A New Type of Rotary Magnetic Actuator System Using Electromagnetic Vibration and Wheel
Abstract
:1. Introduction
2. Structure of Magnetic Wheel Actuator
3. Principle of Locomotion
4. Consideration of Magnetic Wheel Actuator
5. Movement Characteristics of Actuator System
6. Movement Characteristics on the Step of the Actuator System
7. Turning Properties of the Actuator System
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Subramanyam, A.; Mallikarjuna, Y.; Suneel, S.; Kumar, L.B. Design and Development of a Climbing Robot for Several Applications. Int. J. Adv. Comput. Technol. 2011, 3, 15–23. [Google Scholar]
- Shin, J.-U.; Kim, D.; Kim, J.-H.; Myung, H. Micro aerial vehicle type wall-climbing robot mechanism. In Proceedings of the IEEE RO-MAN International Symposium, Gyeongju, Korea, 26–29 August 2013; pp. 722–725. [Google Scholar]
- Yoshida, Y.; Ma, S. A Wall-Climbing Robot without any Active Suction Mechanisms. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Phuket Island, Thailand, 7–11 December 2011; pp. 2014–2019. [Google Scholar]
- Xu, F.; Wang, X.; Jiang, G. Design and Analysis of a Wall-Climbing Robot Based on a Mechanism Utilizing, Hook-Like Claws. Int. J. Adv. Robot. Syst. 2012, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Funatsu, M.; Kawasaki, Y.; Kawasaki, S.; Kikuchi, K. Development of cm-scale Wall Climbing Hexapod Robot with Claws. In Proceedings of the 3rd International Conference on Design Engineering and Science—ICDES, Pilsen, Czech Republic, 31 August–3 September 2014; pp. 101–106. [Google Scholar]
- Provancher, W.; Jensen-Segal, S.; Fehlberg, M. ROCR: An Energy-Efficient Dynamic Wall-Climbing Robot. IEEE Trans. Mechatron. 2011, 16, 897–906. [Google Scholar] [CrossRef]
- Fukuda, T.; Matsuura, H.; Arai, F.; Nishibori, K.; Sakauchi, H.; Yoshi, N. A Study on Wall Surface Mobile Robots. Trans. Jpn. Soc. Mech. Eng. 1992, 58, 286–293. [Google Scholar]
- Suzuki, M.; Hirose, S. Proposal of Swarm Type Wall Climbing Robot System Anchor Climber and Development of Adhering Mobile Units. Robot. Soc. Jpn. 2010, 28, 614–623. [Google Scholar] [CrossRef] [Green Version]
- Kute, C.; Murphy, M.; Menguc, Y.; Sitti, M. Adhesion Recovery and Passive Peeling in a Wall Climbing Robot using Adhesives. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 3–8 May 2010; pp. 2797–2802. [Google Scholar]
- Unver, O.; Sitti, M. Tankbot: A Miniature, Peeling Based Climber on Rough and Smooth Surfaces. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2282–2287. [Google Scholar]
- Khirade, N.; Sanghi, R.; Tidke, D. Magnetic Wall Climbing Devices—A Review. In Proceedings of the International Conference on Advances in Engineering & Technology, Singapore, 29–30 March 2014; pp. 55–59. [Google Scholar]
- Kim, J.H.; Park, S.M.; Kim, J.H.; Lee, J.Y. Design and Experimental Implementation of Easily Detachable Permanent Magnet Reluctance Wheel for Wall-Climbing Mobile Robot. J. Magn. 2010, 15, 128–131. [Google Scholar] [CrossRef] [Green Version]
