Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeasts Strains and Maintenance Conditions
2.2. Fermentation Media
2.3. Fermentation Trials
2.4. Analysis of Fermentation Metabolites by Liquid Chromatography
2.5. Analysis of Volatile Compounds by Gas Chromatography/Mass Spectrometry
2.6. Experimental Design
2.7. Data Analysis Workflow
3. Results and Discussion
3.1. Exploratory Data Analysis
3.2. Unsupervised Machine Learning
3.3. Supervised Machine Learning
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fleet, G.H. Wine yeasts for the future. FEMS Yeast Res. 2008, 8, 979–995. [Google Scholar] [CrossRef] [Green Version]
- Comitini, F.; Capece, A.; Ciani, M.; Romano, P. New insights on the use of wine yeasts. Curr. Opin. Food Sci. 2017, 13, 44–49. [Google Scholar] [CrossRef]
- Gobert, A.; Tourdot-Marechal, R.; Morge, C.; Sparrow, C.; Liu, Y.; Quintanilla-Casas, B.; Vichi, S.; Alexandre, H. Non-Saccharomyces yeasts nitrogen source preferences: Impact on sequential fermentation and wine volatile compounds profile. Front. Microbiol. 2017, 8, 2175. [Google Scholar] [CrossRef] [Green Version]
- Maturano, Y.P.; Mestre, M.V.; Kuchen, B.; Toro, M.E.; Mercado, L.A.; Vazquez, F.; Combina, M. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts. Int. J. Food Microbiol. 2018, 289, 40–48. [Google Scholar] [CrossRef]
- Vejarano, R. Non-Saccharomyces in Winemaking: Source of Mannoproteins, Nitrogen, Enzymes, and Antimicrobial Compounds. Fermentation 2020, 6, 76. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; Clímaco, M.C.; Mendes-Faia, A. The role of non-Saccharomyces species in releasing glycosidic bound fraction of grape aroma components—A preliminary study. J. Appl. Microbiol. 2001, 91, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Viana, F.; Gil, J.; Genovés, S.; Vallés, S.; Manzanares, P. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol. 2008, 25, 778–785. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Navascués, E.; Marquina, D.; Santos, A. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity. Int. J. Food Microbiol. 2016, 225, 1–8. [Google Scholar] [CrossRef]
- Ciani, M.; Comitini, F. Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. A review. Ann. Microbiol. 2011, 61, 25–32. [Google Scholar] [CrossRef]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Roudil, L.; Russo, P.; Berbegal, C.; Albertin, W.; Spano, G.; Capozzi, V. Non-Saccharomyces Commercial Starter Cultures: Scientific Trends, Recent Patents and Innovation in the Wine Sector. Recent Pat. Food Nutr. Agric. 2020, 11, 27–39. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; del Olmo, M.; García-Martínez, J.; Jiménez-Martí, E.; Mendes-Faia, A.; Pérez-Ortín, J.; Leão, C. Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Appl. Environ. Microbiol. 2007, 73, 3049–3060. [Google Scholar] [CrossRef] [Green Version]
- Zuzuarregui, A.; Monteoliva, L.; Gil, C.; del Olmo, M. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl. Environ. Microbiol. 2006, 72, 836–847. [Google Scholar] [CrossRef] [Green Version]
- Richter, C.L.; Dunn, B.; Sherlock, G.; Pugh, T. Comparative metabolic footprinting of a large number of commercial wine yeast strains in Chardonnay fermentations. FEMS Yeast Res. 2013, 13, 394–410. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, C.; Lage, P.; Vilela, A.; Mendes-Faia, A.; Mendes-Ferreira, A. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts. AMB Express 2014, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, C.; Mendes-Faia, A.; Mendes-Ferreira, A. The nitrogen source impacts major volatile compounds released by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol. 2012, 160, 87–93. [Google Scholar] [CrossRef]
