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Abstract: Puberty is a critical period of development marked by the maturation of the central nervous
system, immune system, and hypothalamic–pituitary–adrenal axis. Due to the maturation of these
fundamental systems, this is a period of development that is particularly sensitive to stressors, in-
creasing susceptibility to neurodevelopmental and neurodegenerative disorders later in life. The gut
microbiome plays a critical role in the regulation of stress and immune responses, and gut dysbiosis
has been implicated in the development of neurodevelopmental and neurodegenerative disorders.
The purpose of this review is to summarize the current knowledge about puberty, neurodegeneration,
and the gut microbiome. We also examine the consequences of pubertal exposure to stress and gut
dysbiosis on the development of neurodevelopmental and neurodegenerative disorders. Understand-
ing how alterations to the gut microbiome, particularly during critical periods of development (i.e.,
puberty), influence the pathogenesis of these disorders may allow for the development of therapeutic
strategies to prevent them.
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1. Introduction

Puberty is a period of development that is accompanied by the maturation of various
fundamental systems including the central nervous system (CNS), immune system, and
hypothalamic-pituitary-adrenal (HPA) axis [1–3]. These fundamental systems develop in a
sexually dimorphic manner which is primarily due to differences in circulating gonadal
hormones [4–6]. The sexually dimorphic nature of the maturation of these systems makes
puberty a period of development that is particularly sensitive to stressors, influencing
the pathogenesis of neurodevelopmental and neurodegenerative disorders (NDs) later
in life, in a sex-specific manner [7,8]. Although the underlying mechanisms explaining
the effects of pubertal stress exposure on these disorders remains unclear, the gut micro-
biome is a potential mechanism involved in their pathogenesis. The gut microbiome hosts
trillions of microorganisms that influence the development and functioning of the CNS,
immune system, and HPA axis [9–11]. Moreover, alterations to the gut microbiome have
been associated with the development of neurodevelopmental and NDs [12–14]. How-
ever, the potential link between puberty, the gut microbiome, neurodegeneration, and
neurodevelopmental disorders has not been extensively explored. As such, the purpose
of this review is to summarize our current understanding of the gut microbiome, puberty,
and neurodegeneration. We also examine how alterations to the gut microbiome during
puberty may influence the pathogenesis of neurodevelopmental and NDs. Furthering our
understanding of how puberty and the gut microbiome are associated with these disorders
may allow for the development of therapeutic strategies that can prevent or mitigate their
effects on brain and behavioral functioning.
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2. Puberty
2.1. Timing and Sex Differences

Puberty is a critical period of development marked by sexual maturation, the devel-
opment of secondary sexual characteristics, the activation of the hypothalamic–pituitary–
gonadal axis, and the production of gonadal steroid hormones [3]. The hypothalamic–
pituitary–gonadal axis initiates puberty by increasing the pulsatile gonadotropin releasing
hormone (GnRH) secretion in the hypothalamus [15]. A key mechanism mediating the
stimulation of GnRH neurons is the neuropeptide kisspeptin. Kisspeptin is a product
of the kiss-1 gene and has been shown to directly stimulate GnRH release by binding to
GPR54, a G protein-coupled receptor that is located on GnRH neurons [16]. Metabolic (i.e.,
leptin, body fat), photoperiodic (i.e., melatonin), and environmental factors (i.e., stress) also
contribute to the activation of GnRH neurons and the timing of pubertal onset [17–19]. The
release of GnRH stimulates the production of luteinizing hormone and follicle stimulating
hormone from the anterior pituitary into the bloodstream. Luteinizing hormone and folli-
cle stimulating hormone then stimulate the gonads to initiate the maturation of gametes
(i.e., gametogenesis) and the production of gonadal steroid hormones such as estradiol,
progesterone, and androgens [20,21].

Increased activation of the hypothalamic–pituitary–gonadal axis and circulating go-
nadal steroid hormones play a central role in the development of secondary sexual char-
acteristics (i.e., enlarged breasts and pubic hair in females and testicular enlargement
and pubic hair in males) and the ability of an organism to reproduce (i.e., menarche in
females and spermarche in males) [22–25]. In humans, this period of maturation typically
begins around the ages of 8–13 in females and 9–14 in males [26]. The timing of puberty
in animals can vary depending on the housing conditions and the strain of the animal. A
non-invasive approach to identify pubertal onset in mice is vaginal opening in females
and preputial descent (i.e., separation of the prepuce to the glans penis) in males [27,28]. It
is estimated that CD1 and C57B1/6 female mice housed in single sex rooms demonstrate
vaginal opening approximately 30 days following birth and have their first estrous cycle
20 days post vaginal-opening (Holder & Blaustein, 2014; Ismail and Blaustein, unpublished
observations). Identifying pubertal onset through preputial separation in male mice is
more difficult, however, measurements of scrotum width in six-week-old male CD1 mice
indicate that the scrotum does not reach adult size until they are eight weeks old (Murray,
Butcher, Kearns, Lamba, Stinzi & Ismail, in preparation).

