Pathogenicity of Aeromonas veronii Causing Mass Mortality of Largemouth Bass (Micropterus salmoides) and Its Induced Host Immune Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolation
2.2. Bacterial Virulence Assay
2.3. Histopathology
2.4. Morphology Observation
2.5. Identification of Bacteria
2.6. Determination of Extracellular Enzymes and Hemolysin
2.7. Detection of Virulence-Related Genes
2.8. Detection of the Expression Levels of Immune-Related Genes
3. Results
3.1. Pathological Symptoms
3.2. Isolation of Bacteria from Diseased M. salmoides
3.3. Virulence of the Isolate
3.4. Histological Observation
3.5. Electron Microscopic Observation of the Isolate
3.6. Physiological and Biochemical Characterization
3.7. Molecular Identification
3.8. Virulence Factors and Genes of the Pathogenic Isolate
3.9. Virulence Genes of the Pathogenic Isolate
3.10. Immune-Related Gene Expression in M. salmoides after A. veronii Infection
3.10.1. Immune-Related Gene Expression in Livers at Different Hours Post-Infection
3.10.2. Immune-Related Gene Expression in Spleens at Different Hours Post-Infection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coyle, S.D.; Tidwell, J.H.; Webster, C.D. Response of largemouth bass Micropterus salmoides to dietary supplementation of lysine, methionine, and highly unsaturated fatty acids. J. World Aquacult. Soc. 2000, 31, 89–95. [Google Scholar] [CrossRef]
- Gao, E.B.; Chen, G. Micropterus salmoides rhabdovirus (MSRV) infection induced apoptosis and activated interferon signaling pathway in largemouth bass skin cells. Fish Shellfish Immun. 2018, 76, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.W.; Li, Z.L.; Xiang, Y.X.; Jia, P.; Liu, W.; Yi, M.S.; Jia, K.T. Isolation and identification of a viral haemorrhagic septicaemia virus (VHSV) isolate from wild largemouth bass Micropterus salmoides in China. J. Fish Dis. 2019, 42, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Wang, L.Q.; Liu, J.X.; Zhang, Z.M.; Zhou, L.L.; Huang, X.H.; Wei, J.G.; Yang, M.; Wang, S. Generation and identification of novel DNA aptamers with antiviral activities against largemouth bass virus (LMBV). Aquaculture 2022, 547, 737478. [Google Scholar] [CrossRef]
- Cai, J.; Yu, D.P.; Xia, H.L.; Xia, L.Q.; Lu, Y.S. Identification and characterization of a nervous necrosis virus isolated from largemouth bass (Micropterus salmoides). J. Fish Dis. 2022, 45, 607–611. [Google Scholar] [CrossRef]
- Fu, X.; Luo, M.; Zheng, G.; Liang, H.; Liu, L.; Lin, Q.; Niu, Y.J.; Luo, X.; Li, N. Determination and Characterization of a Novel Birnavirus Associated with Massive Mortality in Largemouth Bass. Microbiol. Spectr. 2022, 10, e01716–e01721. [Google Scholar] [CrossRef]
- Fogelson, S.B.; Petty, B.D.; Reichley, S.R.; Ware, C.; Bowser, P.R.; Crim, M.J.; Getchell, R.G.; Sams, K.L.; Marquis, H.; Griffin, M.J. Histologic and molecular characterization of Edwardsiella piscicida infection in largemouth bass (Micropterus salmoides). J. Vet. Diagn. Investig. 2016, 28, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Akmal, M.; Rahimi-Midani, A.; Hafeez-ur-Rehman, M.; Hussain, A.; Choi, T.J. Isolation, characterization, and application of a bacteriophage infecting the fish pathogen Aeromonas hydrophila. Pathogens 2020, 9, 215. [Google Scholar] [CrossRef] [Green Version]
