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Abstract: Microbial degradation of natural rubber and synthetic poly(cis-1,4-isoprene) is expected
to become an alternative treatment system for waste from poly(cis-1,4-isoprene) products including
scrap tires. Nocardia farcinica NBRC 15,532, a gram-positive rubber-degrading bacterium, can utilize
poly(cis-1,4-isoprene) as the sole source of carbon and energy to produce oligo-isoprene metabolites
containing aldehyde and keto end groups. A homology-based search of the genome revealed a gene
encoding a latex-clearing protein (Lcp). Gene disruption analysis indicated that this gene is essential
for the utilization of poly(cis-1,4-isoprene) in this strain. Further analysis of the genome sequence
identified aldehyde dehydrogenase (ALDH) genes as potential candidates for oxidative degradation
of oligo-isoprene aldehydes. Based on the enzymatic activity of the ALDH candidates, NF2_RS14000
and NF2_RS14385 may be involved in the degradation of oligo-isoprene aldehydes. Analysis of
the reaction products revealed that these ALDHs oxidized tri- to penta-isoprene aldehydes, which
were generated by the reaction of Lcp. Based on the inability of ALDH gene deletion mutants, we
concluded that NF2_RS14000 is mainly involved in the utilization of poly(cis-1,4-isoprene) and the
oxidative degradation of oligo-isoprene aldehydes in Nocardia farcinica NBRC 15,532.

Keywords: poly(cis-1,4-isoprene) utilization; Nocardia farcinica; latex-clearing protein; aldehyde
dehydrogenase

1. Introduction

Natural rubber (NR) derived from Hevea brasiliensis [1] primarily consists of
poly(cis-1,4-isoprene). NR and synthetic polyisoprene rubber (IR) are important raw ma-
terials for industrial products such as automotive tires and medical gloves. However,
waste from poly(cis-1,4-isoprene) products is difficult to recycle and typically treated in
landfills or through combustion processes [2]. The biotransformation method is anticipated
to be an alternative eco-friendly treatment process for poly(cis-1,4-isoprene) containing
waste, and research on the establishment of a poly(cis-1,4-isoprene) conversion system
utilizing microorganisms is currently being conducted to build a sustainable, low-carbon
society [3,4].

The biodegradation of poly(cis-1,4-isoprene) has been shown to begin with the de-
polymerization of the poly(cis-1,4-isoprene) into low-molecular-weight products (oligo-
isoprene aldehydes) with aldehyde and keto end groups by the addition of oxygen by
extracellular oxygenases (Figure 1) [5–13]. A latex-clearing protein (Lcp), a poly(cis-1,4-
isoprene)-degrading oxygenase, has been identified in NR-degrading gram-positive bacte-
ria (actinomycetes) [6,14–16]. In contrast, gram-negative bacteria, such as Rhizobacter gum-
miphilus NS21T and Steroidobacter cummioxidans 35Y have other types of rubber oxygenases
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(RoxA and RoxB) [11,17–19]. The aldehyde group of the resulting low-molecular-weight
isoprenoids is thought to be oxidized by the putative heterodimeric molybdenum hydroxy-
lase, OxiAB before entering the β-oxidation pathway in Streptomyces sp. strain K30 [20]. A
putative twin-arginine translocation signal sequence was identified in the amino-terminal
region of OxiB, suggesting that OxiAB is an extracellular enzyme. In Gordonia polyisoprenivo-
rans VH2, which does not have the OxiAB coding genes, two aldehyde dehydrogenases
(ALDHs), GPOL_c02580 (AFA71331.1) and GPOL_c37100 (AFA74722.1), were found [21].
GPOL_c02580 and GPOL_c37100 are capable of oxidizing oligo-isoprene aldehydes in
this strain. However, the genes and their gene products responsible for the oxidation
of oligo-isoprene aldehydes in other rubber degraders such as Rhodococcus, Actinoplanes,
Nocardia, and gram-negative bacteria, have not yet been characterized. Moreover, the
reaction products of oligo-isoprene aldehydes obtained by the oxidation of OxiAB and
ALDHs have not been identified to date. To gain insights into the entire biodegradation
pathway of poly(cis-1,4-isoprene), it is important to identify the degradation products of
oligo-isoprene aldehydes.
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Figure 1. Proposed catabolic pathway for poly(cis-1,4-isoprene). Poly(cis-1,4-isoprene) is cleaved to
form oligo-isoprenoids with aldehyde and keto end groups (oligo-isoprene aldehydes). The tri- to
penta-isoprene aldehydes are oxidized to oligo-isoprene acids by NF2_RS14000 and NF2_RS14385 in
strain NBRC 15532.

