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Abstract: In this paper, a two-loop fault-tolerant attitude control scheme is proposed for flying-wing
aircraft with actuator faults. A regular nonlinear dynamic inversion (NDI) control is used in the
outer attitude loop, and a finite time convergence incremental nonlinear dynamic inversion (FINDI)
control combined with control allocation strategy is used in the inner angular rate loop. Prescribed
performance bound (PPB) is designed to constrain the tracking errors within a residual set, so the
prescribed system performance can be guaranteed. An optimal anti-windup (AW) compensator is
introduced to solve the actuator saturation problem. Simulation results demonstrate the effectiveness
of the proposed approach.

Keywords: flying-wing aircraft; fault-tolerant control; finite time convergence incremental nonlinear
dynamic inversion; prescribed performance bound; control allocation; anti-windup control

1. Introduction

The flying-wing aircraft has received wide research in recent years for its light weight, good stealth
and high control surfaces efficiency [1–3]. However, the aerodynamic configuration of flying-wing
aircraft brings new challenges for aircraft control. The flying-wing aircraft has bad longitudinal stability
and maneuverability because of the short moment arm. There is no vertical tail in flying-wing aircraft;
this leads to bad lateral stability. In aircrafts, there are more control actuators than controlled variables
to achieve multiple control objectives and high performance; the maneuverability becomes flexible
but control surfaces become coupled after introducing the elevons and drag rudders for flying-wing
aircrafts. Therefore, many approaches have been designed to improve the control performance of
flying-wing aircrafts.

Several nonlinear control approaches have been proposed to overcome the shortcomings of
traditional linearization approaches [4–10]; one popular approach is nonlinear dynamic inversion
(NDI) control. NDI control eliminates the nonlinearities in the aircraft system by state feedback, then
the nonlinear model is transformed into a linear one controlled by a virtual linear input. The control
performance of NDI, however, depends on accurate mathematical models of the plants, which makes it
strongly influenced by model uncertainties and the robustness of the controller cannot be guaranteed.
An alternative solution to make the controller less dependent on the model is implicit NDI proposed
by [11] in 1990; this concept was later further developed into incremental nonlinear dynamic inversion
(INDI). Compared to NDI, instead of modeling the angular acceleration based on the state and inverting
the aircraft model to get the control input, a desired increment in measured angular acceleration is
introduced into an increment of the control input to control the aircraft system. Therefore, INDI is
inherently implicit in the sense that desired closed-loop dynamics do not reside in some explicit model
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to be followed. This way, any unmodeled dynamics are measured and compensated, which increases
the robustness of the nonlinear system.

In most of the present papers, the measured angular acceleration is assumed to be readily available;
this is, however, hard to be obtained in reality. In addition, the time delay problem always arises in
angular acceleration feedback. A proposed method to deal with the time delay problem is combining
INDI with a linear predictive filter to predict the angular acceleration [12]. However, the prediction
requires additional modeling and it cannot predict disturbances. The authors of [13,14] apply the
concept of finite time convergence to INDI, called FINDI; it does not focus on the way angular
acceleration is acquired in a timely manner, but solves the time delay problem by the convergence of
the tracking error between reference signal and closed-loop output.

Fault-tolerant capability [15,16] is an important feature for safety-critical systems, and hardware
redundancy is a key ingredient in fault-tolerant systems, which can be seen in the modern military and
civil aircrafts. In order to improve the reliability of the system, fault-tolerant control (FTC) should
be introduced in the controller design. With the increase in the available redundant actuators in the
flying-wing aircraft, how to distribute the control signals to these actuators is known as the control
allocation problem [17]. In the case of actuator fault or failure, an effective control allocation of the
actuators is needed to make the faulty actuators be compensated by the remaining healthy actuators,
so that the acceptable performance is achieved without redesigning the control low. Therefore, the FINDI
based on reasonable control allocation can greatly improve the fault-capability of flying-wing aircraft.

Besides the nonlinear control law and fault-tolerant capability, another important issue associated
with the flight control system concerns the transient state performance. The designed controller is
expected to achieve the requirement of prescribed system performance in the actual flight control
systems [18]. The traditional method is adjusting parameters of the PID controller. However, with the
increase in system performance index, the aforementioned method fails to meet multiple performance
requirements simultaneously. In the control system, the state performance of the control system can
be transferred into the constraint problem of tracking error performance. Traditionally, the nonlinear
controller is designed to guarantee that the tracking error is converged to a residual set whose
size depends on design parameters and some bounded though unknown terms [19–21]. However,
no systematic procedure exits to accurately compute the required upper bounds, thus making the a
priori selection of the design parameters to satisfy certain steady state behavior practically impossible.
Moreover, the convergence rate is difficult to be established even in the case of known nonlinearities [22].
Until recently, such issues were discussed only in terms of the norm of the tracking error that is
derived to be a function of explicit design parameters and initial estimation errors [23,24]. However,
the aforementioned performance index is connected only indirectly with the actual system response.
Therefore, in this work, regarding performance it is required that the tracking error converges to a
predefined arbitrarily small residual set with convergence rate no less than a certain prespecified
value. The prescribed performance controller has been proposed in [25–27] for specific classes of affine
nonlinear systems. In [28], it is proposed that the prescribed performance bound (PPB)-based method
to restrain the convergence rate of the tracking error and the transient performance of the system is
improved. If the PPB system is stable, the tracking errors will be within the prescribed error bounds all
the way through. In [29], a command filtered adaptive backstepping compensation approach based on
PPB is proposed for the flying-wing aircraft system with actuator stuck or loss of effectiveness and
achieves some good results.