- Dar, G.H.; Bhat, R.A.; Kamili, A.N.; Chishti, M.Z.; Qadri, H.; Dar, R.; Mehmood, M.A. Correlation between pollution trends of freshwater bodies and bacterial disease of fish fauna. In Fresh Water Pollution Dynamics and Remediation; Springer: Singapore, 2020; pp. 51–67. [Google Scholar]
- Lei, X.P.; Zhao, R.X.; Geng, Y.; Wang, K.Y.; Yang, P.O.; Chen, D.F.; Huang, X.L.; Zuo, Z.C.; He, C.L.; Chen, Z.L.; et al. Nocardia seriolae: A serious threat to the largemouth bass Micropterus salmoides industry in Southwest China. Dis. Aquat. Organ. 2020, 142, 13–21. [Google Scholar] [CrossRef]
- Poudyal, S.; Pulpipat, T.; Wang, P.C.; Chen, S.C. Comparison of the pathogenicity of Francisella orientalis in Nile tilapia (Oreochromis niloticus), Asian seabass (Lates calcarifer) and largemouth bass (Micropterus salmoides) through experimental intraperitoneal infection. J. Fish Dis. 2020, 43, 1097–1106. [Google Scholar] [CrossRef]
- Yi, C.; Lv, X.T.; Chen, D.D.; Sun, B.; Guo, L.F.; Wang, S.Q.; Ru, Y.Y.; Wang, H.; Zeng, Q.F. Transcriptome analysis of the Macrobrachium nipponense hepatopancreas provides insights into immunoregulation under Aeromonas veronii infection. Ecotox. Environ. Safe. 2021, 208, 111503. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.H.; Zhu, Y.Y.; Hao, W.J.; Wang, X.; Yang, H.X.; Deng, X.Y.; Feng, T.T.; Huang, Y.; Yu, H.N.; Wang, Y.P. Three naturally occurring host defense peptides protect largemouth bass (Micropterus salmoides) against bacterial infections. Aquaculture 2022, 546, 737383. [Google Scholar]
- Sreedharan, K.; Philip, R.; Singh, I.B. Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of oscar Astronotus ocellatus showing signs of infectious dropsy. Dis. Aquat. Organ. 2011, 94, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.D.; Do, J.W.; Choi, H.S.; Seo, J.S.; Jung, S.H.; Jo, H.I.; Park, M.A.; Lee, N.S.; Park, S.W. Pathological changes in cultured Korean catfish (Silurus asotus) artficially infected with Aeromonas veronii. Korean J. Environ. Biol. 2013, 31, 486–492. [Google Scholar]
- Zhu, M.; Wang, X.R.; Li, J.; Li, G.Y.; Liu, Z.P.; Mo, Z.L. Identification and virulence properties of Aeromonas veronii bv. sobria isolates causing an ulcerative syndrome of loach Misgurnus anguillicaudatus. J. Fish Dis. 2016, 39, 777–781. [Google Scholar] [CrossRef]
- Smyrli, M.; Prapas, A.; Rigos, G.; Kokkari, C.; Pavlidis, M.; Katharios, P. Aeromonas veronii infection associated with high morbidity and mortality in farmed European seabass Dicentrarchus labrax in the Aegean Sea, Greece. Fish Pathol. 2017, 52, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Sun, J.F.; Han, Z.R.; Yang, X.J.; Xian, J.A.; Lv, A.J.; Hu, X.C.; Shi, H.Y. Isolation, identification and characteristics of Aeromonas veronii from diseased crucian carp (Carassius auratus gibelio). Front. Microbiol. 2019, 10, 2742. [Google Scholar] [CrossRef]
- Hoaia, T.D.; Tranga, T.T.; Tuyen, N.V.; Giang, N.T.H.; Van, K.V. Aeromonas veronii caused disease and mortality in channel catfish in Vietnam. Aquaculture 2019, 513, 734425. [Google Scholar] [CrossRef]
- Raj, N.S.; Swaminathan, T.R.; Dharmaratnam, A.; Raja, S.A.; Ramraj, D.; Lal, K.K. Aeromonas veronii caused bilateral exophthalmia and mass mortality in cultured Nile tilapia, Oreochromis niloticus (L.) in India. Aquaculture 2019, 512, 734278. [Google Scholar] [CrossRef]