- Lage, P.; Mateus, B.; Barbosa, C.; Vasconcelos, I.; Mendes-Faia, A.; Mendes-Ferreira, A. H. guilliermondii impacts growth kinetics and metabolic activity of S. cerevisiae: The role of initial nitrogen concentration. Int. J. Food Microbiol. 2014, 172, 62–69. [Google Scholar] [CrossRef]
- Seguinot, P.; Rollero, S.; Sanchez, I.; Sablayrolles, J.-M.; Ortiz-Julien, A.; Camarasa, C.; Mouret, J.-R. Impact of the timing and the nature of nitrogen additions on the production kinetics of fermentative aromas by Saccharomyces cerevisiae during winemaking fermentation in synthetic media. Food Microbiol. 2018, 76, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Rollero, S.; Bloem, A.; Ortiz-Julien, A.; Camarasa, C.; Divol, B. Fermentation performances and aroma production of non-conventional wine yeasts are influenced by nitrogen preferences. FEMS Yeast Res. 2018, 18, foy055. [Google Scholar] [CrossRef] [Green Version]
- Medina, K.; Boido, E.; Dellacassa, E.; Carrau, F. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation. Int. J. Food Microbiol. 2012, 157, 245–250. [Google Scholar] [CrossRef]
- Lleixà, J.; Manzano, M.; Mas, A.; Portillo, M.C. Saccharomyces and non-Saccharomyces Competition during Microvinification under Different Sugar and Nitrogen Conditions. Front. Microbiol. 2016, 7, 1959. [Google Scholar] [CrossRef]
- Esteves, M.; Barbosa, C.; Vasconcelos, I.; Tavares, M.J.; Mendes-Faia, A.; Mira, N.P.; Mendes-Ferreira, A. Characterizing the Potential of the Non-Conventional Yeast Saccharomycodes ludwigii UTAD17 in Winemaking. Microorganisms 2019, 7, 478. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, C.; García-Martínez, J.; Pérez-Ortín, J.E.; Mendes-Ferreira, A. Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availability. PLoS ONE 2015, 10, e0122709. [Google Scholar] [CrossRef] [Green Version]
- Contreras, A.; Curtin, C.; Varela, C. Yeast population dynamics reveal a potential ‘collaboration’ between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 1885–1895. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef] [Green Version]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. Yeast and biochemistry of ethanol fermentation. In Principles and Practices of Winemaking; Chapman & Hall: London, UK, 1996; pp. 102–181. [Google Scholar]
- Arroyo-López, F.N.; Orlić, S.; Querol, A.; Barrio, E. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. Int. J. Food Microbiol. 2009, 131, 120–127. [Google Scholar] [CrossRef]
- Swiegers, J.; Bartowsky, E.; Henschke, P.A.; Pretorius, I. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Nordström, K. Formation of Esters from Alcohols By Brewer’s Yeast. J. Inst. Brew. 1964, 70, 328–336. [Google Scholar] [CrossRef]
- Remize, F.; Sablayrolles, J.M.; Dequin, S. Re-assessment of the influence of yeast strain and environmental factors on glycerol production in wine. J. Appl. Microbiol. 2000, 88, 371–378. [Google Scholar] [CrossRef]
- Llauradó, J.M.; Rozés, N.; Bobet, R.; Mas, A.; Constantí, M. Low temperature alcoholic fermentation in high sugar concentration grape must. J. Food Sci. 2002, 67, 268–273. [Google Scholar] [CrossRef]
- Pérez-Nevado, F.; Albergaria, H.; Hogg, T.; Girio, F. Cellular death of two non-Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae. Int. J. Food Microbiol. 2006, 108, 336–345. [Google Scholar]
- Tondini, F.; Lang, T.; Chen, L.; Herderich, M.; Jiranek, V. Linking gene expression and oenological traits: Comparison between Torulaspora delbrueckii and Saccharomyces cerevisiae strains. Int. J. Food Microbiol. 2019, 294, 42–49. [Google Scholar] [CrossRef]