In Nocardia, a lcp homologous gene that is responsible for the poly(cis-1,4-isoprene)
degradation has been identified [14,22,23]. However, the gene for the degradation of oligo-
isoprene aldehydes has not been identified. Here, Nocardia farcinica NBRC 15,532 which is
able to grow on NR and IR as a sole source of carbon and energy, was obtained from a stock
culture at the Biological Resource Center, National Institute of Technology and Evaluation
(NITE; Tokyo, Japan). Based on the genome sequence analysis of strain NBRC 15532, an lcp
homologous gene and the aldehyde dehydrogenase genes that are responsible for NR and
IR utilization in this strain were identified. The results uncovered the role of the poly(cis-1,4-
isoprene) degradation pathway genes, including lcp and aldehyde dehydrogenase genes at
the molecular level, in strain NBRC 15532.
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2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

N. farcinica NBRC 15,532 and its mutant derivatives were routinely grown at 37 ◦C in
PYM medium (0.5% bacto peptone, 0.3% yeast extract, and 0.1% MgSO4 7H2O; pH 7.0), LBP
medium (2% bacto peptone, 1% yeast extract, 2% NaCl), or W minimal salt medium [24]
containing 10 mM sodium succinate or 1% IR. Escherichia coli strains were cultivated at
37 ◦C in LB medium (2% bacto tryptone, 1% yeast extract, 1% NaCl). If necessary, the
medium was supplemented with 100 mg/L ampicillin (AMP), 25 mg/L kanamycin (KAN),
25 mg/L nalidixic acid (NAL), and 50 mg/L neomycin (NEO).

2.2. DNA Manipulation, Nucleotide Sequencing, and Sequence Analysis

DNA manipulations, including total DNA isolation and nucleotide sequencing, were
performed as previously described [25]. Nucleotide sequence analysis was performed
using MacVector software (MacVector, Inc., Cary, NC), as previously described [26]. The
genome sequence of NBRC 15,532 was used to identify poly(cis-1,4-isoprene) utilization
genes in the NBRC 15,532 genome database (https://www.ncbi.nlm.nih.gov/nuccore/
NZ_BDBJ00000000.1, accessed on 15 March 2021). Signal sequences were predicted using
SignalP 6.0 software (https://services.healthtech.dtu.dk/service.php?SignalP, accessed on
14 November 2022) [27].

2.3. Expression of His-Tagged Lcp and Aldehyde Dehydrogenase Genes in E. coli

The coding regions of the Lcp and aldehyde dehydrogenase genes were amplified
by PCR using the primers listed in Table 1. Each PCR-amplified fragment was cloned
into the expression vector pColdI using in-fusion cloning. The resultant plasmids were
independently introduced into E. coli BL21(DE3) and the transformed cells were grown in
100 mL of LB medium containing AMP at 30 ◦C. When the absorbance at 600 nm (A600)
of the culture reached 0.5, it was incubated at 15 ◦C for 30 min and cultivated again at
15 ◦C for 24 h after the addition of 0.1 mM isopropyl-β-D-thiogalactopyranoside. After the
incubation, the crude extracts were prepared by using an ultrasonic disrupter, as described
previously [28]. His-tagged proteins were purified using a HiTrap TALON superflow
column (Cytiva, Uppsala, Sweden), according to a previous method [16].

Table 1. Oligonucleotide sequences used in this study *.