- Kaur, A.; Holeyappa, S.A.; Bansal, N.; Kaur, V.I.; Tyagi, A. Ameliorative effect of turmeric supplementation in feed of Labeo rohita (Linn.) challenged with pathogenic Aeromonas veronii. Aquacult. Int. 2020, 28, 1169–1182. [Google Scholar] [CrossRef]
- Liu, G.X.; Li, J.; Jiang, Z.Y.; Zhu, X.H.; Gao, X.J.; Jiang, Q.; Wang, J.; Wei, W.H.; Zhang, X.J. Pathogenicity of Aeromonas veronii causing mass mortalities of Odontobutis potamophila and its induced host immune response. Fish Shellfish Immun. 2022; online. [Google Scholar] [CrossRef] [PubMed]
- Abd El Latif, A.M.; Elabd, H.; Amin, A.; Noor Eldeen, A.I.; Shaheen, A.A. High mortalities caused by Aeromonas veronii: Identification, pathogenicity, and histopathologicalstudies in Oreochromis niloticus. Aquacult. Int. 2019, 27, 1725–1737. [Google Scholar] [CrossRef]
- Li, T.; Raza, S.H.A.; Yang, B.T.; Sun, Y.F.; Wang, G.Q.; Sun, W.W.; Qian, A.D.; Wang, C.F.; Kang, Y.H.; Shan, X.F. Aeromonas veronii infection in commercial freshwater fish: A potential threat to public health. Animals 2020, 10, 608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shameena, S.S.; Kumar, K.; Kumar, S.; Kumar, S.; Rathore, G. Virulence characteristics of Aeromonas veronii biovars isolated from infected freshwater goldfish (Carassius auratus). Aquaculture 2020, 518, 734819. [Google Scholar] [CrossRef]
- Sung, H.H.; Huang, Y.T.; Hsiao, L.T. Phenoloxidase activity of Macrobrachium rosenbergii after challenge with two kinds of pathogens: Lactococcus garvieae and Aeromonas veronii. Fish Pathol. 2004, 39, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhu, N.Y.; Kong, L.; Bei, Y.J.; Zheng, T.; Ding, X.; He, Z. First case of soft shell disease in Chinese soft-shelled turtle (Trionyx sinens) associated with Aeromonas sobria-Aeromonas veronii complex. Aquaculture 2013, 406, 62–67. [Google Scholar] [CrossRef]
- Zhou, H.H.; Huang, X.D.; An, J.; Cao, H.P.; Yang, X.L. Isolation, identification and antibiotic susceptibility of pathogenic Aeromonas veronii in Eriocheir sinensis and its histopathological observations. J. South. Agric. 2019, 50, 1851–1859. [Google Scholar]
- Das, S.; Aswani, R.; Midhun, S.J.; Radhakrishnan, E.K.; Mathew, J. Advantage of zinc oxide nanoparticles over silver nanoparticles for the management of Aeromonas veronii infection in Xiphophorus hellerii. Microb. Pathog. 2020, 147, 104348. [Google Scholar] [CrossRef]
- Gao, X.J.; Tong, S.Q.; Zhang, S.M.; Chen, Q.Y.; Jiang, Z.Y.; Jiang, Q.; Wei, W.H.; Zhu, J.; Zhang, X.J. Aeromonas veronii associated with red gill disease and its induced immune response in Macrobrachium nipponense. Aquac. Res. 2020, 51, 5163–5174. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, X.Y.; Hou, L.B.; Jiang, X.Y.; Li, C.; Zhang, J.; Pei, C.; Zhao, X.L.; Li, L.; Kong, X.H. The related immunity responses of red swamp crayfish (Procambarus clarkii) following infection with Aeromonas veronii. Aquacult. Rep. 2021, 21, 100849. [Google Scholar] [CrossRef]
- Behreans, A.L.; Karber, L. Determination of LD50. In Screening in Pharmacology; Academic Press: New York, NY, USA, 1953; p. 60. [Google Scholar]
- Brenner, D.J.; Krieg, N.R.; Staley, J.T. Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Part B; Michigan State University: East Lansing, MI, USA, 2021; Volume 2, pp. 404–406. [Google Scholar]