- Seixas, I.; Barbosa, C.; Mendes-Faia, A.; Güldener, U.; Tenreiro, R.; Mendes-Ferreira, A.; Mira, N.P. Genome sequence of the non-conventional wine yeast Hanseniaspora guilliermondii UTAD222 unveils relevant traits of this species and of the Hanseniaspora genus in the context of wine fermentation. DNA Res. 2019, 26, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Heard, G.M.; Fleet, G.H. The Effects of Temperature and pH on the Growth of Yeast Species during the Fermentation of Grape Juice. J. Appl. Bacteriol. 1988, 65, 23–28. [Google Scholar] [CrossRef]
- Andorrà, I.; Landi, S.; Mas, A.; Esteve-Zarzoso, B.; Guillamón, J.M. Effect of Fermentation Temperature on Microbial Population Evolution Using Culture-Independent and Dependent Techniques. Int. Food Res. J. 2010, 43, 773–779. [Google Scholar] [CrossRef]
- Salvadó, Z.; Arroyo-López, F.N.; Guillamón, J.M.; Salazar, G.; Querol, A.; Barrio, E. Temperature adaptation markedly determines evolution within the genus Saccharomyces. Appl. Environ. Microbiol. 2011, 77, 2292–2302. [Google Scholar] [CrossRef] [Green Version]
- Torija, M.J.; Rozés, N.; Poblet, M.; Guillamón, J.M.; Mas, A. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int. J. Food Microbiol. 2003, 85, 127–136. [Google Scholar] [CrossRef]
- Beltran, G.; Novo, M.; Guillamón, J.M.; Mas, A.; Rozès, N. Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int. J. Food Microbiol. 2008, 31, 169–177. [Google Scholar] [CrossRef]
- Ivit, N.N.; Longo, R.; Kemp, B. The Effect of Non-Saccharomyces and Saccharomyces Non-Cerevisiae Yeasts on Ethanol and Glycerol Levels in Wine. Fermentation 2020, 6, 77. [Google Scholar] [CrossRef]
- Clauset, A.; Moore, C.; Newman, M.E.J. Hierarchical structure and the prediction of missing links in networks. Nature 2008, 453, 98–101. [Google Scholar] [CrossRef]
- Guimerà, R.; Amaral, L.A.N. Functional cartography of complex metabolic netwoks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Ravasz, E.; Somera, A.L.; Mongru, D.A.; Oltvai, Z.N.; Barabási, A.L. Hierarchical Organization of Modularity in Metabolic Networks. Science 2002, 297, 1551–1555. [Google Scholar] [CrossRef] [Green Version]
- Reis, M.S. Network-Induced Supervised Learning: Network-Induced Classification (NI-C) and Network-Induced Regression (NI-R). AIChE J. 2013, 59, 1570–1587. [Google Scholar] [CrossRef]
- Neto, L.; Mendes-Ferreira, A.A. Pesquisa de atividade sulfito redutase em leveduras de origem enológica. Ciênc. Tecnol. Aliment. 2005, 25, 275–278. [Google Scholar] [CrossRef] [Green Version]
- Henschke, P.A.; Jiranek, V. Yeasts—Metabolism of nitrogen compounds. In Wine Microbiology and Biotechnology; Fleet, G.H., Ed.; Harwood Academic Publishers: Chur, Switzerland, 1993; pp. 77–164. [Google Scholar]
- Moreira, N.; Pina, C.; Mendes, F.; Couto, J.A.; Hogg, T.; Vasconcelos, I. Volatile Compounds Contribution of Hanseniaspora guilliermondii and Hanseniaspora uvarum during Red Wine Vinifications. Food Control 2011, 22, 62–67. [Google Scholar] [CrossRef]
- Jackson, J.E. A User’s Guide to Principal Components; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Reis, M.S.; Saraiva, P.M. Multivariate and Multiscale Data Analysis. In Statistical Practice in Business and Industry; Coleman, S., Greenfield, T., Stewardson, D., Montgomery, D.C., Eds.; Wiley: Chichester, UK, 2008; pp. 337–370. [Google Scholar]
- Mendes-Ferreira, A.; Barbosa, C.; Falco, V.; Mendes-Faia, A.; Leão, C. The production of hydrogen sulphide and other aroma compounds by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations. J. Ind. Microbiol. Biotechnol. 2009, 36, 571–583. [Google Scholar] [CrossRef]
- Bell, S.-J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; Barbosa, C.; Lage, P.; Mendes-Faia, A. The impact of nitrogen on yeast fermentation and wine quality. Cienc. Tec. Vitivinic. 2011, 26, 17–32. [Google Scholar]