Oligo Nucleotide Sequence (5’ to 3’)

For gene expression

lcp_Nde_F GAAGGAGATATACATATGGATGGACTCAGCAGGCG

lcp_Hind_R GAGTGCGGCCGCAAGCTTGCGATGCGGTTTGGTCA

07830_Nde_F TCGAAGGTAGGCATATGACCACTTCCGCCCCCACC

07830_Nde_R GTACCGAGCTCCATATCAGGGTCGGCAGACGTCCT

09370_Nde_F TCGAAGGTAGGCATATGAACCGATCGATGTCCGTC

09370_Nde_R GTACCGAGCTCCATATCACACCATGATGTTGATGA

14000_Nde_F TCGAAGGTAGGCATATGATCTATGCAAAGCCGGG

14000_EcoR_R CGACAAGCTTGAATTACGGTGATGTGGGTGTGT

14385_Nde_F TCGAAGGTAGGCATATGACCGACACGCTTTCCGAG

14385_Nde_R GTACCGAGCTCCATATCACAACTGCGCGTTGATCG

14465_Nde_F TCGAAGGTAGGCATATGCGAAACCAGCTCTTCATC

14465_Nde_R GTACCGAGCTCCATATCAGGCCAACGCGGTCCAGA

24625_Nde_F TCGAAGGTAGGCATAATGCATTACGACAGCTTGTT

24625_EcoR_R CGACAAGCTTGAATTCTAGCCGGTCCAGCCCAT

https://www.ncbi.nlm.nih.gov/nuccore/NZ_BDBJ00000000.1
https://www.ncbi.nlm.nih.gov/nuccore/NZ_BDBJ00000000.1
https://services.healthtech.dtu.dk/service.php?SignalP
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Table 1. Cont.

Oligo Nucleotide Sequence (5’ to 3’)

28775_Nde_F TCGAAGGTAGGCATAATGAGCGGACTTCTGCCC

28775_EcoR_R CGACAAGCTTGAATTTCAGACCGCGGTGGCGAT

02580_VH2_Nde_F TCGAAGGTAGGCATATGATCACCTACGACAAACTC

02580_VH2_Nde_R GTACCGAGCTCCATATCAGGCGTAGATCGACTTG

For qRT-PCR

lcp_F GATCAGCCAGAACGACATGA

lcp_R CGAGTTGGGGATGTACTCGT

14000_F GCACTGATCCACTCCTCCAT

14000_R CAGGTTCTTGGTCTGCTGGT

14385_F CGTTCGAGGGTGAATGGTCG

14385_R TTGCCGTTGTCCAGCGATTC

16S_F AGAGATGTAGGCCCCCTTGT

16S_R CCGGTACGGCTACCTTGTTA

For gene disruption

lcp_UP_F CGACTCTAGAGGATCGAACACCGAGGAGAGAGAGG

lcp_UP_R CGACTCTAGAGGATCACGAAGCCGACCAGCTGCGT

lcp_DW_F CGTGTACTGGCTCTTCGACG

lcp_DW_F CGGTACCCGGGGATCCGGTGGCGGTGCCCGGCGCT

14000_UP_F CGGTACCCGGGGATCACCTCGCTTCCGTCGTGG

14000_UP_R ACCGTAGAGGGTGTCAATGTTGGCGCGCTCGCTCG

14000_DW_F GACACCCTCTACGGTCTGGG

14000_DW_R CGACTCTAGAGGATCCCGAGTGGGACACGATCG

14385_UP_F CGGTACCCGGGGATCGCCCTCGAGCAACTGCTG

14385_UP_R TAGGGGGTGTCGTTGCACAGCGACCATTCACCCTC

14385_DW_F CAACGACACCCCCTACGGCC

14385_DW_R CGACTCTAGAGGATCGGGATGTGGTCCGGATGC
* These primers were constructed in this study.

2.4. Enzyme Assays
2.4.1. Lcp

The substrate-dependent oxygen consumption rate was measured to determine the
activity of purified Lcp. A 4-mL assay mixture contained 50 mM phosphate buffer (pH 7.4),
NR latex (final concentration 0.5%), and purified Lcp (20 µg of protein). The reaction
mixture was incubated at 35 ◦C and the oxygen consumption rate was determined using an
oxygen electrode (FireSting O2-C; BAS Inc., Tokyo, Japan). One unit of enzyme activity was
defined as the amount of activity that resulted in the consumption of 1 µmol of O2/min.
Specific activity is expressed as units per milligram of protein.

