A Compact Adjustable Stiffness Rotary Actuator Based on Linear Springs: Working Principle, Design, and Experimental Verification
Abstract
:1. Introduction
2. Mechanical Design of the ASRA
2.1. Design Description
2.2. Working Principle
2.3. Prototype Fabrication
3. Design ARSA for the Flexible Joint
3.1. Dynamic Model
3.2. Stiffness Model
4. Control of the ARSA
5. Experiment and Results
5.1. Smooth Multi-Step Tracking
5.2. Sinusoidal Tracking
5.3. Actual Stiffness Reflection
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, Y.-F.; Chu, C.-Y.; Xu, J.-Y.; Lan, C.-C. A Humanoid Robotic Wrist With Two-Dimensional Series Elastic Actuation for Accurate Force/Torque Interaction. IEEE/ASME Trans. Mechatron. 2016, 21, 1315–1325. [Google Scholar] [CrossRef]
- Groothuis, S.S.; Rusticelli, G.; Zucchelli, A.; Stramigioli, S.; Carloni, R. The Variable Stiffness Actuator vsaUT-II: Mechanical Design, Modeling, and Identification. IEEE/ASME Trans. Mechatron. 2014, 19, 589–597. [Google Scholar] [CrossRef]
- Groothuis, S.; Carloni, R.; Stramigioli, S. A Novel Variable Stiffness Mechanism Capable of an Infinite Stiffness Range and Unlimited Decoupled Output Motion. Actuators 2014, 3, 107–123. [Google Scholar] [CrossRef]
- Malosio, M.; Spagnuolo, G.; Prini, A.; Molinari Tosatti, L.; Legnani, G. Principle of operation of RotWWC-VSA, a multi-turn rotational variable stiffness actuator. Mech. Mach. Theory 2017, 116, 34–49. [Google Scholar] [CrossRef]
- Cestari, M.; Sanz-Merodio, D.; Garcia, E. A New and Versatile Adjustable Rigidity Actuator with Add-on Locking Mechanism (ARES-XL). Actuators 2018, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Jafari, A.; Tsagarakis, N.G.; Caldwell, D.G. A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS). IEEE/ASME Trans. Mechatron. 2013, 18, 355–365. [Google Scholar] [CrossRef]
- Seo, J.; Kim, J.; Park, S.; Cho, J. A SLIP-based Robot Leg for Decoupled Spring-like Behavior: Design and Evaluation. Int. J. Control Autom. Syst. 2019, 17, 2388–2399. [Google Scholar] [CrossRef]
- DeBoon, B.; Nokleby, S.; Delfa, N.L.; Rossa, C. Differentially-Clutched Series Elastic Actuator for Robot-Aided Musculoskeletal Rehabilitation. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 1507–1513. [Google Scholar]
- Yu, H. A Novel Compact Compliant Actuator Design for Rehabilitation Robots. In Proceedings of the IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar]
- Yu, H.; Huang, S.; Chen, G.; Thakor, N. Control design of a novel compliant actuator for rehabilitation robots. Mechatronics 2013, 23, 1072–1083. [Google Scholar] [CrossRef]
- Zhu, T.; Xia, Z.; Dong, J.; Zhao, Q. A Sociable Human-robot Interaction Scheme Based on Body Emotion Analysis. Int. J. Control Autom. Syst. 2019, 17, 474–485. [Google Scholar] [CrossRef]
- Yazdani, M.; Salarieh, H.; Foumani, M.S. Bio-inspired Decentralized Architecture for Walking of a 5-link Biped Robot with Compliant Knee Joints. Int. J. Control Autom. Syst. 2018, 16, 2935–2947. [Google Scholar] [CrossRef]
- Kim, B.H. Analysis on Effective Rehabilitation of Human Arms Using Compliant Strap. Int. J. Control Autom. Syst. 2018, 16, 2958–2965. [Google Scholar] [CrossRef]
- Su, H.; Sandoval, J.; Vieyres, P.; Poisson, G.; Ferrigno, G.; Momi, E.D. Safety-enhanced Collaborative Framework for Tele-operated Minimally Invasive Surgery Using a 7-DoF Torque-controlled Robot. Int. J. Control Autom. Syst. 2018, 16, 2915–2923. [Google Scholar] [CrossRef]
- Vo, C.P.; To, X.D.; Ahn, K.K. Variable Impedance Control for a Robotic Leg with External Uncertainties. In Proceedings of the IEEE 23rd International Conference on Mechatronics Technology (ICMT), Salerno, Italy, 23–26 October 2019; pp. 1–5. [Google Scholar]
- Lavate, S.; Todkar, R. Variable Stiffness Actuators: A General Review. Int. J. Eng. Res. 2015, 4, 201–205. [Google Scholar]