2.2. Brain Reorganizing and Remodeling

Puberty is also a period during which the brain undergoes significant reorganizing and
remodeling [3]. More specifically, the CNS undergoes significant functional and structural
remodeling during this critical period of development including changes in both grey and
white matter volumes [29]. Alterations in grey and white matter volumes vary by sex and
are associated with the onset of gonadarche, suggesting that circulating gonadal steroid
hormones play a role in brain development [30]. Grey matter volume (GMV) follows an
inverted U-shape trajectory, with peak GMV being attained at the age of 11 for girls and
12 for boys in the frontal, temporal, and parietal lobes [30]. GMV increases in childhood
and reaches its peak in adolescence due to dendritic arborization and synaptogenesis. GMV
then steadily decreases into adulthood due to synaptic pruning [30].

Males typically have greater GMV then females while females have greater gray matter
density then males, an effect that is primarily driven by differences in circulating gonadal
steroid hormones [4]. Testosterone is associated with increases in global GMV, while estra-
diol is associated with decreases in global GMV [31]. The influence of circulating gonadal
steroid hormones on GMV could also be region-specific. Testosterone has been associated
with increases in GMV in the amygdala and decreases in GMV in the hippocampus, while
estradiol has been associated with increases in limbic GMV [32]. Moreover, only males
show increases in GMV in the amygdala during puberty while only females show increases
in GMV in the hippocampus and striatum during puberty [32]. In contrast to GMV, white
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matter volume typically follows a linear trajectory from childhood to adolescence and then
steadily stabilizes into adulthood [33]. Males have greater global white matter volume
then females during puberty due to steeper age-related increases in axonal calibre [34,35].
Moreover, testosterone is associated with increases in white matter volume, while estra-
diol has been associated with either having no effect or a negative effect on white matter
volume [36,37]. As such, circulating gonadal steroid hormones during puberty can have
long-term effects on neurological changes and neural functioning into adulthood.

2.3. Maturation of the HPA Axis and Vulnerability to Stress

A critical neuroendocrine system that develops and matures during puberty is the
HPA axis [2]. The HPA axis is the body’s primary stress processing system that has numer-
ous adaptive physiological processes aimed at regulating allostatic load and maintaining
homeostasis in response to a stressor [38]. These processes include redirecting energy
resources, increasing vasoconstriction, cognition and metabolism, and regulating immune
and reproductive functions [39,40]. When initially exposed to stressful stimuli, a rapid
stress response mediated by the sympathetic nerves and the adrenal medulla is activated,
inducing the release of catecholamines (i.e., epinephrine, norepinephrine) which results
in increased heart rate and blood pressure along with decreased intestinal motility and
bronchiolar dilatation [41,42]. This rapid stress response is followed by a slower stress
response mediated by the HPA axis.

The HPA axis response begins with excitatory signals from the prefrontal cortex (PFC)
and the amygdala to the paraventricular nucleus of the hypothalamus [43,44]. Stimulation
of the paraventricular nucleus of the hypothalamus induces the release of corticotrophin-
releasing hormone and arginine vasopressin, which bind to receptors in the anterior pitu-
itary gland resulting in the release of adrenocorticotropic hormone (ACTH) [45]. ACTH
then binds to receptors in the adrenal cortex, resulting in the synthesis of glucocorticoids
(GC) (i.e., cortisol in humans and corticosterone in mice and rats) [45]. GC levels increase
rapidly in the bloodstream following exposure to stress with peak levels being attained
20–40 min following initial stress exposure [46]. However, peak latency can vary depend-
ing on various factors such as sex, age, psychosocial factors, and previous exposure to
a stressor [47–50]. GC have the ability to regulate their own production through a neg-
ative feedback mechanism. Mineralocorticoid (MRs) and glucocorticoid receptors (GRs)
throughout the hypothalamus, pituitary, medial prefrontal cortex, and hippocampus play
critical roles in this negative feedback mechanism [51]. MRs demonstrate a high affinity
for GC and are activated once GC levels are low (i.e., basal levels) [52]. However, when
GC levels increase, MRs become saturated resulting in the activation of GRs which have a
lower affinity for GC. Once GRs are activated, signals are sent to the hypothalamus and
pituitary to inhibit the production of GC [52]. This negative feedback mechanism is critical
as it permits the rapid downregulation of GC synthesis, allowing the body to return to
homeostasis following exposure to a stressor.

There are age and sex differences in HPA axis reactivity which are dependent on
the strain and species of the animal being analyzed. For example, inbred prepubertal
male mice exposed to acute restraint stress show greater HPA axis reactivity, as shown
through either a more prolonged (i.e., C57BL/6) or greater (i.e., BALB/c) CORT response
in comparison to their adult counterparts [5]. Inbred prepubertal female mice show similar
HPA axis reactivity in comparison to their adult counterparts. Conversely, alterations
to HPA axis reactivity in outbred mice (i.e., Swiss Webster) are only observed in adult
female mice with these mice demonstrating a greater CORT response in comparison to their
prepubertal counterparts [5]. Prepubertal male rats exposed to acute stressors (i.e., hypoxia,
restraint, foot shock) show a more prolonged ACTH and CORT response in comparison
to their adult counterparts [53–56]. When exposed to chronic restraint stress, prepubertal
male rats demonstrate a greater stress response which is followed by a quicker return
to baseline in comparison to their adult counterparts [55]. Adult male rats exposed to a
homotypic stressor show a habituated stress response that is not observed in adolescent
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male rats [57–59]. Furthermore, adult female rats demonstrate a greater stress response in
comparison to their adult male counterparts [60]. Taken together, these results demonstrate
that HPA axis reactivity is highly dependent on the sex (i.e., male and female), species (i.e.,
mice and rats), and strain (i.e., inbred and outbred) of the subjects being analyzed.