2.4.2. Oligo-Isoprene Aldehyde Dehydrogenase

Oligo-isoprene aldehyde dehydrogenase was assayed in a similar way as previously
reported [21]. To obtain oligo-isoprene aldehydes, 500 µL of the reaction mixture containing
0.8% (v/v) PSS-pio800 (Polymer Standards Service GmbH, Mainz, Germany) and 20 µg
of purified Lcp protein was incubated at 35 ◦C for 12 h. After the reaction, 500 µL of
50 mM Tris-HCl (pH 7.0) containing 50 µg protein of each purified ALDH and 200 µM
NAD+ was added to the mixture, which was then incubated at 30 ◦C. After 1 h, 120 µM 2,6-
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dichlorophenolindophenol (DCPIP) and 20 µM phenazine methosulfate (PMS) were added.
Enzyme activity was determined spectrophotometrically by monitoring the decrease in
absorbance at 660 nm, derived from the consumption of DCPIP. Specific activity was
calculated as the concentration of the remaining DCPIP using molar extinction coefficients
of 20,460 M−1 cm−1 for DCPIP.

2.5. Determination of Oligo-Isoprene Aldehydes and Acids

To determine oligo-isoprene aldehydes and acids, an enzymatic reaction mixture
was extracted with pentane, dried in vacuo, and dissolved in 2 mL of methanol. Then,
5 µL of the extract was subjected to a liquid chromatography-mass spectrometry (LC–MS)
system (Infinity Lab LC/MSD; Agilent Technology Inc., Santa Clara, CA, USA) equipped
with a ZORBAX SB-C18 2.1 × 50 mm column (Agilent Technology). LC–MS analysis was.
performed as described previously [16].

2.6. Construction of Deletion Mutants

Each lcp and aldehyde dehydrogenase gene was deleted using the sacB counterse-
lection system as described previously [29–31]. The oligonucleotides that amplified the
flanking regions of each gene are listed in Table 1. The amplified fragments were connected
and inserted into the pK18mobsacB [30]. Each resulting plasmid was introduced into NBRC
15532, and transformants were selected using NEO resistance and sucrose sensitivity as
described previously [16]. To obtain a deletion mutant using the sacB counterselection
system, the sucrose-sensitive and NEO-resistant transformants were subjected to a second
selection on a sucrose-containing 0.2 × LB agar plate. Deletion of the genes was confirmed
by diagnostic PCR using specific primer sets, and subsequently by DNA sequencing of the
PCR-amplified regions flanking the deletion.

2.7. Quantitative Reverse Transcription-PCR (qRT-PCR) Analysis

NBRC 15,532 cells were grown in W medium containing 10 mM sodium succinate
with or without 1% IR at 37 ◦C for 5 d. Total RNA was extracted from the resulting cells
using ISOGEN II (Nippon Gene Co., Ltd., Tokyo, Japan), according to the manufacturer’s
instructions. Single-stranded cDNA was synthesized from 1 µg of total RNA after treatment
with RNase-free DNase I (Roche) as described previously [15]. qRT-PCR analysis was
carried out using 50 ng of a cDNA, 4 pmol of specific primer pairs (Table 1), and 10 µL
of Fast SYBR Green Master Mix (Life Technologies) in a total reaction volume of 20 µL,
according to the previous method [11]. To normalize the quantity of RNA in each sample,
the 16S rRNA gene was used as an internal standard.