In flight control systems, physical limitations of actuators have to be considered. Large control
signals for high performance demanded systems are inevitable, which will cause the actuators’
saturation with their own performance constraints. The control efficiency will be discounted and
the stability of closed-loop system cannot be guaranteed in the presence of saturation. The control
strategies to solve the problem of actuators’ saturation in the nonlinear system can be divided into two
kinds: the direct method [30,31] and the anti-windup (AW) method [32–35]. The control law of the
direct method is found based on the Lyapunov theory and optimal control theory. It considers the
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performance index of a nonlinear system to design the controller, then the optimal performance of the
system is guaranteed. However, the direct method is too complex and often has additional restrictions
for the nonlinear system. Compared to the direct method, the AW method adds the compensator to
the nonlinear control system. In addition, the control input of the AW compensator is based on the
error between the normal control input and control saturated input. Therefore, the compensator works
only when the control signals are in the saturation zone. For the AW scheme, the control performance
with actuators’ saturation is improved while reducing the complexity of the nonlinear control system.
As one of the AW methods, the Internal-Model-Control (IMC) type compensator scheme is studied
for nonlinear input affine systems by using a state-dependent saturation function in [32,33]. In [34],
the control performance is guaranteed by introducing a general AW compensator into the NDI control
system based on the optimal IMC theorem.

In this paper, a new PPB-FINDI method with control allocation is proposed for the attitude
tracking control of flying-wing aircraft with multiple actuator faults; the fault-tolerant capability of
the nonlinear system is improved. In addition, a novel AW scheme is introduced into the PPB-FINDI
control system to compensate the actuator saturations.

The structure of this paper is as follows: Section 2 briefly reviews the theorems of NDI, INDI and
FINDI. The nonlinear model of flying-wing aircraft is discussed in Section 3. Section 4 proposes the
specific design of the FINDI controller based on PPB and control allocation. Section 5 introduces an
AW scheme into the PPB-FINDI control system. Finally, simulation results are given by MATLAB in
Section 6.

2. NDI, INDI and FINDI

Consider a nonlinear control-affined system

.
x = F(x) + G(x)u (1)

y = H(x) (2)

where x ∈ Rnx is state vector, u ∈ Rnu is input vector, y ∈ Rny is output vector, F(x), G(x) and H(x) are
smooth nonlinear functions, and for ∀x ∈ Rnx , H(x) , 0.

Assumption 1. ‖G(x)‖ and ‖G(x)‖‖G(x)‖−1 are both bound for ∀x ∈ Rnx .

Remark 1. Assumption 1 can guarantee G(x) is non-singular.

The derivative of Equation (2) is given by

.
y =

dH(x)
dt =

∂H(x)
∂x

dx
dt = ∇H(x)

.
x = ∇H(x)(F(x) + G(x)u)

= ∇H(x)F(x) + ∇H(x)G(x)u = L f H(x) + LgH(x)u
(3)

In Equation (3), L f H(x) = ∇H(x) f (x) is the first-order Lie derivative along the function F(x),
LgH(x) is the first-order Lie derivative along the function G(x). Assume that LgH(x) is not zero and
the relationship between y and u is established by NDI theory in Equation (3). Then, NDI control law
can be designed to transform the dynamic characteristics of the nonlinear system into linear dynamic
characteristics through Equation (4), where

.
y is replaced by the pseudocontrol input υ.

u = LgH(x)−1(υ− L f H(x)) (4)

The pseudocontrol input υ is a signal tracked by the derivative of the output. Consequently,
the output can be controlled by an appropriate design of υ that is usually obtained by a linear
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controller, depending on the error e between the reference signal and closed-loop output. It is shown
as Equation (5), where LC denotes the linear controller to be designed.