Interestingly, age and sex differences in HPA axis reactivity emerge during puberty,
suggesting a potential role of circulating gonadal steroid hormones (i.e., estradiol, testos-
terone, progesterone). Testosterone appears to decrease HPA axis reactivity while estradiol
appears to increase it [61]. For example, gonadectomized female rats exposed to restraint
stress display a decrease in ACTH and CORT concentrations in comparison to intact
females, an effect that is reversed following estradiol treatment [62–65]. Conversely, go-
nadectomized male rats display an increase in ACTH and CORT concentrations following
exposure to a stressor, an effect that is reversed following androgen treatment [66–69].
Thus, circulating gonadal steroid hormones play a critical role in HPA axis function and the
increase in these hormones during puberty is essential for the development of adult-like
patterns of HPA axis reactivity [70].

Maturation of the HPA axis during puberty is associated with a sex-dependent increase
in vulnerability to stress-related disorders. Mental illnesses such as anxiety, depression,
psychosis, eating disorders, bipolar disorder, substance abuse, and personality disorders,
predominantly emerge during adolescence and puberty [71–73]. Moreover, the incidence
of these mental illnesses are sex-dependent, with females showing a higher prevalence
of eating disorders, anxiety and depression while males show a higher prevalence of
psychosis and substance abuse [74–78]. Sex differences for many of these disorders also
emerge during puberty with pubertal status (Tanner Stage III) being a better predictor of
these sex differences then chronological age [79–81].

Factors contributing to the increased incidence of mental illness during puberty re-
main unclear, however, it is believed that exposure to stressors may interfere with the
development of the HPA axis [82]. An atypical development of the HPA axis could reduce
an individual’s ability to cope with stressors which may, in turn, increase vulnerability to
stress-related disorders [38]. For example, repeated exposure to stressors during puberty
can result in the sensitization of the HPA axis and the overproduction of GC [83,84]. The
overproduction of GC could then damage key brain regions (i.e., hippocampus, amygdala,
PFC) responsible for the regulation of the HPA axis [51,85,86]. Dysregulation of the HPA
axis could then result in the chronic overproduction of GC which could increase susceptibil-
ity to mental illness associated with chronic stress (i.e., depression, anxiety, and substance
abuse) [87–89]. Alternatively, it is possible that exposure to stressors during puberty can
result in the blunting of the HPA axis [90]. Pubertal stress exposure may increase the
expression of GRs which could facilitate the downregulation of GC and the blunting of the
HPA axis [91]. Consequently, the blunting of the HPA axis could increase susceptibility to
disorders such as post-traumatic stress disorder and personality disorders (i.e., antisocial
and borderline personality disorder) [92–94].

2.4. Maturation of the Immune System and Enduring Effects of Lipopolysaccharide (LPS)

The immune system is a complex system of cells and proteins responsible for protecting
an organism from viruses, bacteria, and other pathogens [1]. Like the HPA axis, the immune
system also undergoes significant maturation during puberty [95]. The immune system
of vertebrates is made up of two parts, the innate and adaptive immune systems [1]. The
innate immune system is the body’s first line of defense, which has a non-specific response
to pathogens that are evolutionarily conserved such as, bacterial, fungal, viral, or foreign
proteins. Innate immune responses to a pathogen include inflammation, phagocytosis, and
lysis [96,97] (Figure 1A). The adaptive immune system develops throughout the lifespan
and utilizes B and T cells to recognize and remember foreign pathogens (Marshall et al.,
2018). Adaptive immune responses destroy invading pathogens either indirectly through
the secretion of antibodies by B cells (i.e., antibody response) or directly by T cells (i.e., cell
mediated immune response) [98] (Figure 1B,C). An essential component of both the innate
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and adaptive immune systems is the production of cytokines. Cytokine is a general term
used for a family of small proteins which include chemokines, interferons, interleukins,
lymphokines, and tumor necrosis factors. Cytokines play critical roles in cell signaling and
in the regulation of inflammation in response to invading pathogens [99].