3. Results and Discussion
3.1. Characterization of Lcp-Coding Gene of Strain NBRC 15532

A tBLASTn homology search of the genome sequence of NBRC 15,532 was performed
using the amino acid sequence of Lcp (API85527) of Nocardia sp. strain NVL3 [14] as
the query, and an lcp gene (NF2_RS04895) was identified. The deduced amino acid se-
quence of the lcp gene had an overall identity of 78% and 56% with Lcps from strains
NVL3 and K30 (AAR25849), respectively. To determine whether the gene is involved
in poly(cis-1,4-isoprene) degradation, 10× histidine-tag-fused (His-tagged) lcp was ex-
pressed in E. coli BL21(DE3). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis
revealed the production of a 46-kDa protein (Figure S1), which is consistent with the
deduced amino acid sequence. When purified His-tagged Lcp was incubated with NR
latex, oxygen consumption activity was observed at a specific activity of 0.50 ± 0.07 U/mg
of protein (35 ◦C, pH 7.5). No consumption of oxygen was observed without protein
or NR latex, indicating that the enzyme was required for poly(cis-1,4-isoprene) degrada-
tion. The optimal temperature and pH for oxygen consumption activity of this enzyme
with NR latex were 35 ◦C and 7.5, respectively. The activity of Lcp from NBRC15532 is
slightly lower than those of other reported Lcps in K30 (4.6 U/mg), Actinoplanes sp. OR16
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(4.0 U/mg), G. polyisoprenivorans VH2 (1.3 U/mg), and Rhodococcus rhodochrous RPK1
(3.1 U/mg) [10,15,32,33]. Furthermore, although NBRC15532 has sole gene encoding Lcp,
it exhibits the same level of NR degradation as other known NR-degrading bacteria. It
might be due to the expression level of lcp in each NR-degrading bacterium. However,
the transcription level of the lcp gene have not been compared, a detailed analysis for the
transcription of lcp is necessary to clarify the relationship between the degradation activity
of NR degrader and the enzymatic activity of Lcp in the future.

To determine the degradation product of poly(cis-1,4-isoprene) by the reaction of
Lcp, the reaction mixture containing Lcp and IR was incubated at 35 ◦C for 12 h and then
analyzed by HPLC-ESI-MS. As shown in Figure S2, the appearance of the peak for the
protonated molecular ion [M+H]+ of oligo-isoprene aldehydes corresponding to molecular
sizes from C20 to C50 was observed. Multiple degradation products of different molecular
sizes were produced, suggesting that Lcp, like Lcp in other actinomycetes, randomly
cleaves poly(cis-1,4-isoprene) into a mixture of tri-isoprene aldehyde (C20) or higher with
aldehyde and keto functional groups at the ends [10,32,34].

To examine the role of the lcp gene in poly(cis-1,4-isoprene) utilization by NBRC
15532, the gene was inactivated by an internal deletion using a gene replacement technique.
As shown in Figure 2a, the deletion mutant strain did not grow on IR. When the cells
of NBRC 15,532 were grown with the pieces of the DPNR glove, bacterial colonies and
pronounced pitting on the glove were observed on the surface of the glove pieces after 15 d
of incubation (Figure S3). By contrast, no colonies or pits were found in the case of the lcp
deletion mutant. These results indicated that the lcp gene is essential for the utilization of
poly(cis-1,4-isoprene) in NBRC 15532.
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Figure 2. Growth of NBRC 15,532 and its deletion mutants on IR. Cells were grown in W medium
containing 1.0% IR. NBRC 15,532 (circles) and lcp deletion mutant (diamonds) were shown in (a).
NBRC 15,532 (circles), ∆14000 (triangles), ∆14385 (squares) and ∆14000-∆14385 double mutant
(diamonds) were shown in (b). The data are averages ± standard deviations of three independent
experiments performed in parallel.