- Marchal-Crespo, L.; Reinkensmeyer, D.J. Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 2009, 6, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.; Grioli, G.; Eiberger, O.; Friedl, W.; Grebenstein, M.; Hoppner, H.; Burdet, E.; Caldwell, D.G.; Carloni, R.; Catalano, M.G.; et al. Variable Stiffness Actuators: Review on Design and Components. IEEE/ASME Trans. Mechatron. 2016, 21, 2418–2430. [Google Scholar] [CrossRef]
- Tagliamonte, N.L.; Sergi, F.; Accoto, D.; Carpino, G.; Guglielmelli, E. Double actuation architectures for rendering variable impedance in compliant robots: A review. Mechatronics 2012, 22, 1187–1203. [Google Scholar] [CrossRef]
- Kim, B.; Song, J. Design and Control of a Variable Stiffness Actuator Based on Adjustable Moment Arm. IEEE Trans. Robot. 2012, 28, 1145–1151. [Google Scholar]
- Ham, R.V.; Vanderborght, B.; Damme, M.V.; Verrelst, B.; Lefeber, D. MACCEPA: The mechanically adjustable compliance and controllable equilibrium position actuator for ‘controlled passive walking’. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, FL, USA, 15–19 May 2006; pp. 2195–2200. [Google Scholar]
- Van Ham, R.; Vanderborght, B.; Van Damme, M.; Verrelst, B.; Lefeber, D. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robot. Auton. Syst. 2007, 55, 761–768. [Google Scholar] [CrossRef]
- Lee, H.; Moon, J.; Kang, T. Design of a Series Elastic Tendon Actuator Based on Gait Analysis for a Walking Assistance Exosuit. Int. J. Control Autom. Syst. 2019, 17, 2940–2947. [Google Scholar] [CrossRef]
- Ham, R.; Sugar, T.; Vanderborght, B.; Hollander, K.; Lefeber, D. Compliant actuator designs. IEEE Robot. Autom. Mag. 2009, 16, 81–94. [Google Scholar] [CrossRef]
- Vanderborght, B.; Tsagarakis, N.G.; Semini, C.; Ham, R.V.; Caldwell, D.G. MACCEPA 2.0: Adjustable compliant actuator with stiffening characteristic for energy efficient hopping. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 544–549. [Google Scholar]
- Hirzinger, S.W.a.G. A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, 19–23 May 2008; pp. 1741–1746. [Google Scholar]
- Wolf, S.; Feenders, J. Modeling and benchmarking energy efficiency of Variable Stiffness Actuators on the example of the DLR FSJ. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 529–536. [Google Scholar]
- Kim, B.; Song, J. Hybrid dual actuator unit: A design of a variable stiffness actuator based on an adjustable moment arm mechanism. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 1655–1660. [Google Scholar]
- Grioli, G.; Wolf, S.; Garabini, M.; Catalano, M.; Burdet, E.; Caldwell, D.; Carloni, R.; Friedl, W.; Grebenstein, M.; Laffranchi, M.; et al. Variable stiffness actuators: The user’s point of view. Int. J. Robot. Res. 2015, 34, 727–743. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Hong, S.; Lee, W.; Kang, S.; Kim, M. A Robot Joint With Variable Stiffness Using Leaf Springs. IEEE Trans. Robot. 2011, 27, 229–238. [Google Scholar] [CrossRef]
- Jin, H.Z.; Yang, D.C.; Zhang, H.; Liu, Z.X.; Zhao, J. Flexible Actuator With Variable Stiffness and Its Decoupling Control Algorithm: Principle Prototype Design and Experimental Verification. IEEE/ASME Trans. Mechatron. 2018, 23, 1279–1291. [Google Scholar] [CrossRef]
- Tonietti, G.; Schiavi, R.; Bicchi, A. Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction. In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 526–531. [Google Scholar]
- Schiavi, R.; Grioli, G.; Sen, S.; Bicchi, A. VSA-II: A Novel Prototype of Variable Stiffness Actuator for Safe and Performing Robots Interacting with Humans. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 2171–2176. [Google Scholar]
- Sun, J.T.; Guo, Z.; Zhang, Y.B.; Xiao, X.H.; Tan, J.R. A Novel Design of Serial Variable Stiffness Actuator Based on an Archimedean Spiral Relocation Mechanism. IEEE/ASME Trans. Mechatron. 2018, 23, 2121–2131. [Google Scholar] [CrossRef]