A common method to activate the immune system in the laboratory is through the
administration of lipopolysaccharide (LPS). LPS is a bacterial endotoxin located on the
outer membranes of Gram-negative bacteria (i.e., Escherichia coli) and is a potent stimula-
tor of the innate immune system [100]. In the periphery, LPS binds to Toll-like receptor
4 which is predominantly expressed on immune cells [101]. LPS can also influence the CNS
by crossing the blood–brain barrier (BBB) and binding to Toll-like receptor 4 residing on
microglia (i.e., primary innate immune cells of the brain) [100,102–104]. The stimulation of
Toll-like receptor 4 induces a cascade of intracellular events that results in the stimulation
of nuclear factor B (NF-κB) [100]. The stimulation of NF-κB then results in the synthesis of
prostaglandins (i.e., prostaglandin E2), cyclooxygenase, nitric oxide, and pro- (i.e., TNFα,
IL1β, IL12) and anti-inflammatory cytokines (i.e., IL10, IL4, IL9) [102–104]. Moreover, LPS
administration in animals has been shown to induce anxiety, depression, neurodegener-
ation, and neurodevelopmental disorders [105–107]. Thus, LPS is an ideal candidate to
examine the role that the immune system plays in various disorders.

LPS administration during puberty has enduring effects on brain functioning and
behaviors. Previous research from our laboratory and others has shown that pubertal
LPS treatment, in mice suppresses sexual receptivity in females, and increases anxiety-
like behaviors in males and depression-like behaviors in females, in adulthood [107–110].
Moreover, pubertal LPS has been shown to decrease estrogen receptor-α and increase c-fos
expression in adulthood [108,111]. Pubertal LPS treatment also has programming effects
on immune and HPA axis reactivity. For example, pubertal LPS treatment permanently
decreases GR expression in the paraventricular nucleus of the hypothalamus of adult
male mice [112]. Furthermore, LPS treatment during puberty followed by a secondary
immune challenge in adulthood results in an attenuated immune response as shown
through decreases in peripheral IL6 and IFNγ concentrations and decreases in IL1β, TNFα,
and IL6 mRNA expression in the PFC [113]. Pubertal LPS treatment also causes enduring
learning and spatial memory deficits in both male and female mice and increases Parkinson-
like behaviors in male, but not in female mice, indicating an increased susceptibility to
neurodegeneration [109,111,114].

There are also age and sex differences in immune responsivity following LPS treatment,
due in part to the immune-enhancing effects of estrogens and the immune-suppressing ef-
fects of androgens and progesterone [6,115,116]. In general, pubertal LPS treatment in mice
induces a hypo-responsive immune response when compared to adult mice. For example,
adult mice display greater peripheral pro-inflammatory cytokine concentrations compared
to pubertal mice, while pubertal mice display greater peripheral anti-inflammatory cy-
tokine concentrations compared to adult mice 10 h following LPS treatment [117]. However,
pubertal male mice display greater IL1β, TNFα, and IL6 mRNA expression in the PFC
compared to adult male mice 2 h following LPS treatment [104], and adult male mice
display greater cytokine mRNA expression compared to pubertal male mice 8 h following
LPS treatment [104]. These age and sex differences in cytokine expression are also asso-
ciated with greater sickness behaviors and hypothermia in adult male mice compared to
their pubertal counterparts [117]. Therefore, behavioral and physiological responses to an
immune challenge are highly dependent on age and sex.
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Figure 1. Innate and Adaptive Immunity Activation Process. (A) The innate immune system is the
body’s first line of defense against foreign pathogens and consists of various types of cells such as
monocytes, macrophages, neutrophils, mast cells, eosinophils, basophils, dendritic cells, and natural
killer cells. The innate immune system is activated once pathogen-associated molecular patterns
(PAMPs; i.e., LPS) or damage-associated molecular patterns (DAMPs; i.e., S100 proteins) are recog-
nized by pattern recognition receptors (PRRs). PRRs have the ability to detect both (1) extracellular
and (2) intracellular pathogens based on their cellular location. Once PRRs detect a pathogen they
rapidly activate immune cells to produce cytokines and interferons to clear pathogens. The innate
immune response can also clear pathogens through other processes such as destruction via phagocy-
tosis, by natural killer cells and/or through the activation of the complement system. (B) The body’s
second line of defense involves the adaptive immune system. Once exposed to a novel antigen, the
antigen will bind to a B cell receptor (BCR) generated by V(D)J recombination which will result in the
activation of the naïve B cell. Once activated, the naïve B cell will differentiate into antibody-secreting
cells called plasmablasts. Immunoglobulin M (IgM) is the first antibody produced by plasmablasts to
fight off the initial infection. If IgM is ineffective in fighting a pathogen, additional B cells will be
generated through the germinal center as plasma cells and memory B cells. The B cells have optimized
BCRs better equipped to fight off pathogens. Plasma cells can secrete antibodies for weeks following
their activation and then migrate to the bone marrow where they can reside for long periods of time.
Memory B cells circulate throughout the body on the lookout for antigens that bind to their BCR and
quickly respond to remove the antigen if encountered. With every subsequent pathogen encounter,
this cycle will repeat to further optimize the BCRs. (C) As part of the adaptive immune response,
T cells can become activated through dendritic cells and other antigen presenting cells. Dendritic
cells contain novel antigens from peripheral tissue which are presented to T cells for activation of the
cell. Once activated, naïve T cells differentiate into effector T cells which can either directly induce
apoptosis in an infected cell (i.e., cytotoxic T cell), activate other immune cells (i.e., helper T cell),
or suppress an immune response (i.e., regulatory T cell). Once antigens have been cleared, effector
T cells can further differentiate into memory T cells which are antigen-specific T cells. Memory T
cells can then differentiate to central memory T cells and effector memory T cells. Effector memory T
cells primarily localize in peripheral tissue and provide an immediate defense against reintroduced
antigens while central memory T cells reside in secondary lymphoid tissues and sustain the im-
mune response against the specific antigen (A) adapted from “Innate Immunity”, by Biorender.com
(accessed on 16 October 2022). Retrieved from https://app.biorender.com/biorender-templates
(accessed on 16 October 2022), (B,C) created with Biorender.com (accessed on 16 October 2022).