υ = (LC)e (5)

In this paper, we consider that H(x) = x in Equation (2), and it should be noted that x , 0 herein.
Then Equation (4) can be rewritten as

u = G−1(x)(υ− F(x)) (6)

Substituting Equation (6) into Equation (1), we can get the linear control law as

.
x = υ (7)

NDI control depends on F(x) and G(x) to eliminate the nonlinearities in the aircraft system.
However, if model uncertainties exist, the exact elimination of nonlinearities becomes impossible.
Considering the uncertainties ∆F(x) and ∆G(x), Equation (1) can be described as

.
x = F(x) + ∆F(x) + (G(x) + ∆G(x))u (8)

Substituting Equation (6) into Equation (8), then

.
x = F(x) + ∆F(x) + (G(x) + ∆G(x))(G−1(x)(υ− f (x)))
= ∆F(x) − ∆G(x)G−1(x)F(x) + (I + ∆G(x)G−1(x))υ

(9)

where I denotes the identity matrix. As it can be seen, the linear control law
.
x = υ is satisfied only for

∆F(x) = ∆G(x) = 0. Otherwise, the closed-loop system is not linearized anymore. This drawback is
the main motivation to develop a more robust version of the NDI, known as INDI.

Compared to NDI, INDI control calculates the increment of the control input for each sampling
time, instead of computing the total control input directly. In order to obtain the incremental form of
the system, Equation (1) is rewritten by first-order Taylor series expansion.

.
x ≈

.
x0 +

∂
∂x

(F(x) + G(x)u)

∣∣∣∣∣∣∣∣∣∣∣ x = x0

u = u0

(x− x0) +
∂
∂u

(F(x) + G(x)u)

∣∣∣∣∣∣∣∣∣∣∣ x = x0

u = u0

(u− u0) + ∆H.O.T (10)

where x0 and u0 denote x and u in the previous control step in the discrete implementation.
The zero-order term of the Taylor series

.
x0 is obtained from sensor that satisfies Equation (11).

∆H.O.T is the higher order term. Under high update frequency, the value of higher order term
(x− x0)

k, k ≥ 2 is small enough to be ignored, and its influence on the control effect can be neglected.
Hence ∆H.O.T is neglected here.

.
x0 = F(x0) + G(x0)u0 (11)

For short time increments and a sufficiently high control update rate, x approaches x0, that is
x− x0 ≈ 0. As a result, Equation (10) becomes

.
x ≈

.
x0 + G(x)(u− u0) (12)

Replacing
.
x by the pseudocontrol input υ, the linearizing control input is shown by inverting

Equation (12). With Assumption 1, the INDI control law can be designed as

u = u0 + G−1(x)(υ−
.
x0) (13)
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Comparing Equations (6) and (13), the control law in INDI does not depend on F, changes in F are
reflected in

.
x0 and the effectiveness of INDI controller is dependent on the measurements of

.
x0 and u0.

Assuming ideal measurements, all the model uncertainties lie in G (uncertainties in F are reflected
in

.
x0). Considering the uncertainties ∆G(x), Equation (12) can be described as

.
x ≈

.
x0 + (G(x) + ∆G(x))(u− u0) (14)

Substituting Equation (13) into (14), then

.
x =

.
x0 + (G(x) + ∆G(x))(G−1(x)(v−

.
x0))

= −∆G(x)G−1(x)
.
x0 + (I + ∆G(x)G−1(x))v

(15)

In INDI control,
.
x approaches

.
x0 with high control update rate and Equation (15) can be rewritten as

(I + ∆G(x)G−1(x))
.
x ≈ (I + ∆G(x)G−1(x))v⇒ B

.
x ≈ Bυ (16)

where B = I + ∆G(x)G−1(x). Therefore,
.
x ≈ υ still holds, which means that uncertainties in the control

matrix G do not affect the INDI control; robust control design is not needed in this case.
Most research results assume that

.
x0 is obtained by an ideal sensor without time delay. However,

the time delay will affect the availability of
.
x0, then the output will be affected too. In this paper,

the FINDI control is designed to converge the error in finite time and eliminate the influence of the
time delay.

Based on the finite time convergence theorem [36], the pseudocontrol input υ is obtained by
a non-smooth controller in Equation (17) combined with a reference differential signal, shown in
Equation (18)

Gn : υn = K|xr − x|σ·sign(xr − x) (17)

υ = υn +
.
xr (18)

where Gn denotes the non-smooth controller that can resist disturbance and υn denotes the output of
Gn. xr denotes the reference signal and

.
xr is feed forward control. K denotes the bandwidth gain that

satisfies K > 0. σ is a constant and σ ∈ (0, 1] is satisfied. Based on the theorem in [14], the pseudocontrol
input υ obtained from Equation (18) is used for the INDI control law, then the tracking error will
converge to zero in finite time.

Remark 2. Equations (17) and (47) in the flying-wing aircraft control are typical finite time control schemes;
the anti-disturbance ability and convergence speed are obviously better than smooth feedback control. Although
the response smoothness is a bit lower than continuous control, it is acceptable in the simulation of this paper. If
there is obvious chattering, we can use the proposed method in [37] to cope with it.