3.2. Identification of ALDH for the Oxidation of Oligo-Isoprene Aldehydes

Oligo-isoprene aldehyde dehydrogenases have been reported only in G. polyisoprenivo-
rans strain VH2 [21]. When a homology search of the genome sequence of strain NBRC
15,532 was performed using the amino acid sequence of GPOL_c02580 from strain VH2 as
a query, seven putative ALDH genes were predicted. ALDH activity toward oligo-isoprene
aldehydes in strain NBRC 15,532 was 0.12 mU/mg when NAD+ was used as coenzyme.
However, the activity when NADP+ was used as a coenzyme was approximately 10% of
that with NAD+. Based on these results, we considered that NAD+ is mainly used as a
cofactor for oligo-isoprene aldehyde oxidation in the strain NBRC 15,532 and compared
the enzymatic activity of seven ALDH candidates when NAD+ was used as a cofactor.
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To examine the activity of ALDHs toward oligo-isoprene aldehydes, each ALDH
gene was expressed as a His-tagged protein in E. coli BL21(DE3). Using SDS-PAGE anal-
ysis, each protein was specifically observed in the crude extracts of E. coli BL21(DE3)
harboring each expression plasmid, and their sizes were consistent with the size esti-
mated from each deduced amino acid sequence of the ALDH genes (Figure S4). To
characterize enzymatic activity, each His-tagged protein was purified by Ni-affinity col-
umn chromatography. Oligo-isoprene aldehydes were prepared as substrates by reacting
poly(cis-1,4-isoprene) with purified Lcp for 12 h. After the Lcp reaction, purified ALDH
and 200 µM NAD+ were added to the reaction mixture to react with the oligo-isoprene
aldehydes. As shown in Figure 3, significant degradation activities were observed for two
gene products, NF2_RS14000 and NF2_RS14385. The specific activities of NF2_RS14000
and NF2_RS14385 were 1.2 and 3.9 mU/mg, respectively. These specific activities were
comparable to that of GPOL_c02580 (2.1 mU/mg) of strain VH2. Other ALDH candidates,
excluding NF2_RS09370, exhibited weak activity in the presence of oligo-isoprene aldehy-
des. Furthermore, NF2_RS09370 showed no activity under the same conditions, suggesting
that NF2_RS14000 and NF2_RS14385 are important for the degradation of oligo-isoprene
aldehydes in NBRC 15532.
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Figure 3. ALDH activities of ALDH candidates toward oligo-isoprene aldehydes. The assay was
performed basically as described previously [21]: 500 µL of 50 mM Tris-HCl (pH 7.0) containing
50 µg protein of each purified ALDH and 200 µM NAD+ were added to 500 µL of the Lcp reaction
mixture containing IR. After 1 h of reaction, absorbance at 660 nm derived from DCPIP was measured
to evaluate the enzymatic activity. The data are the mean values ± standard deviations of four
independent experiments. ND; not detected.

The deduced amino acid sequences of NF2_RS14000 and NF2_RS14385 showed 34–40%
identity with those of GPOL_c02580, GPOL_c37100, and geranial dehydrogenase (H1ZV37)
of Castellaniella defragrans [35]. The deduced amino acid sequence of NF2_RS14000 exhibited
73% identity with that of Ald1 (Q9FDS1) from Acinetobacter sp. strain M-1, which is involved
in the oxidation of tetradecanal [36]. NF2_RS14385 shares a relatively high identity (43%)
with retinal dehydrogenase (NP_033048.2) from Mus musculus [37,38], which oxidizes
retinal, including the isoprene-unit and terminal aldehyde groups. Based on sequence
similarities, NF2_RS14385 and NF2_RS14000 may be involved in the oxidation of carbon
chains with terminal aldehyde groups to fatty acids. As no signal peptide sequence was
found in the N-terminal amino acid sequence regions of NF2_RS14000 and NF2_RS14385,
these gene products appear to be intracellular enzymes.
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3.3. Transcriptional Induction of the lcp and the ALDH Genes

To determine whether transcription of the lcp, NF2_RS14000, and NF2_RS14385 genes
was induced during the utilization of poly(cis-1,4-isoprene), the mRNA levels of these
genes were measured by qRT-PCR analysis. Total RNA was harvested from the cells of
NBRC 15,532 grown on succinate with or without 1% IR. The transcriptional level of lcp in
cells grown with IR was 21-fold higher than in cells grown without IR (p < 0.05, Student’s
t test) (Figure 4). It has been suggested that lcp transcription is induced during poly(cis-
1,4-isoprene) utilization. Furthermore, the transcription of NF2_RS14385 was induced
during the growth of NBRC 15,532 with IR (Figure 4). By contrast, the NF2_RS14000 gene
is constitutively transcribed in NBRC 15,532 cells. However, the transcriptional level of
NF2_RS14000 was shown to be more than 1000-fold higher during growth in the presence
of IR than NF2_RS14385. Since NF2_RS14000 seems to be significantly more abundant
in cells in the presence of IR than NF2_RS14385, NF2_RS14000 is thought to be mainly
responsible for poly(cis-1,4-isoprene) utilization. According to the constitutive expression of
NF2_RS14000, the aldehyde compounds generated during poly(cis-1,4-isoprene) utilization
appear to be rapidly oxidized to fatty acids. Because many types of aldehyde compounds
have been found to have cytotoxic potential [39–41], the rapid degradation of aldehyde
compounds is thought to be important for the utilization of poly(cis-1,4-isoprene).
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Figure 4. Quantification of the expression levels of the lcp, NF2_RS14000, and NF2_RS14385 genes.
Total RNA was isolated from NBRC 15,532 cells grown in W medium containing 10 mM succinate
with IR (gray bars) or without IR (open bars). mRNA expression levels were calculated as the ratio
against 16S rRNA gene expression. The data are the mean values ± standard deviations of five
independent experiments. Statistical analysis was performed using Student’s t test. The asterisks
indicate statistically significant differences between the values linked by brackets (* p < 0.05). ND;
not detected.