Biorender.com
https://app.biorender.com/biorender-templates
Biorender.com
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3. Neurodegeneration

NDs such as Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis
(MS), amyotrophic lateral sclerosis (ALS), and Huntington’s disease are a common cause of
morbidity and mortality in the elderly population [118]. Aging is the primary risk factor
for NDs and with increased life expectancy worldwide, the prevalence of these disorders is
increasing [119–121]. Neurodegeneration is commonly defined as the progressive loss of
neuronal function in the CNS, resulting in impairments related to motor skills (e.g., gait,
ataxia), cognition (e.g., memory, executive functions) and behaviors (e.g., disinhibition,
apathy) [122–124]. The progressive loss of neuronal function in NDs is typically caused
by abnormal protein aggregations (i.e., amyloidosis, tauopathies, synucleinopathies, and
transactivation response DNA binding protein 43 proteinopathies), which can induce oxida-
tive stress, excitotoxicity, mitochondrial dysfunction, and neuroinflammation, ultimately
resulting in apoptosis [125–130].

The pathology of NDs is influenced by various factors. Abnormal protein aggregations
are a hallmark of NDs with each ND being characterized by the aggregation of specific
proteins. Examples of abnormal protein aggregations include amyloid beta (Aβ) and tau
in AD, tau in Pick’s disease, alpha-synuclein in PD, and transactivation response DNA
binding protein 43 (TDP-43) in ALS [128] (Figure 2). Although NDs differ in their clinical
presentations and histopathological features, the aggregation of pathological proteins in-
duces similar neurodegenerative processes. For example, Aβ, tau, alpha-synuclein, and
TDP-43 are known to localize on the mitochondrial membrane and prevent neurons from
functioning normally by causing mitochondrial damage, disrupting the election transport
chain, increasing the production of reactive oxygen species and inducing persistent neu-
roinflammation and glutamate excitotoxicity [131–136]. Interestingly, the knockdown of
these proteins does not cure or ameliorate neurodegeneration but rather results in severe
motor (i.e., motor neuron degeneration), cognitive (i.e., spatial and long-term memory), and
behavioral abnormalities (i.e., anxiety-like behavior) [137–140]. These deficits reflect the
essential role these proteins play in regulating the morphology and physiology of neurons
(i.e., neural growth and repair, cytoskeleton scaffolding, regulation of gene expression, and
neurotransmitter release) [141–144]. While abnormal protein aggregations are fundamental
to the pathology of NDs, other mechanisms may also be involved.

NDs differ in their symptoms due in part to differences in the cellular and neu-
roanatomical distribution of the proteins implicated in these disorders [128]. For example,
the early stages of AD is typically characterized by cell loss and neurofibrillary tangles
in the neocortex, hippocampus, entorhinal cortex, amygdala, and basal nucleus of Meyn-
ert [145]. Atrophy in these brain regions could result in memory loss, praxis, visuospatial
impairments, and executive dysfunction; symptoms that are commonly observed in AD
patients [146]. Conversely, the early stages of PD is typically characterized by the loss
of dopamine producing cells in the basal ganglia (i.e., caudate nucleus, putamen, globus
pallidus, subthalamic nucleus, and substantia nigra), which causes severe motor dysfunc-
tion (i.e., tremors, bradykinesia, muscular rigidity) in patients suffering from PD [147].
However, as NDs progress, a network of brain regions is affected, resulting in significant
overlap between NDs in their clinical features. As such, it is not uncommon for NDs to
have comorbidities with other NDs and psychiatric issues [128]. For example, AD and PD
often have comorbidities with dementia with Lewy Bodies, progressive supranuclear palsy,
vascular dementia, cerebral amyloid angiopathy, and depression [148,149].