3. Aircraft Model

The configuration of the flying-wing aircraft is shown in Figure 1; two engines are installed on
both sides of the blended body symmetrically. All the control surfaces of aircraft are set behind a
serrated double “W” wing, including one pair of drag rudders, one pair of ailerons, one pair of elevons
and one pair of elevators. All the deflections of control surfaces are in their mechanical limitations;
ailerons, elevators and elevons in −25◦ ∼ +25◦, drag rudders in 0◦ ∼ ±90◦.
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The mathematical model of the flying-wing aircraft is given as

.
x = F + Gu (19)

where x = [µ α β p q r]T, µ denotes kinematic roll angle and α, β denote attack angle and sideslip angle,
respectively. p, q, r denote roll, pitch and yaw rates along the body axis. u = [ua ue ur]

T, ua, ue, ur

denote the deflections of ailerons, elevators and rudders, respectively.
NDI control needs the control matrix G(x) to be non-singular, which means the number of input

variables must be same as the state variables. Consequently, the time scale separation principle is
introduced to divide the flying-wing aircraft nonlinear model into two loops; the outer loop with
Equation (20) and the inner rate loop with Equation (21).

.
x1 = F1(x1, x2) = f1 + g1x2 (20)

.
x2 = F2(x2, u) = f2 + g2u (21)

y = x1 (22)

where x1 = [µ α β]T is the state vector of attitude control and x2 = [p q r]T is the state vector of angular
rate control.

x1 and x2 are described as
.
p
.
q
.
r

 = I−1(


LA

MA + MT

NA

−


p
q
r

× I


p
q
r

) (23)


.
µ
.
α
.
β

 =


cosα cos β 0 sinα
sin β 1 0

sinα sin β 0 − cosα


−1

·(−TVB
T


−

.
χ sinγ

.
γ

.
χ cosγ

+


p
q
r

) (24)

where I =


Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

 denotes the moment of inertia matrix, and Ixy = Iyz = Ixz = 0 in this

paper. LA, MA, NA are the aerodynamic pitching, rolling and yawing moments along the body axis,
MT is the thrust moment brought by the power of engines, and these moments are denoted as

LA = (Clββ+ Clua
ua + Clur

ur + Clpp + Clr r)QSwb (25)

MA = (Cm0 + Cmαα+ Cm .
α

.
α+ Cmqq + Cmue ue)QSwcA (26)

NA = (Cnββ+ Cnua ua + Cnur ur + Cnpp + Cnr r)QSwb (27)



Actuators 2020, 9, 70 7 of 21

MT = zTTmaxuth (28)

where p =
pb
2V , q =

qcA
2V , r = rb

2V ,
.
α =

.
αcA
2V denote the dimensionless roll angular rate, pitch angular rate,

yaw angular rate and attack angular rate, respectively. b denotes the wind chord and cA denotes the
wing mean geometric chord. Q = 1

2ρV2 denotes the kinetic pressure where ρ denotes the air density
and V denotes the air speed. Sw denotes the reference area of the wing. Clβ , Clua

, Clur
, Clp , Clr , Cm0 ,

Cmα , Cm .
α
, Cmq , Cmue , Cnβ , Cnua , Cnur , Cnp and Cnr denote the aerodynamic derivatives of LA, MA and NA.

Tmax denotes the maximum thrust of one engine, uth denotes the total throttle angle of two engines
and zT is a constant of the z-axis. TVB denotes the transformation matrix from body axis to velocity
axis. γ and χ denote the fight path angle and kinematic azimuth angle.

In aircraft model, g1, f1, g2, f2 are

g1 =


cosα cos β 0 sinα

sin β 1 0
sinα sin β 0 − cosα


−1

(29)

f1 =


cosα cos β 0 sinα

sin β 1 0
sinα sin β 0 − cosα


−1

·(−TVB
T


−

.
χ sinγ

.
γ

.
χ cosγ

) (30)

g2 =


∂

.
p

∂ua

∂
.
p

∂ue

∂
.
p

∂ur
∂

.
q

∂ua

∂
.
q

∂ue

∂
.
q

∂ur
∂

.
r

∂ua
∂

.
r

∂ue
∂

.
r

∂ur

 = QSw


Clua
Ixx

0
Clur
Ixx

0
Cmue
Iyy

0
Cnua
Izz

0
Cnur
Izz




b
cA
b

 (31)

f2 =
.
x2 − g2u

=



[
(Iyy − Izz)qr + QSwb(Clββ+

b(Clp
p+Clr

r)

2V )

]
/IxxzTTmaxuth − (Ixx − Izz)pr + QSwcA(Cm0 + Cmαα+

cA(Cm .
α

.
α+Cmq q)

2V )

/Iyy[
(Ixx − Iyy)pq + QSwb(Cnββ+

b(Cnp p+Cnr r)

2V )

]
/Izz


(32)

4. Attitude Control Law Design

4.1. PPB Theory

In this paper, prescribed performance means that the closed-loop output tracking error converges
to a predefined residual set with convergence rate no less than a certain prespecified value.