- Rollero, S.; Bloem, A.; Camarasa, C.; Sanchez, I.; Ortiz-Julien, A.; Sablayrolles, J.-M.; Dequin, S.; Mouret, J.-R. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 2291–2304. [Google Scholar] [CrossRef]
- Rojas, V.; Gil, J.V.; Piñaga, F.; Manzanares, P. Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int. J. Food Microbiol. 2003, 86, 181–188. [Google Scholar] [CrossRef]
- Bisson, L.F. Stuck and sluggish fermentations. Am. J. Enol. Vitic. 1999, 50, 107–119. [Google Scholar]
- Varela, C.; Pizarro, F.; Agosin, E. Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts. Appl. Environ. Microbiol. 2004, 3392–3400. [Google Scholar] [CrossRef] [Green Version]
- Mendes-Ferreira, A.; Mendes-Faia, A.; Leão, C. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry. J. Appl. Microbiol. 2004, 97, 540–545. [Google Scholar] [CrossRef]
- Beltran, G.; Esteve-Zarzoso, B.; Rozès, N.; Mas, A.; Guillamón, J.M. Influence of the timing of nitrogen additions during synthetic grape-must fermentations on fermentation kinetics and nitrogen consumption. J. Agric. Food Chem. 2005, 53, 996–1002. [Google Scholar] [CrossRef]
- Bisson, L.F.; Butzke, C.E. Diagnosis and Rectification of Stuck and Sluggish Fermentations. Am. J. Enol. Vitic. 2000, 51, 168–177. [Google Scholar]
- Mouret, J.R.; Camarasa, C.; Angenieux, M.; Aguera, E.; Perez, M.; Farines, V.; Sablayrolles, J.M. Kinetic analysis and gas–liquid balances of the production of fermentative aromas during winemaking fermentations: Effect of assimilable nitrogen and temperature. Food Res. Int. 2014, 62, 1–10. [Google Scholar] [CrossRef]
- Ugliano, M.; Travis, B.; Francis, I.L.; Henschke, P.A. Volatile composition and sensory properties of Shiraz wines as affected by nitrogen supplementation and yeast species: Rationalizing nitrogen modulation of wine aroma. J. Agric. Food Chem. 2010, 58, 2417–2425. [Google Scholar] [CrossRef]
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145–1159. [Google Scholar] [CrossRef]
- Erasmus, D.J.; Van, D.M.G.; Van, V.H.J. Genome-wide expression analyses: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res. 2003, 3, 375–399. [Google Scholar] [CrossRef] [Green Version]
- Blomberg, A.; Adler, L. Physiology of osmotolerance in fungi. Adv. Microb. Physiol. 1992, 33, 145–212. [Google Scholar]
- Romano, P. Function of yeast species and strains in wine flavour. J. Food Microbiol. 2003, 86, 169–180. [Google Scholar] [CrossRef]
- Andorrà, I.; Berradre, M.; Rozès, N.; Mas, A.; Guillamón, J.M.; Esteve-Zarzoso, B. Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. Eur. Food Res. Technol. 2010, 23, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Andorrà, I.; Berradre, M.; Mas, A.; Esteve-Zarzoso, B.; Guillamón, J.M. Effect of mixed culture fermentations on yeast populations and aroma profile. LWT 2012, 49, 8–13. [Google Scholar] [CrossRef]
- Yamaoka, C.; Kurita, O.; Kubo, T. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation. Microbiol. Res. 2014, 169, 907–914. [Google Scholar] [CrossRef]
- Bely, M.; Stoeckle, P.; Masneuf-Pomarède, I.; Dubourdieu, D. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Int. J. Food Microbiol. 2008, 122, 312–320. [Google Scholar] [CrossRef]
- Rantsiou, K.; Dolci, P.; Giacosa, S.; Torchio, F.; Tofalo, R.; Torriani, S.; Suzzi, G.; Rolle, L.; Cocolin, L. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl. Environ. Microbiol. 2012, 78, 1987–1994. [Google Scholar] [CrossRef] [Green Version]
- Viana, F.; Belloch, C.; Vallés, S.; Manzanares, P. Monitoring a mixed starter of Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: Impact on 2-phenylethyl acetate production. Int. J. Food Microbiol. 2011, 151, 235–240. [Google Scholar] [CrossRef]
Level | Sugar (g/L) | YAN (mg/L) | Temperature (°C) | H. guilliermondii (CFU/mL) |