Sex Differences in Neurodegeneration

There are definite sex differences in the prevalence and clinical presentations of NDs.
For example, AD is more prevalent in women (2:1) while PD more prevalent in men
(2:1) [150–152]. Men suffering from AD tend to show more aggressive behaviors, have more
comorbidities, and higher mortality rates than women, while women tend to show more
affective symptoms (i.e., apathy, depression, irritability, anxiety), cognitive deterioration
and higher survival rates than men [153,154]. In terms of PD, females typically show a
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slower rate of decline, fewer symptoms, and a delayed onset of PD, while males tend to dis-
play more aggressive motor dysfunction (i.e., postural instability, falling, gait disturbances)
and impairments in executive function and reduced processing speed [155,156]. There
are also sex differences in the prevalence and clinical presentations of other NDs such as
ALS, MS, frontotemporal dementia, and Huntington’s disease [157–159]. Therefore, sex is a
critical factor in the pathology of NDs and should be taken into account when examining
the etiology of NDs.
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Figure 2. Abnormal Protein Aggregations in Alzheimer’s and Parkinson’s Disease. (A) Healthy neu-
rons are supported internally by microtubules which are stabilized by the protein tau. In Alzheimer’s
disease, abnormal accumulations of amyloid-beta are present which form plaques around neurons.
The increase in amyloid-beta plaques causes an upregulation of abnormal conformations of tau which
detach from microtubules and bind to other tau molecules forming neurofibrillary tangles. The
increase in amyloid-beta plaques and neurofibrillary tangles severely impairs cell functioning and
causes apoptosis. (B) Parkinson’s disease is characterized by the loss of dopaminergic neurons in the
substantia nigra pars compacta. The loss of dopaminergic neurons is caused by Lewy body inclu-
sions which consist of abnormal aggregations of alpha-synuclein. Lewy bodies drastically decrease
dopamine synthesis by decreasing the synthesis and activity of tyrosine hydroxylase, a precursor
to dopamine (A) adapted from “Alzheimer’s disease 2”, by Biorender.com (accessed on 16 October
2022). Retrieved from https://app.biorender.com/biorender-templates (accessed on 16 October
2022); (B) adapted from “Progression of Parkinson’s disease in substantia nigra”, by Biorender.com
(accessed on 16 October 2022). Retrieved from https://app.biorender.com/biorender-templates
(accessed on 16 October 22).

It is well established that immune dysfunction plays a critical role in the etiology
of NDs and sex differences related to the immune system may mediate sex differences
observed in NDs. Of particular interest is sex differences in the number and morphology
of microglia. Research in rats has shown that males have more microglia than females at
postnatal day 4 (P4) in the parietal cortex, hippocampus, and amygdala [160]. However,
this effect is reversed at adolescence (P30), with females displaying a greater number of
activated microglia then males [160]. Sex differences in microglia number and morphology
suggests that there may be sex-specific periods in development (i.e., puberty) where the
over-activation of microglia can have enduring effects on microglial and neuronal func-
tion [157]. Moreover, males tend to have a higher incidence of NDs earlier in life (i.e.,
ALS, PD, schizophrenia) whereas females tend to have a higher incidence of NDs later
in life (i.e., AD, schizophrenia), supporting the notion that perturbations of microglial
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function during critical periods of development may influence the development of NDs
later in life [7,8,161,162]. Thus, higher number of activated microglia during critical periods
of development could be harmful and may influence the development of NDs in males
and females.

Sex differences in the transcriptome of microglia in adulthood could also explain
sex differences observed in NDs [163,164]. Profiling of microglia in 3-, 12-, and 24-month
old male and female mice revealed sex differences in the transcriptome of microglia at
all time points with the greatest sex differences observed in 24-month old mice [165].
Moreover, single-nuclei RNA sequencing in the prefrontal cortex revealed large microglial
transcriptomic differences between AD and control human brains [166]. Interestingly, a
greater number of microglia associated with AD was observed in female brains while a
greater number of microglia not associated with AD was observed in male brains [166].
These results suggest that the transcriptome of microglia becomes sexually divergent
with age and that these transcriptomic sex differences could influence the development
of NDs. Another factor that has been strongly linked to the development of NDs is the
gut microbiome.

4. Gut Microbiome

The gut microbiome hosts trillions of microorganisms including bacteria, archaea,
viruses and eukaryotic microbes. These microorganisms reside along the intestinal tract
(i.e., esophagus, stomach, and intestine) and have various functions aimed at maintaining
physiological homeostasis. Functions include vitamin and nutrient synthesis, carbohydrate
fermentation, regulating immune function, and protecting against pathogens [167,168]. The
understanding of the function and structure of the gut microbiome in health and disease has
greatly increased over the years, due primarily to technological advancements (i.e., 16s RNA
sequencing) in the analysis of microbial composition [169]. In healthy individuals, the gut
microbiome predominately consists of bacterial species from the Bacteroidetes and Firmicutes
phyla. There are also less abundant amounts of bacterial species from the Proteobacteria,
Actinobacteria, Verrucomicrobia, and Fusobacteria phyla [170]. There are also varying amounts
of bacteria depending on the region of the intestinal tract being examined. For example,
the colon has a high density of bacteria from the Bacteroidaceae, Prevotellaceae, Rikenellaceae,
Lachnospiraceae and Ruminococcaceae families, while the small intestine has a high density of
Lactobacillaceae and Enterobacteriaceae families [171,172]. Various factors can influence the
composition of the gut microbiome such as sex, genetics, antibiotics, probiotics, ethnicity,
diet, and bacterial infections [173–178]. An imbalance in the gut microbial community (i.e.,
dysbiosis) can have harmful effects on brain functioning and behavior and is associated
with various disorders such as autism, depression, anxiety, AD, and PD [179–182].