Considering a scalar tracking error e(t), ∀t ≥ 0, the prescribed performance F can be defined as

F =
{
(t, e) ∈ Rt≥0 ×R

∣∣∣ϕ−0 (t) < e(t) < ϕ+
0 (t)

}
(33)

where ϕ−0 (t) and ϕ+
0 (t) denote prescribed performance functions satisfying

(1) ϕ−0 (t) and ϕ+
0 (t) are smooth.

(2) ϕ−0 (t), ϕ
+
0 (t) and their n-order derivative are bounded.

(3) lim
t→∞

ϕ−0 (t) = ϕ−, lim
t→∞

ϕ+
0 (t) = ϕ+, where ϕ− and ϕ+ denote prescribed constants and ϕ− < ϕ+.

If ϕ−0 (t) = −ζε(t), ϕ
+
0 (t) = ζε(t), then F can be transformed into

F =
{
(t, e) ∈ Rt≥0 ×R

∣∣∣−ζε(t) < e(t) < ζε(t)
}

(34)
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where 0 < ζ, ζ ≤ 1, ε(t) is the smooth performance function to be designed and the decreasing function
satisfying 0 < lim

t→∞
ε(t) = ε∞ < ε0 = lim

t→0
ε(t). Assume that ε(t) = (ε0 − ε∞)e−λt + ε∞, where ε0, ε∞ and

λ are prescribed positive constants. ζε∞ denotes the upper bound of prescribed steady-state error and
ζε∞ denotes the lower bound. If e(t) > 0, ζ times of the decreasing rate of ε(t) is the lower bound of

the decreasing rate of e(t). The maximum overshoot of e(t) is less than ζε0. If e(t) < 0, ζ times of the
decreasing rate of ε(t) is the lower bound of the decreasing rate of e(t). The maximum overshoot e(t)
is bigger than ζε0.

Then, if e(t) satisfies Equation (34) under the designed control law, the tracking error will converge
to −ζε∞ < lim

t→∞
e(t) = ζε∞. For tracking errors of different variables, different prescribed performance

functions can be chosen according to the system performance requirements.
The PPB of the tracking error is shown as Figure 2.
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Design an increasing scalar function J(w) to satisfy Equations (35) and (36), where w denotes the
transformed tracking error.

− ζ < J(w) < ζ (35)

lim
w→−∞

J(w) = −ζ, lim
w→+∞

J(w) = ζ, J(0) = 0 (36)

Then, if e(t) satisfies Equation (37), e(t) can satisfy Equation (34).

e(t) = ε(t)J(w) (37)

In this paper, J(w) is designed as

J(w) =
ζe(w+z)

− ζe−(w+z)

e(w+z) + e−(w+z)
(38)

z = (ln(ζ/ζ))/2 (39)

It can be proved that J(w) satisfies Equations (35) and (36). Then, w can be designed as

w =
1
2

ln(ζς(t) + ζζ) −
1
2

ln(ζζ− ζς(t)) (40)

ς(t) =
e(t)
ε(t)

= J(w) (41)
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Differentiating Equation (40), it follows that

.
w =

∂J−1

∂ς
.
ς = ξ(

.
e−

e
.
ς
ς
) (42)

ξ =
1

2ς
(

1
ς+ ζ

−
1

ς− ζ
) (43)

where
.
e is the scalar differential tracking error.

4.2. Outer Loop Control

In the outer loop, there is no model uncertainty, so NDI can be used to design the controller. There
are three state items µ, α and β in the outer loop and we make the PPB transformation separately.

Noting the tracking error of the outer loop as e1 =
[
eµ eα eβ

]T
, then we use Equations (40) and (41)

to transform it into the PPB transformed error of outer loop, denoted by w1 =
[
wµ wα wβ

]T
. Hence,

Equation (5) can be rewritten as
υw

1 = (LC)w1 (44)

where υw
1 =

[
υw
µ υ

w
α υ

w
β

]T
is the new pseudocontrol input based on the PPB transformation.

Therefore, the standard NDI controller, based on Equations (6), (20), (29) and (30), is given as

xr
2 = g−1

1 (υw
1 − f1) =


cosα cos β 0 sinα

sin β 1 0
sinα sin β 0 − cosα



υw
µ

υw
α

υw
β

+ TVB
T


−

.
χ sinγ

.
γ

.
χ cosγ

 (45)

where xr
2 = [pr qr rr]

T is the reference angular rate signal that is used as the input of the inner loop, and
the control diagram is shown as Figure 3.
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4.3. Inner Loop Control

With model uncertainties and time delay in the inner loop, FINDI is used to design the controller.
There are three states (p, q, r) in the inner loop and we make the PPB transformation separately.