3.4. Disruption of the ALDH Genes in NBRC 15532

To clarify the involvement of NF2_RS14000 and NF2_RS14385 in poly(cis-1,4-isoprene)
utilization, each ALDH gene was disrupted by gene replacement using homologous re-
combination. To compare the growth rates of NBRC 15,532 and each ALDH gene deletion
mutant on IR, each strain was incubated on W medium with IR as a carbon source. Com-
parison of the growth of each deletion mutant with that of the wild-type strain showed that
the growth rate of the NF2_RS14000 deletion mutant (∆14000) was significantly decreased
(Figure 2b). By contrast, growth of the NF2_RS14385 deletion mutant (∆14385) was slightly
decreased. In addition, the growth of the double-deletion mutant was further decreased
compared to that of ∆14000. However, it did not completely lose its growth ability, suggest-
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ing that NF2_RS14000 and NF2_RS14385 are indeed involved in IR utilization, but are not
essential for the growth of NBRC 15,532 on IR.

To estimate the level of participation of each ALDH gene in oligo-isoprene aldehyde
degradation, the ALDH activities of ∆14000 and ∆14385 cell extracts grown on IR were
determined. When the cell extract of ∆14000 was reacted with oligo-isoprene aldehydes
prepared from poly(cis-1,4-isoprene) in the presence of NAD+, the activity of ∆14000 was
approximately 40% that of the wild-type strain (Figure 5). By contrast, the activity of
∆14385 was comparable to that of the wild type. In addition, the activity of the double-
deletion mutant was almost the same as that of ∆14000, suggesting that NF2_RS14000
was mainly involved in the oxidation of oligo-isoprene aldehydes in NBRC15532. The
double-deletion mutant did not completely lose its ability to grow on IR and degrade oligo-
isoprene aldehydes, raising the possibility that unidentified enzymes are involved in the
oxidation of oligo-isoprene aldehydes in strain NBRC 15532. In this study, ALDH activity
toward oligo-isoprene aldehydes remained despite the disruption of NF2_RS14000 and
NF2_RS14385, which had significant ALDH activity toward oligo-isoprene aldehydes. This
means that other ALDHs, whose exact oxidation activity toward oligo-isoprene aldehydes
was not detected in heterologous host expression, might act in the cells of NBRC 15532. It
is necessary to express ALDH candidates using hosts closely related to the genus Nocardia
and examine ALDH activity toward oligo-isoprene aldehydes in the future.
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Figure 5. ALDH activities of NBRC 15,532 and its deletion mutants toward oligo-isoprene aldehydes.
The reaction mixture (1 mL) containing 1 mg protein of the crude extract and 200 µM NAD+ were
incubated for 1 h. After the reaction, absorbance at 660 nm derived from DCPIP was measured to
evaluate the ALDH activity. The data are the mean values ± standard deviations of four independent
experiments.