The bidirectional communication between microbiota and the brain is referred to
as the ‘microbiota-gut-brain axis’ [183]. The microbiota-gut-brain axis is composed of
multiple pathways including the CNS, autonomic nervous system, and enteric nervous sys-
tem [184,185]. The autonomic system includes sympathetic and parasympathetic branches
consisting of afferent and efferent fibers responsible for various involuntary physiological
processes (i.e., heart rate, blood pressure, digestion) [186]. Afferent signals begin in the
intestinal lumen and travel to the CNS through spinal, vagal, and enteric pathways, while
efferent signals begin in the CNS and travel to the intestinal wall [184]. The gut microbiota
can also influence the CNS through the production of several bioactive molecules such as
cytokines, prostaglandins, and microbial antigens (i.e., LPS) [10]. These molecules can cross
the BBB and directly influence the functioning of the CNS [187]. Thus, both humoral and
neural pathways are involved in the microbiota-gut-brain axis and can have a profound
influence on brain functioning and behavior.

4.1. Role of Microbiota in Neurodevelopment

The gut microbiota plays a vital role in neurodevelopmental processes such as neu-
rogenesis, myelination, maturation of microglia, and BBB formation [9,11,188,189]. For
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example, germ free (i.e., mice raised without microbiota) and antibiotic-treated mice display
reduced expression of the tight junction proteins occludin and claudin-5 in the hippocam-
pus, suggesting increased BBB permeability [190,191]. Furthermore, antibiotic treatment
in mice results in a decrease in bromodeoxyuridine in the hippocampus, indicating a re-
duction in hippocampal neurogenesis [192]. Similarly, the absence or alteration of the gut
microbiota can result in abnormal myelination and microglial function. For instance, germ
free mice display a high number of immature microglia in several brain regions (i.e., cortex,
corpus collosum, hippocampus, cerebellum), an effect that is replicated in antibiotic-treated
mice [9]. Moreover, germ free mice display abnormal myelination of axons within the
PFC [188,193]. Normal functioning of these neurodevelopmental processes can be restored
through the administration of microbial metabolites (short chain fatty amino acids; SCFA)
and probiotics [9,190,192,194]. Therefore, the gut microbiota plays a significant role in the
regulation of neurodevelopment and can either have protective or harmful effects on the
CNS during development.

Alterations to the gut microbiome is associated with neurodevelopmental disorders
such as autism spectrum disorder and schizophrenia [12,13]. Gut dysbiosis has been re-
ported in autism spectrum disorder patients with these patients having elevated levels of
Proteobacteria, Lactobacillus, Bacteroides, Desulfovibrio, and Clostridium along with decreased
levels of Bifidobacterium, Blautia, Dialister, Prevotella, Veillonella and Turicibacter, in compari-
son to controls [195]. Similarly, schizophrenic patients have elevated levels of Succinivibrio,
Megasphaera, Collinsella, Clostridium, Klebsiella, and Methanobrevibacter along with decreased
levels of Coprococcus, Roseburia, and Blautia, in comparison to controls [196]. Moreover,
these neurodevelopmental disorders are often accompanied with gastrointestinal disorders
including constipation, diarrhea, abdominal pain, celiac disease, and irritable bowel syn-
drome [197–199]. Providing treatments that target restoring gut microbiota homeostasis
(i.e., probiotics) has also been shown to ameliorate the symptoms of ASD and schizophre-
nia [200–203]. Taken together, these findings demonstrate the impact that the microbiota
can have on brain functioning, and possibly mediate the onset and progression of neurode-
velopmental disorders. However, the influence of the gut microbiota on neurodevelopment
during puberty and adolescence remains largely uninvestigated.

4.2. Microbiota and Stress

Growing evidence suggests that the gut microbiome can influence the maturation
and reactivity of the HPA axis [10]. Germ free mice exposed to 1 h of restraint stress
display greater levels of plasma ACTH and CORT in comparison to specific pathogen free
mice [204]. Moreover, reconstitution with commensal bacteria at 3 weeks of age reverses
the elevated HPA axis response observed in germ free mice. However, reconstitution at a
later stage (i.e., before 6 weeks of age) has no effect on the HPA axis response [204]. The
effects of the gut microbiome on HPA axis reactivity are not limited to blood markers.
Germ free mice also display elevated levels of several glucocorticoid receptor pathway
genes (i.e., Slc22a5, Aqp1, Stat5a, Ampd3, Plekhf1, and Cyb561) in the hippocampus [205].
Although the mechanisms underlying the effects of microbiota on HPA axis responsiveness
are not fully understood, it is believed that gut dysbiosis (i.e., induced by exposure to
stressors) increases the production of bioactive molecules that can directly influence the
HPA axis [206]. For instance, gut dysbiosis upregulates cytokines (i.e., TNFα, IL1β, IL6)
and prostaglandins (i.e., prostaglandin E2) which can subsequently cross the BBB and
activate the HPA axis [207–210]. Moreover, both LPS and peptidoglycan (i.e., components
of the cell wall of Gram-negative bacteria) are upregulated in response to gut dysbiosis
and have been shown to be potent activators of the HPA axis [211–213]. As such, the gut
microbiota can influence HPA axis reactivity and play a crucial role in the programming of
the HPA axis.