Noting the tracking error of the inner loop as e2 =
[
ep eq er

]T
, then we use Equations (40) and (41) to

transform it into the PPB transformed error of the inner loop, denoted by w2 =
[
wp wq wr

]T
. Hence,

Equation (17) can be rewritten as
υw

n = K|w2|
σ
·sign(w2) (46)

where υw
n denotes the new output of non-smooth controller based on the PPB transformation.

Therefore, the FINDI controller, based on Equations (13), (18), (21) and (31), is given as

u = u0 + g−1
2 (υw

n +
.
xr

2 −
.
x0

2) =


u0

a

u0
e

u0
r

+ (QSw


Clua
Ixx

0
Clur
Ixx

0
Cmue

Iyy
0

Cnua
Izz

0
Cnur

Izz




b

cA

b

)
−1

·(K

∣∣∣∣∣∣∣∣∣∣∣∣


wp

wq

wr


∣∣∣∣∣∣∣∣∣∣∣∣
σ

·sign(


wp

wq

wr

) +


.
pr
.
qr
.
rr

−


.
p0
.
q0
.
r0

) (47)
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In Equation (47),
.
x0

2 =
[ .
p0

.
q0

.
r0

]T
and

.
xr

2 =
[ .
pr

.
qr

.
rr
]T

can be calculated by using different
approaches. In this paper, they are obtained by the following washout filter.

sZ(s) =
sω2

n

s2 + 2δnωn +ω2
n

(48)

where ωn denotes the natural angular frequency of the filter and δn denotes the damping ratio of the

filter. u0 =
[
u0

a u0
e u0

r

]T
is obtained by Z(s).

Z(s) =
ω2

n

s2 + 2δnωn +ω2
n

(49)

In Equation (47), it is obvious that the term
.
xr

2 −
.
x0

2 is the differential tracking error of the inner

loop, denoted by
.
e2 =

[ .
ep

.
eq

.
er
]T

. Then, we can use Equations (42) and (43) to transform it into the

PPB-transformed differential error of the inner loop, denoted by
.

w2 =
[ .
wp

.
wq

.
wr

]T
. Hence, Equation (47)

can be rewritten as

u = u0 + g−1
2 (υw

n +
.

w2) = u0 + g−1
2 υw

2

=


u0

a

u0
e

u0
r

+ (QSw


Clua
Ixx

0
Clur
Ixx

0
Cmue
Iyy

0
Cnua
Izz

0
Cnur
Izz




b
cA

b

)−1
·(K

∣∣∣∣∣∣∣∣∣∣


wp

wq

wr


∣∣∣∣∣∣∣∣∣∣
σ

·sign(


wp

wq

wr

) +


.
wr

p
.

wr
q

.
wr

r

−


.
w0

p
.

w0
q

.
w0

r

) (50)

υw
2 = υw

n +
.

w2 (51)

Considering the actuator faults, fault-tolerant control should be designed for the system.
The flying-wing aircraft with redundancy configuration control actuators can be designed through
the control allocation strategy, so that the control signal can be allocated to each operation surface
reasonably and effectively. Moreover, the control effect of the actuator fault can be compensated.

Partial loss of effectiveness and stuck types of actuator faults are considered in this paper. We note
ual, uar, uel1, uel2, uer1, uer2, url and urr as the deflections of left aileron, right aileron, left elevator, left
elevon, right elevator, right elevon, left and right drag rudders of the flying-wing aircraft, respectively.
The control allocation without actuator fault can be shown as Equation (52).

ua = (uc)al − (uc)ar, (uc)al = −(uc)ar = 0.5·ua

ue = (uc)el1 + (uc)el2 + (uc)er1 + (uc)er2, (uc)el1 = (uc)el2 = (uc)er1 = (uc)er2 = 0.25·ue

ur = (uc)rl + (uc)rr, rank(diag[(uc)rl, (uc)rr]) = 1
(52)

where (uc)al, (uc)ar (uc)el1, (uc)el2, (uc)er1, (uc)er2, (uc)rl and (uc)rr denote the deflections of
aforementioned control surfaces without fault, uc is the fault-free actuator. The control allocation
scheme without actuator fault is shown in Figure 4.

The control allocation scheme is able to adjust at any time according to different faults. Suppose
that the left aileron loses its 40% efficiency and the left elevator is stuck at Ks. Equation (52) can be
rewritten as Equation (53), and the deflections of u = [ua ue ur]

T can maintain stability.

ua = 0.6·(uc)al − (1 + 0.4)·(uc)ar, (uc)al = −(uc)ar = 0.5·ua

ue = (
(uc)el2−Ks

3 + (uc)el1) + Ks + (
(uc)el2−Ks

3 + (uc)er1)

+(
(uc)el2−Ks

3 + (uc)er2), (uc)el1 = (uc)el2 = (uc)er1 = (uc)er2 = 0.25·ue

ur = (uc)rl + (uc)rr, rank(diag[(uc)rl, (uc)rr]) = 1

(53)
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5. Attitude Control with Anti-Windup Scheme

When there are saturations in the actuators, the saturation function and dead zone function in the
actuators are noted as

us = sat(u) (54)

ψ(u) = u− us (55)

So Equation (21) can be rewritten as

.
x2 = f2 + g2us (56)

Assumption 2. System (56) is open-loop exponentially stable for r > 0, ‖x2‖ ≤ r; that is, when us = 0,
the origin of

.
x2 = f2 is exponentially stable.