- Zhang, X.J.; Bai, X.S.; Yan, B.L.; Bi, K.R.; Qin, L. Vibrio harveyi as a causative agent of mass mortalities of megalopa in the seed production of swimming crab Portunus trituberculatus. Aquacult. Int. 2014, 22, 661–672. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, C.; Qin, C.B.; Xie, M.X.; Zhang, J.X.; Li, J.; Xie, Y.D.; Wang, Y.B.; Li, S.N.; Liu, L.H.; Fu, X.Z.; et al. Aeromonas veronii and aerolysin are important for the pathogenesis of motile aeromonad septicemia in cyprinid fish. Environ. Microbiol. 2018, 20, 3442–3456. [Google Scholar] [CrossRef] [PubMed]
- Lazado, C.C.; Zilberg, D. Pathogenic characteristics of Aeromonas veronii isolated from the liver of a diseased guppy (Poecilia reticulata). Lett. Appl. Microbiol. 2018, 67, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Castro-Escarpulli, G.; Figueras, M.J.; Aguilera-Arreola, G.; Soler, L.; Fernandez-Rendon, E.; Aparicio, G.O. Characterization of Aeromonas spp. isolated from frozen fish intended for human consumption in Mexico. Int. J. Food Microbiol. 2003, 84, 41–49. [Google Scholar] [CrossRef]
- Santos, J.A.; González, C.J.; Otero, A.; García-López, M.L. Hemolytic activity and siderophore production in different Aeromonas species isolated from fish. Appl. Environ. Microbiol. 1999, 65, 5612–5614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreedharan, K.; Philip, R.; Singh, I.S.B. Characterization and virulence potential of phenotypically diverse Aeromonas veronii isolates recovered from moribund freshwater ornamental fishes of Kerala, India. Anton. Leeuw. 2013, 103, 53–67. [Google Scholar] [CrossRef]
- Abrami, L.; Fivaz, M.; Glauser, P.E.; Sugimoto, N.; Zurzolo, C.; Goot, F.G. Sensitivity of polarized epithelial cells to the pore-forming toxin aerolysin. Infect. Immun. 2003, 71, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.S.; Zhao, N.; Amer, S.; Qian, M.M.; Lv, M.X.; Zhao, Y.L.; Su, X.; Cao, J.Y.; He, H.X.; Zhao, B.H. Protective efficacy of PLGA microspheres loaded with divalent DNA vaccine encoding the ompA gene of Aeromonas veronii and the hly gene of Aeromonas hydrophila in mice. Vaccine 2013, 31, 5754–5759. [Google Scholar] [CrossRef]
- Sen, K.; Rodgers, M. Distribution of six virulence factors in Aeromonas species isolated from U.S. drinking water utilities: A PCR identification. J. Appl. Microbiol. 2004, 97, 1077–1086. [Google Scholar]
- Jung-Schroers, V.; Adamek, M.; Harris, S.; Syakuri, H.; Jung, A.; Irnazarow, I.; Steinhagen, D. Response of the intestinal mucosal barrier of carp (Cyprinus carpio) to a bacterial challenge by Aeromonas hydrophila intubation after feeding with β-1, 3/1, 6-glucan. J. Fish Dis. 2018, 41, 1077–1092. [Google Scholar] [CrossRef] [PubMed]
- Putra, A.; Ridwan, F.B.; Putridewi, A.I.; Kustiyah, A.R.; Wirastuti, K.; Sadyah, N.A.C.; Rosdiana, I.; Munir, D. The role of TNF-α induced MSCs on suppressive inflammation by increasing TGF-β and IL-10. Open Access Maced. J. Med. Sci. 2018, 6, 1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.S.; Shim, S.H.; Hwang, S.D.; Kim, J.W.; Park, D.W.; Park, C.I. Molecular cloning and expression analysis of interleukin (IL)-15 and IL-15 receptor α from rock bream, Oplegnathus fasciatus. Fish Shellfish Immun. 2013, 35, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Sinha, D.; Biswas, R.; Biswas, T. IL-15 stimulates NKG2D while promoting IgM expression of B-1a cells. Cytokine 2017, 95, 43–50. [Google Scholar] [CrossRef]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, R.; Wang, Z. Contribution of oxidative stress to HIF-1-mediated profibrotic changes during the kidney damage. Oxid. Med. Cell. Longev. 2021, 2021, 6114132. [Google Scholar] [CrossRef]
