.; Raak, R.J.H.; Murphy, J.N.; Engels, T.A.P.; Debije, M.G.; Schenning, A.P.H.J. An Untethered Magnetic- and Light-Responsive Rotary Gripper: Shedding Light on Photoresponsive Liquid Crystal Actuators. Adv. Opt. Mater. 2019, 7, 1801643. [Google Scholar] [CrossRef]
- Truby, R.L.; Wehner, M.; Grosskopf, A.K.; Vogt, D.M.; Uzel, S.G.M.; Wood, R.J.; Lewis, J.A. Soft Somatosensitive Actuators via Embedded 3D Printing. Adv. Mater. 2018, 30, 1706383. [Google Scholar] [CrossRef]
- Acome, E.; Mitchell, S.K.; Morrissey, T.G.; Emmett, M.B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 2018, 359, 61–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Valdeolivas, M.; Liu, D.; Broer, D.J.; Sánchez-Somolinos, C. 4D Printed Actuators with Soft-Robotic Functions. Macromol. Rapid Commun. 2018, 39, 1700710. [Google Scholar] [CrossRef] [PubMed]
- Schaffner, M.; Faber, J.A.; Pianegonda, L.; Rühs, P.A.; Coulter, F.; Studart, A.R. 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat. Commun. 2018, 9, 878. [Google Scholar] [CrossRef] [PubMed]
- Rothemund, P.; Ainla, A.; Belding, L.; Preston, D.J.; Kurihara, S.; Suo, Z.; Whitesides, G.M. A soft, bistable valve for autonomous control of soft actuators. Sci. Robot. 2018, 3, eaar7986. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.; Ha, I.; Jung, J.; Won, P.; Cho, H.; Yeo, J.; Hong, S.; Han, S.; Kwon, J.; et al. Biomimetic Color Changing Anisotropic Soft Actuators with Integrated Metal Nanowire Percolation Network Transparent Heaters for Soft Robotics. Adv. Funct. Mater. 2018, 28, 1801847. [Google Scholar] [CrossRef]
- Wang, C.; Sim, K.; Chen, J.; Kim, H.; Rao, Z.; Li, Y.; Chen, W.; Song, J.; Verduzco, R.; Yu, C. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots. Adv. Mater. 2018, 30, 1706695. [Google Scholar] [CrossRef]
- Miriyev, A.; Trujillo, C.; Caires, G.; Lipson, H. Rejuvenation of soft material—Actuator. MRS Commun. 2018, 8, 556–561. [Google Scholar] [CrossRef]
- Christianson, C.; Goldberg, N.N.; Deheyn, D.D.; Cai, S.; Tolley, M.T. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 2018, 3, eaat1893. [Google Scholar] [CrossRef] [Green Version]
- Kotikian, A.; Truby, R.L.; Boley, J.W.; White, T.J.; Lewis, J.A. 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order. Adv. Mater. 2018, 30, 1706164. [Google Scholar] [CrossRef]
- Cao, J.; Qin, L.; Liu, J.; Ren, Q.; Foo, C.C.; Wang, H.; Lee, H.P.; Zhu, J. Untethered soft robot capable of stable locomotion using soft electrostatic actuators. Extrem. Mech. Lett. 2018, 21, 9–16. [Google Scholar] [CrossRef]
- Miriyev, A.; Caires, G.; Lipson, H. Functional properties of silicone/ethanol soft-actuator composites. Mater. Des. 2018, 145, 232–242. [Google Scholar] [CrossRef]
- Bilodeau, R.A.; Miriyev, A.; Lipson, H.; Kramer-Bottiglio, R. All-soft material system for strong soft actuators. In Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018; pp. 288–294. [Google Scholar]
- Do, T.N.; Phan, H.; Nguyen, T.-Q.; Visell, Y. Miniature Soft Electromagnetic Actuators for Robotic Applications. Adv. Funct. Mater. 2018, 28, 1800244. [Google Scholar] [CrossRef]
- Kim, Y.; Yuk, H.; Zhao, R.; Chester, S.A.; Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018, 558, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Lu, W.; Yang, X.; He, J.; Le, X.; Wang, L.; Zhang, J.; Serpe, M.J.; Huang, Y.; Chen, T. Bioinspired Anisotropic Hydrogel Actuators with On-Off Switchable and Color-Tunable Fluorescence Behaviors. Adv. Funct. Mater. 2018, 28, 1704568. [Google Scholar] [CrossRef]
- Wang, T.; Ge, L.; Gu, G. Programmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions. Sens. Actuators A Phys. 2018, 271, 131–138. [Google Scholar] [CrossRef]
- Ge, L.; Dong, L.; Wang, D.; Ge, Q.; Gu, G. A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators. Sens. Actuators A Phys. 2018, 273, 285–292. [Google Scholar] [CrossRef]
- Haghiashtiani, G.; Habtour, E.; Park, S.-H.; Gardea, F.; McAlpine, M.C. 3D printed electrically-driven soft actuators. Extrem. Mech. Lett. 2018, 21, 1–8. [Google Scholar] [CrossRef]
- Caspari, P.; Dünki, S.J.; Nüesch, F.A.; Opris, D.M. Dielectric elastomer actuators with increased dielectric permittivity and low leakage current capable of suppressing electromechanical instability. J. Mater. Chem. C 2018, 6, 2043–2053. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Shea, H.; Floreano, D. Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators. Soft Robot. 2018, 5, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; El Haitami, A.; Sorba, F.; Rosset, S.; Nguyen, G.T.M.; Plesse, C.; Vidal, F.; Shea, H.R.; Cantin, S. Stretchable composite monolayer electrodes for low voltage dielectric elastomer actuators. Sens. Actuators B Chem. 2018, 261, 135–143. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miriyev, A. A Focus on Soft Actuation. Actuators 2019, 8, 74. https://doi.org/10.3390/act8040074
Miriyev A. A Focus on Soft Actuation. Actuators. 2019; 8(4):74. https://doi.org/10.3390/act8040074
Chicago/Turabian StyleMiriyev, Aslan. 2019. "A Focus on Soft Actuation" Actuators 8, no. 4: 74. https://doi.org/10.3390/act8040074
APA StyleMiriyev, A. (2019). A Focus on Soft Actuation. Actuators, 8(4), 74. https://doi.org/10.3390/act8040074