Remark 3. Assumption 2 is usually raised to ensure exponential stability of the closed-loop system with input
saturations. In aircraft control, it can be achieved by the augmentation system if needed.

To limit the degradation of tracking performance when saturations occur, a modified AW
compensator based on IMC is introduced to the PPB-FINDI control scheme.

The AW compensator is shown as Equations (57)–(59).

.
xAW

2 = f2(xAW
2 ) + g2(λ(xAW

2 ) −ψ(u)) (57)

ϑ1 = λ(xAW
2 ) + g−1

2 f2(xAW
2 ) (58)

ϑ2 = xAW
2 (59)

where xAW
2 ∈ Rnx2 is state vector of the compensator; λ(xAW

2 ) is a nonlinear function to be designed;
ϑ1 ∈ Rnu and ϑ2 ∈ Rnx2 are designed to compensate the control input u and output feedback of inner
loop x2.

With consideration of the AW compensator, the PPB-FINDI controller in Equation (50) will be

u = u0 + g−1
2 (υw

n +
.

w2) + ϑ1 = u0 + g−1
2 υw

2 + ϑ1 (60)



Actuators 2020, 9, 70 12 of 21

λ(xAW
2 ) is designed to ensure Equation (61) is exponentially stable when ψ(u) = 0.

.
xAW

2 = f2(xAW
2 ) + g2λ(xAW

2 ) (61)

We use the auxiliary linear performance index d = Cdx to design λ(xAW
2 ), in which Cd is a constant

matrix. Then, according to Theorem 2 in [34], an inequality (62) concerning λ(xAW
2 ) is satisfied for

xAW
2 , 0 and ∀x2.

∂V(xAW
2 )

∂xAW
2

[ f (xAW
2 ) + g2λ(xAW

2 ) + (xAW
2 )

TCT
d CdxAW

2 ] 1
2 [
∂V(xAW

2 )

∂xAW
2

g2 − λT(xAW
2 )W] 0

∗ −(W − κ
2 ) −

1
2 W

∗ ∗ −η2I

 < 0 (62)

where V(xAW
2 ) > 0 is a Lyapunov function about xAW

2 ; W > 0 is a diagonal matrix; κ > 0 is a scalar;
η ≥ 0 is a constant that denotes L2-gain of the closed-loop system.

Remark 4. Theorem 2 in [34] proposes a potential tool for AW compensator design. The design of λ(xAW
2 ) can

be determined by minimizing η of L2-gain through the optimal problem.

Remark 5. The problem of minimizing η of L2-gain, subject to inequality (62) is difficult and is unlikely to be
convex. V(xAW

2 ) and λ(xAW
2 ) are the optimization variables. It is possible to search for them together; however,

this would be computationally demanding and ineffective.

From the practical point of view, we can solve the optimal problem of η by Genetic Algorithms
(GAs) [38], then λ(xAW

2 ) can be determined by Equations (63) and (64).

λ(xAW
2 ) = −gT

2

∂V(xAW
2 )

∂xAW
2

(63)

V(xAW
2 ) = (xAW

2 )
T

PxAW
2 (64)

where P is a positive define matrix and the design of λ(xAW
2 ) is transformed into the choice of P. It is

chosen by the optimal condition of minimizing η of L2-gain. P is selected as a diagonal matrix based
on the genetic and evolutionary principles shown in [39].

6. Simulations

In this section, five simulation studies are given to prove the advantages of the proposed method
for flying-wing aircraft. The aircraft parameters are given as γ = 0◦, χ = 0◦, Sw = 16.54 m2,
b = 9.44 m, cA = 2.34 m, Ixx = 6320 kg·m2, Iyy = 1010 kg·m2, Izz = 1010 kg·m2, ρ = 0.3639 kg·m−3,
V = 177 m·s−1 zT = −0.117, Tmax = 4900 N, uth = 0.3014, Clβ = −0.000296, Clua

= −0.0017,
Clur

= 0.0006, Clp = −0.2247, Clr = 0.1017, Cm0 = 0.006, Cmα = −0.0036, Cm .
α
= −0.1275, Cmq = −5.1447,

Cmue = −0.00125, Cnβ = 0.0000236, Cnua = 0.000015, Cnur = −0.0011, Cnp = −0.0208, Cnr = −0.0045.
In simulation 1, we compare the control performance of the outer loop between PPB-NDI and

regular NDI. The reference signals are µr = 5 sin(0.75t), αr = 5 sin(0.75t) and βr = 0◦. The parameters
of the PID controller for x2 = [µ α β]T are 20, 0.5, 3; 20, 1, 2; 10, 0.5, 2 and the filter coefficient is 100.
The PPB parameters for µ, α and β are ε(t) = 1.1e(−0.5t), ζ = 0.2 and ζ = 0.3.