- Wang, R.H.; Li, C.; Xu, X.; Zheng, Y.; Xiao, C.Y.; Zerfas, P.; Cooperman, S.; Eckhaus, M.; Rouault, T.; Mishra, L.; et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab. 2005, 2, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wu, Z.X.; Chen, X.X.; Wang, H.; Guo, D.Y. Effect of Bacillus subtilis on intestinal apoptosis of grass carp Ctenopharyngodon idella orally challenged with Aeromonas hydrophila. Fish. Sci. 2019, 85, 187–197. [Google Scholar] [CrossRef]
Characteristics | GJL1 | A. veronii | A. veronii |
---|---|---|---|
bv sobria * | bv veronii * | ||
Gram staining | − | − | − |
Oxidase | + | + | + |
Voges–Proskauer | + | d | d |
Indole production | + | + | + |
Sucrose | + | + | + |
Maltose | + | + | + |
Raffinose | + | − | − |
Lactose | − | d | d |
Xylose | − | − | − |
Mannose | + | + | + |
Fructose | + | NT | NT |
Melibiose | + | − | − |
Cellobiose | + | d | d |
Galactose | + | NT | NT |
Esculin hydrolysis | + | − | + |
Glucose | + | d | d |
Mannitol | + | + | + |
Salicin | + | − | + |
Arabitol | − | − | − |
Sorbitol | − | − | − |
0% NaCl | + | + | + |
1% NaCl | + | NT | NT |
3% NaCl | + | + | + |
6% NaCl | − | NT | NT |
Tartrate | − | NT | NT |
Amygdalin | − | − | − |
Acetate | − | + | + |
Arginine dihydrolase | − | + | − |
Ornithine decarboxylase | + | − | + |
β-galactosidase | + | NT | NT |
Catalase | + | + | + |
Trehalose | + | + | + |
α-Methyl-d-glucoside | + | d | + |
Dulcitol | + | − | − |
Erythritol | + | − | − |
Rhamnose | − | − | − |
Motility | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Qian, Q.; Wu, C.; Zhu, Y.; Gao, X.; Jiang, Q.; Wang, J.; Liu, G.; Zhang, X. Pathogenicity of Aeromonas veronii Causing Mass Mortality of Largemouth Bass (Micropterus salmoides) and Its Induced Host Immune Response. Microorganisms 2022, 10, 2198. https://doi.org/10.3390/microorganisms10112198
Zhu X, Qian Q, Wu C, Zhu Y, Gao X, Jiang Q, Wang J, Liu G, Zhang X. Pathogenicity of Aeromonas veronii Causing Mass Mortality of Largemouth Bass (Micropterus salmoides) and Its Induced Host Immune Response. Microorganisms. 2022; 10(11):2198. https://doi.org/10.3390/microorganisms10112198
Chicago/Turabian StyleZhu, Xinhai, Qieqi Qian, Congcong Wu, Yujie Zhu, Xiaojian Gao, Qun Jiang, Jun Wang, Guoxing Liu, and Xiaojun Zhang. 2022. "Pathogenicity of Aeromonas veronii Causing Mass Mortality of Largemouth Bass (Micropterus salmoides) and Its Induced Host Immune Response" Microorganisms 10, no. 11: 2198. https://doi.org/10.3390/microorganisms10112198
APA StyleZhu, X., Qian, Q., Wu, C., Zhu, Y., Gao, X., Jiang, Q., Wang, J., Liu, G., & Zhang, X. (2022). Pathogenicity of Aeromonas veronii Causing Mass Mortality of Largemouth Bass (Micropterus salmoides) and Its Induced Host Immune Response. Microorganisms, 10(11), 2198. https://doi.org/10.3390/microorganisms10112198