Multiple lines of research have also demonstrated an association between microbiota
and stress-related disorders such as anxiety and depression. Both anxiety and depression
have high comorbidities with gastrointestinal disorders such as irritable bowel syndrome,
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Crohn’s disease, celiac disease, and ulcerative colitis [214–216]. Moreover, research with
germ free mice has shown that the absence of microbiota results in a decrease in anxiety-
like behaviors while germ free rats display an increase in anxiety-like behaviors [217,218].
Interestingly, colonizing germ-free Swiss Webster mice with microbiota from Balb/C mice
increases anxiety-like behaviors, while colonizing germ free Balb/C mice with microbiota
from Swiss Webster mice decreases anxiety-like behaviors [219]. Similar findings are
observed when examining the effects of gut microbiota on depression-like behaviors. For
example, gut dysbiosis induced by chronic unpredictable mild stress in mice increases
depression-like behaviors. Moreover, transferring microbiota from stressed mice to naïve
mice results in an increase in depression-like behaviors in the naïve mice [220].

4.3. Microbiota and Neurodegeneration

Gut dysbiosis has been implicated in various neurodegenerative processes including
the production of amyloid proteins, inflammation, oxidative stress, impaired SCFA syn-
thesis, and increased intestinal and BBB permeability [14,190,221–223] (Figure 3). Recent
research has shown that AD patients suffer from dysbiosis as demonstrated by increased
levels of Ruminococcaceae, Enterococcaceae, and Lactobacillaceae along with decreased lev-
els of Bacteroidaceae, Veillonellaceae, and Lachnospiraceae, in comparison to controls [224].
Furthermore, antibiotic-induced dysbiosis in a mouse model of AD has been shown to
reduce neuroinflammation and amyloidosis, implicating microbiota in the pathogenesis
of AD [225]. Similarly, PD patients have been reported to suffer from dysbiosis with
increased levels of Lactobacillus, Akkermansia, and Bifidobacterium and decreased levels
of Lachnospiraceae and Faecalibacterium, in comparison to controls [226]. Moreover, in a
rotenone-induced mouse model of PD, wild-type mice display greater motor deficits (i.e.,
motor strength and coordination) in comparison to germ free mice, further supporting the
role of microbiota in the development of PD [227].
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Figure 3. Neurodevelopmental and Neurodegenerative Disorders Linked with Dysbiosis. Mi-
crobial dysbiosis is defined as an imbalance of microbiota where there is a relative increase in
pathogenic bacteria compared to beneficial ones. Microbial dysbiosis has been linked to several
neurodevelopmental and neurodegenerative disorders including multiple sclerosis, Alzheimer’s
disease, Parkinson’s disease, autism spectrum disorder, and schizophrenia. However, the underly-
ing mechanisms explaining the effects of microbial dysbiosis on these disorders remain unclear
(Adapted from “Dysbiosis”, by Biorender.com (accessed on 16 October 2022). Retrieved from
https://app.biorender.com/biorender-templates (accessed on 16 October 2022).

It is theorized that proteins involved in NDs, such as Aβ and alpha-synuclein, can
aggregate and spread throughout the brain in a prion-like manner (i.e., neuron-to-neuron
propagation) [228,229]. However, there is continuous debate regarding the site of origin for
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the pathological aggregation of these proteins. Both Aβ and alpha-synuclein aggregations
have been observed in the gut prior to spreading to the CNS, suggesting that both AD
and PD pathology may originate in the gut [230,231]. Aggregates of alpha-synuclein can
be found within enteroendocrine cells (i.e., sensory cells of the gut) which synapse with
enteric nerves. From enteric nerves, alpha-synuclein aggregates can enter the vagus nerve
allowing for transportation to the brain [232]. Similarly, Aβ aggregates have been observed
in the vagus nerve, suggesting that a similar pathway may be used for the spreading of Aβ

to the CNS [233]. Research in mice has also shown that vagotomy reduces the pathologic
spreading of Aβ and alpha-synuclein in the CNS, further supporting the role of the vagus
nerve as a potential pathway involved in NDs [234,235]. As such, the gut microbiome may
not only influence the pathogenesis of NDs, but could also be the site of origin for NDs.

5. Conclusions

Puberty is marked by the maturation of fundamental systems such as the HPA axis
and the immune system along with significant reorganizing and remodeling of the CNS.
These pubertal changes render the CNS particularly sensitive to stressors and increase
its susceptibility to neurodevelopmental and neurodegenerative disorders later in life.
Alterations to the gut microbiome have also been associated with neurodevelopmental
and neurodegenerative disorders. However, the underlying mechanisms mediating the
enduring effects of microbiota on neurodegenerative and neurodevelopmental disorders
remain unclear. Future research should investigate the mechanisms through which the
gut and brain communicate along with determining the link between microbiota, neurode-
velopment and neurodegenerative disorders. Moreover, a greater understanding of the
effects of microbiota, during critical periods of development (i.e., puberty), in increasing the
vulnerability to neurodevelopmental and neurodegenerative disorders is needed. Lastly,
further research is required to determine whether treatments that target the microbiome
(i.e., probiotics, prebiotics) can effectively prevent the development of neurodevelopmental
and neurodegenerative disorders.
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