Figures 5 and 6 show the tracking response of µ, α, β. µ and α in Figure 5 can track their desired
references. Therefore, the regular NDI controller can guarantee the system performance in µ and α
without model uncertainties in the outer loop. In Figure 6, it can be seen that β in the no PPB case does
not track the reference signal well. This indicates the effectiveness of the PPB control.
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In simulation 2, we compare the performance of inner control between PPB-FINDI and regular
FINDI. The reference signals and the PID parameters are the same as simulation 1. The FINDI
parameters are K = 10, σ = 1, Z(s) = 625

s2+40s+625 and sZ(s) = 625s
s2+40s+625 . For p, the PPB parameters

are chosen as: εp(t) = 4.4e(−t) + 1.3, ζ
p
= 0.5 and ζp = 0.7. For q, the PPB parameters are chosen

as: εq(t) = 2.4e(−t) + 1.3, ζ
q
= 0.3 and ζq = 0.5. For r, the PPB parameters are chosen as: εr(t) =

0.22e(−t) + 0.03, ζ
r
= 0.8 and ζr = 0.85.

Figures 7–9 show the tracking response of p, q, r. In Figures 7 and 8, compared with the PPB case,
the performance in the no PPB case is worse, especially at the beginning of the simulation. In Figure 9,
with the no PPB case, r cannot track the reference well. While in the PPB case, the performance is much
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better, the prescribed performance output tracking is achieved. To illustrate the superiority of PPB,
Figure 10 shows the tracking error of r. The tracking error in the no PPB case is beyond the bound a
lot at the beginning of the simulation. In addition, when steady state is reached, the tracking error is
still outside the steady-state bound. While in the PPB case, the tracking error is restrained within the
bound. In conclusion, by the constraint of PPB, both the transient and steady state performance are
improved obviously.
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In simulation 3, we compare the performance with actuator saturations between the PPB-FINDI
combined AW compensator and the PPB-FINDI scheme. The reference signals are µr = 5 sin(0.2t),
αr = 5 sin(0.2t) and βr = 0, P = diag(348.0325, 289.0897, 76.6576); other parameters are the same as
simulation 2.

Figures 11 and 12 show the response of x = [µ α β p q r]T in two-loop control. In the case of no AW
compensator, when there are actuator saturations, the simulation stops in 40 s and the values of some
state variables change abruptly (the values of p and r change into infinity). The system is unstable
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without the AW compensator in this simulation, while in the case of AW compensator, the closed-loop
output can still follow the reference well when saturations occur. It is obvious that the AW compensator
can improve the tracking performance of controllers and solve the actuator saturations problem.
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In simulation 4, we focus on the compensation of the faulty actuator by control allocation in the
inner loop. The reference signals and other control parameters are the same as simulation 3. The faults
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of the actuators are: the left elevator is stuck at −7
◦

at 20 s and the right elevator loses its 60% efficiency
at 40 s.

Figure 13 shows the deflections of the actuators. It can be seen that when faults occur in an
actuator, other actuators will compensate the efficiency lost by the faulty actuator. Figure 14 shows
that the control allocation has a good effect in dealing with actuator faults.
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In simulation 5, we focus on the control characteristics of the proposed method with step inputs.

The reference signals are µr =

{
0.1 t > 0
0 t = 0

, αr =

{
0.1 t > 0
0 t = 0

and βr = 0◦, t denotes the time.

Other control parameters are the same as simulation 4.
Figures 15 and 16 show the case of tracking response without PPB control; we can see that

the attitude angles can track the reference inputs, but the overshoots are big, and it is obvious that
the tracking errors of angle rates are unacceptably high in the beginning. In Figures 17 and 18,
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the outputs can track the reference inputs much better than Figures 15 and 16 because of the PPB
control. This indicates the effectiveness of the PPB control with the step inputs.
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7. Conclusions

The proposed FINDI and NDI flight control laws based on PPB transformation are used in the
nonlinear flying-wing aircraft to guarantee transient performance. In addition, optimal IMC-based
anti-windup and control allocation schemes are introduced to compensate multiple actuator saturations
and faults. Simulation results indicate the validity and effectiveness of the proposed method.

Although the simulation results are quite good in this paper, the proposed method should be
tested by flight experiment; hardware in loop simulation will be studied next following the research
project schedule. On the other hand, we only consider the attitude control of the flying-wing aircraft in
this paper; aircraft position control should be studied next, so there will be two more control loops,
the position and flight path control loop, to be considered.
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