- Fujji, N.; Nonako, S.; Hayashi, G. Design of magnet wheel integrated own drive. IEEE Trans. Magn. 1999, 35, 5. [Google Scholar] [CrossRef]
- Qin, W.; Bird, J.Z. Electrodynamic Wheel Magnetic Rolling Resistance. IEEE Trans. Magn. 2017, 53, 8. [Google Scholar] [CrossRef]
- Yaguchi, H.; Kimura, I.; Sakuma, S. A Novel Actuator System Combining Mechanical Vibration and Magnetic Wheels Capable of Rotational Motion Using Shape Memory Alloy Coils. Actuators 2019, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Yaguchi, H.; Sakuma, S. A Novel Magnetic Actuator Capable of Free Movement on a Magnetic Substance. IEEE Trans. Magn. 2015, 51, 11. [Google Scholar] [CrossRef]
- Yaguchi, H.; Sakuma, S. Characteristic Improvement of a Magnetic Actuator Capable of Movement on a Magnetic Substance. IEEE Trans. Magn. 2016, 52, 7. [Google Scholar] [CrossRef]
- Yaguchi, H.; Sakuma, S. Vibration Actuator Capable of Movement on Magnetic Substance Based on New Motion Principle. J. Vibroeng. 2017, 19, 1494–1508. [Google Scholar]
Outer Diameter d2 | Turn of Winding | Resistance | Attractive Force | ||
---|---|---|---|---|---|
t = 1 mm | t = 1.5 mm | t = 2 mm | |||
7 mm | 1520 | 35.0 Ω | 7.5 N | 9.0 N | 9.8 N |
8 mm | 1370 | 33.4 Ω | 8.6 N | 14.1 N | 14.7 N |
9 mm | 1100 | 28.4 Ω | 9.2 N | 15.2 N | 15.9 N |
10 mm | 850 | 22.6 Ω | 9.8 N | 13.9 N | 15.1 N |
Input Current of Electromagnet | Attractive Force | Speed (Downward) | Speed (Horizontal) | Speed (Upward) |
---|---|---|---|---|
0.12 A | 14.6 N | 37.6 mm/s | 36.5 mm/s | 13.4 mm/s |
0.16 A | 18.2 N | 39.6 mm/s | 39.0 mm/s | 14.8 mm/s |
0.2 A | 21.8 N | 41.7 mm/s | 41.0 mm/s | 16.8 mm/s |
Height h of Step | Time | Average Speed |
---|---|---|
0 mm (No on-off) | 2.2 s | 45.0 mm/s |
2 mm | 3.0 s | 33.3 mm/s |
4 mm | 3.2 s | 31.0 mm/s |
6 mm | 3.6 s | 28.1 mm/s |
8 mm | 4.8 s | 20.9 mm/s |
10 mm | 6.7 s | 15.0 mm/s |
Length L of step | Time | Average speed |
---|---|---|
10 mm | 14.1 s | 14.2 mm/s |
40 mm | 10.9 s | 18.3 mm/s |
70 mm | 9.8 s | 20.4 mm/s |
100 mm | 11.4 s | 17.5 mm/s |
Rotational Speed in Horizontal Plane | Rotational Speed in Vertical Plane | ||
---|---|---|---|
Clockwise | Counter clockwise | Clockwise | Counter clockwise |
21.1 degree/s | 20.1 degrees/s | 27.6 degrees/s | 25.3 degrees/s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaguchi, H.; Kimura, I.; Sakuma, S. A New Type of Rotary Magnetic Actuator System Using Electromagnetic Vibration and Wheel. Actuators 2020, 9, 51. https://doi.org/10.3390/act9030051
Yaguchi H, Kimura I, Sakuma S. A New Type of Rotary Magnetic Actuator System Using Electromagnetic Vibration and Wheel. Actuators. 2020; 9(3):51. https://doi.org/10.3390/act9030051
Chicago/Turabian StyleYaguchi, Hiroyuki, Izuru Kimura, and Shun Sakuma. 2020. "A New Type of Rotary Magnetic Actuator System Using Electromagnetic Vibration and Wheel" Actuators 9, no. 3: 51. https://doi.org/10.3390/act9030051
APA StyleYaguchi, H., Kimura, I., & Sakuma, S. (2020). A New Type of Rotary Magnetic Actuator System Using Electromagnetic Vibration and Wheel. Actuators, 9(3), 51. https://doi.org/10.3390/act9030051