3.5. Identification of the Reaction Product of Oligo-Isoprene Aldehydes

Because the analysis of gene deletion mutants revealed that NF2_RS14000 is mainly
involved in the utilization of poly(cis-1,4-isoprene), the reaction products of oligo-isoprene
aldehydes by the NF2_RS14000 gene product were examined. To identify the reaction
products, purified NF2_RS14000 gene product was added to the reaction mixture containing
oligo-isoprene aldehydes produced by Lcp (Figure 6). After 12 h of reaction, the intensities
of the peaks at m/z 305.2 and 373.3, corresponding to [M+H]+ of tri- (C20) and tetra- (C25)
oligo-isoprene aldehydes, respectively, were significantly decreased (Figure 6b). In this
reaction mixture, the generation of peaks of m/z 321.2, 389.3, and 457.3 corresponding to
[M+H]+ of tri- (C20), tetra- (C25), and penta- (C30) oligo-isoprene acids, respectively, was
observed (Figure 6d). The tri- (C20) to penta- (C30) oligo-isoprene aldehydes were oxidized
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to the corresponding oligo-isoprene acids by NF2_RS14000. Similar conversion profile was
found in the case of NF2_RS14385, suggesting that poly(cis-1,4-isoprene) is utilized via tri-
(C20) to penta- (C30) oligo-isoprene acids before entering the β-oxidation pathway in strain
NBRC 15532.
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Figure 6. Extracted ion chromatogram of the degradation products of oligo-isoprene aldehydes. The
reaction mixture containing oligo-isoprene aldehydes produced by the Lcp reaction, 150 µg of purified
NF2_RS14000 and 200 µM NAD+ were incubated: (a,c) and (b,d) showed extracted ion chromatogram
of the reaction products at the start of incubation and after 12-h incubation, respectively. Peaks for
extracted ions of the oligo-isoprene aldehydes and acids were shown in (a,b) and (c,d), respectively.

4. Conclusions

In this study, the gene code for Lcp, which is directly involved in poly(cis-1,4-isoprene)
utilization, was identified. Based on the analysis of the reaction products, poly(cis-1,4-isoprene)
was degraded to C20–C50 oligo-isoprene aldehydes by the Lcp reaction. NF2_RS14000 and
NF2_RS14385 were identified as ALDH for the oxidation of oligo-isoprene aldehydes generated
from poly(cis-1,4-isoprene). The generation of C20 to C30 oligo-isoprene acids as degradation
products of oligo-isoprene aldehydes by the NF2_RS14000 and NF2_RS14385 reactions was
indicated. Analysis of the gene deletion mutants revealed that NF2_RS14000 was mainly
involved in the utilization of poly(cis-1,4-isoprene) in NBRC 15532. The ALDHs predicted
in this study had no signal peptide sequence. Therefore, we conclude that oligo-isoprene
aldehydes produced by the reaction of Lcp outside the cells are oxidized intracellularly by
ALDH after uptake into the cell. However, the oligo-isoprene aldehyde degradation and
poly(cis-1,4-isoprene) utilization abilities of the double-deletion mutant were not completely
lost, suggesting that there are other unidentified gene(s) involved in the utilization of poly(cis-
1,4-isoprene). Therefore, it is necessary to identify the gene(s) to gain a better understanding of
poly(cis-1,4-isoprene) utilization in this strain.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms10122324/s1, Figure S1: SDS-PAGE analysis of protein frac-
tions. Proteins were separated on a SDS-12% polyacrylamide gel and stained with Coomassie brilliant
blue. Lanes; M, molecular weight markers; 1, crude extract of E. coli BL21(DE3) carrying pColdI expression
vector; 2, crude extract of E. coli BL21(DE3) containing his-tagged lcp; 3, purified his-tagged Lcp. Molecular
masses are given on the left; Figure S2: Extracted ion chromatogram of oligo-isoprene aldehydes generated

https://www.mdpi.com/article/10.3390/microorganisms10122324/s1
https://www.mdpi.com/article/10.3390/microorganisms10122324/s1
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from poly(cis-1,4-isoprene). After the Lcp reaction, the molecular mass of the reaction products containing
oligo-isoprene aldehydes were analyzed by LC–MS The reaction mixture containing 25 mg poly(cis-1,4-
isoprene) and 150 µg of purified Lcp was incubated for 12 h; Figure S3: The pieces of NR glove after
incubated with N. farcinica NBRC 15532 (A) and the lcp deletion mutant (B). The NR pieces were prepared
by cutting NR glove into 1 cm squares. The cells of wild type and its mutant were incubated at 37 ◦C for 5,
10, and 15 days; Figure S4: SDS-PAGE analysis of protein fractions. Proteins were separated on a SDS-12%
polyacrylamide gel and stained with Coomassie brilliant blue. Lanes; M, molecular weight markers;
Fractions of crude extract of E. coli BL21(DE3) carrying each plasmid vector and purified his-tagged protein
are shown in black and red, respectively. Molecular masses are given on the left.
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