---|---|---|---|---|
−1 | 150 | 100 | 10 | 0 |
0 | 225 | 300 | 20 | 5 × 105 |
1 | 300 | 500 | 30 | 1 × 106 |
Run | Sugars (g/L) | YAN (mg/L) | Temperature (°C) | H. guilliermondii (CFU/mL) |
---|---|---|---|---|
1 | 225 | 300 | 20 | 5 × 105 |
2 | 150 | 100 | 30 | 0 |
3 | 150 | 500 | 10 | 0 |
4 | 150 | 100 | 10 | 0 |
5 | 225 | 300 | 20 | 5 × 105 |
6 | 225 | 300 | 30 | 5 × 105 |
7 | 300 | 500 | 10 | 1 × 106 |
8 | 300 | 100 | 10 | 1 × 106 |
9 | 150 | 100 | 30 | 1 × 106 |
10 | 300 | 500 | 30 | 0 |
11 | 300 | 300 | 20 | 5 × 105 |
12 | 225 | 300 | 20 | 0 |
13 | 225 | 300 | 10 | 5 × 105 |
14 | 225 | 300 | 20 | 5 × 105 |
15 | 225 | 300 | 20 | 1 × 106 |
16 | 150 | 500 | 30 | 0 |
17 | 150 | 500 | 30 | 1 × 106 |
18 | 150 | 500 | 10 | 1 × 106 |
19 | 225 | 300 | 20 | 5 × 105 |
20 | 225 | 300 | 20 | 5 × 105 |
21 | 300 | 500 | 30 | 1 × 106 |
22 | 150 | 300 | 20 | 5 × 105 |
23 | 300 | 100 | 10 | 0 |
24 | 300 | 100 | 30 | 1 × 106 |
25 | 225 | 100 | 20 | 5 × 105 |
26 | 150 | 100 | 10 | 1 × 106 |
27 | 300 | 500 | 10 | 0 |
28 | 225 | 300 | 20 | 5 × 105 |
29 | 300 | 100 | 30 | 0 |
30 | 225 | 300 | 20 | 5 × 105 |
31 | 225 | 500 | 20 | 5 × 105 |
Cluster Id | Cluster Composition | Loadings PC1 | PCA—CumSum of Explain Variance | Model R2 | Selected Regressors | Beta Coefficient | Std. Err | p-Value |
---|---|---|---|---|---|---|---|---|
1 | Ethyl acetate | 1 | 100.0000 | 0.6409 | I | 0.7592 | 0.1132 | 2.81 × 10−7 |
N × I | −0.2088 | 0.0930 | 0.0329 | |||||
2 | R100 | −0.7071 | 83.6559 | 0.9588 | S | −0.6569 | 0.0547 | 2.21 × 10−11 |
MFR | 0.7071 | 100.0000 | N | 0.4962 | 0.0547 | 4.72 × 10−9 | ||
T | 0.8519 | 0.0547 | 1.05 × 10−13 | |||||
I | −0.1458 | 0.0547 | 0.0139 | |||||
N × T | 0.1663 | 0.0450 | 0.0012 | |||||
S2 | −0.2045 | 0.0966 | 0.0452 | |||||
N2 | −0.2727 | 0. 0966 | 0.0096 | |||||
3 | Ethyl hexanoate | 0.3857 | 78.5281 | 0.5956 | N | 0.8544 | 0.2818 | 0.0052 |
Ethyl dodecanoate | 0.3494 | 91.6550 | S2 | −1.9078 | 0.3371 | 4.58 × 10−6 | ||
Isoamyl acetate | 0.4000 | 96.2827 | ||||||
Ethyl octanoate | 0.4157 | 99.0158 | ||||||
Ethyl decanoate | 0.4122 | 99.8665 | ||||||
1-propanol | 0.3231 | 99.9728 | ||||||
Ethyl butanoate | 0.3492 | 100.0000 | ||||||
4 | Ethanol | 0.5446 | 73.0421 | 0.9380 | S | 1.3519 | 0.0723 | 1.32× 10−16 |
Acetic acid | 0.6202 | 91.5613 | I | −0.2347 | 0.0723 | 0.0032 | ||
Glycerol | 0.5646 | 100.000 | N × T | −0.2327 | 0.0594 | 5.76 × 10−4 | ||
S2 | 0.3637 | 0.0864 | 2.71 × 10−4 | |||||
5 | 2-Phenylethanol | 0.3658 | 69.2298 | 0.5323 | N | −1.0532 | 0.2449 | 1.99 × 10−4 |
Phenylethyl acetate | 0.3737 | 86.7186 | T | 0.6838 | 0.2449 | 0.0095 | ||
1-butanol | 0.4725 | 96.9133 | S × I | 0.4231 | 0.2012 | 0.0450 | ||
Amyl alcohol | 0.5063 | 99.4044 | ||||||
Isoamyl alcohol | 0.4969 | 100.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, C.; Ramalhosa, E.; Vasconcelos, I.; Reis, M.; Mendes-Ferreira, A. Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality. Microorganisms 2022, 10, 107. https://doi.org/10.3390/microorganisms10010107
Barbosa C, Ramalhosa E, Vasconcelos I, Reis M, Mendes-Ferreira A. Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality. Microorganisms. 2022; 10(1):107. https://doi.org/10.3390/microorganisms10010107
Chicago/Turabian StyleBarbosa, Catarina, Elsa Ramalhosa, Isabel Vasconcelos, Marco Reis, and Ana Mendes-Ferreira. 2022. "Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality" Microorganisms 10, no. 1: 107. https://doi.org/10.3390/microorganisms10010107
APA StyleBarbosa, C., Ramalhosa, E., Vasconcelos, I., Reis, M., & Mendes-Ferreira, A. (2022). Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality. Microorganisms, 10(1), 107. https://doi.org/10.3390/microorganisms10010107