- Sun, J.T.; Guo, Z.; Sun, D.Y.; He, S.Y.; Xiao, X.H. Design, modeling and control of a novel compact, energy-efficient, and rotational serial variable stiffness actuator (SVSA-II). Mech. Mach. Theory 2018, 130, 123–136. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, C.; Wang, Y.; Liu, B. A Finite-Time Control for a Pneumatic Cylinder Servo System Based on a Super-Twisting Extended State Observer. IEEE Trans. Syst. Man Cybern. Syst. 2019, 1–10. [Google Scholar] [CrossRef]
- Vo, C.P.; To, X.D.; Ahn, K.K. A Novel Adaptive Gain Integral Terminal Sliding Mode Control Scheme of a Pneumatic Artificial Muscle System With Time-Delay Estimation. IEEE Access 2019, 7, 141133–141143. [Google Scholar] [CrossRef]
- Saleh, M. Adaptive Global Terminal Sliding Mode Control Scheme with Improved Dynamic Surface for Uncertain Nonlinear Systems. Int. J. Control Autom. Syst. 2018, 16, 1692–1700. [Google Scholar]
- Vo, C.P.; To, X.D.; Ahn, K.K. A Novel Force Sensorless Reflecting Control for Bilateral Haptic Teleoperation System. IEEE Access 2020, 8, 96515–96527. [Google Scholar] [CrossRef]
Parameter | Description | Value | Unit |
---|---|---|---|
θ | Angular deflection between an immediate link and output link | 28.6 | degree |
r | Radius of the rotary disk | 25 | mm |
d0 | Initial length in case of maximum cylinder retracting | 230 | mm |
y | Motion range of the cylinder | 80 | mm |
d1 | Length of the long hinge joint | 100 | mm |
d2 | Length of the short hinge joint | 300 | mm |
l | Range of motion of the circular module | 10 | mm |
L | Initial length of the spring | 40 | mm |
L1 | Compression length of each pair of the springs | ||
L2 | Extension length of each pair of the springs | ||
R | Distance from an applied force of springs to the joint center | 40 | mm |
η | Ratio lead of the lead screw | 2 | mm |
n | Ratio of the gearbox | 35:1 | |
a | Initial distance from the circular module to a rotary joint center | 56.5 | mm |
Weight of the ASRA | 0.677 | kg | |
b | Long bar length | 130 | mm |
d | Short-bars length | 52 | mm |
c | Range of motion of the screw nut | 25 | mm |
Ks | Inherent spring stiffness | 4650 | N/m |
Device | Description |
---|---|
Motor | Type: Maxon DCX26L-GB-KL-24V with Gear ratio: 35:1 |
Nominal speed: 5060 rpm; Nominal torque: 32.6 mNm | |
Optical encoder: 4096 pulses/per | |
Cylinder | Type: Festo DSNU-S-16-25-P-A Piston diameter: 20 mm; Stroke length: 100 mm |
Motor driver | Type: Robot Electronics MD-03 Power supply: 24 V, 20 A |
PPR Valve | Type: Festo MPYE-5-1/8-LF-010-B |
Max pressure: 10 bar; Power supply: 24 V | |
DAQ Card | NI-6229 AI/AO: 12 bits (resolution) |
MEASUREMENT PCI-QUAD04 | |
Loadcell | Type: Bongshin CDFSA-10; Rated output: 1.0 mV/V |
Position transducer | Type: TR-100; Length: 100 mm |
Rotary encoder | Type: E40H12-1024-3-V-5; Resolution: 4096 pulses |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, C.P.; Phan, V.D.; Nguyen, T.H.; Ahn, K.K. A Compact Adjustable Stiffness Rotary Actuator Based on Linear Springs: Working Principle, Design, and Experimental Verification. Actuators 2020, 9, 141. https://doi.org/10.3390/act9040141
Vo CP, Phan VD, Nguyen TH, Ahn KK. A Compact Adjustable Stiffness Rotary Actuator Based on Linear Springs: Working Principle, Design, and Experimental Verification. Actuators. 2020; 9(4):141. https://doi.org/10.3390/act9040141
Chicago/Turabian StyleVo, Cong Phat, Van Du Phan, Thanh Ha Nguyen, and Kyoung Kwan Ahn. 2020. "A Compact Adjustable Stiffness Rotary Actuator Based on Linear Springs: Working Principle, Design, and Experimental Verification" Actuators 9, no. 4: 141. https://doi.org/10.3390/act9040141
APA StyleVo, C. P., Phan, V. D., Nguyen, T. H., & Ahn, K. K. (2020). A Compact Adjustable Stiffness Rotary Actuator Based on Linear Springs: Working Principle, Design, and Experimental Verification. Actuators, 9(4), 141. https://doi.org/10.3390/act9040141