The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer
Abstract
:1. Introduction
2. Taxonomy and Sources of Isolation
S. No. | Bacterial Name | Source | Ref. |
---|---|---|---|
1 | W. viridescens | Cured meat | [14] |
2 | W. paramesenteroides | Wine | [15] |
3 | W. confusa | Fermented Greek sausage | [16] |
4 | W. kandleri | Namib desert | [17] |
5 | W. halotolerans | Meat products | [18] |
6 | W. minor | Meat products | [18] |
7 | W. hellenica | Fermented Greek sausage | [16] |
8 | W. thailandensis | Fermented fish | [19] |
9 | W. soli | Soil | [20] |
10 | W. cibaria | Malaysian food and human samples | [21] |
11 | W. koreensis | Kimchi | [22] |
12 | W.ghanensis | Ghanaian cocoa fermentation | [23] |
13 | W. beninensis | Submerged cassava fermentations | [24] |
14 | W. fabaria | Ghanaian cocoa fermentation | [25] |
15 | W. ceti | Beaked whales | [26] |
16 | W. fabalis | Cocoa bean fermentations | [27] |
17 | W. oryzae | Fermented rice grains | [28] |
18 | W. diestrammenae | Gut of a camel cricket | [29] |
19 | W. uvarum | Wine grapes | [30] |
20 | W. cryptocerci | Gut of the insect | [31] |
21 | W. bombi | Bumble bee gut | [32] |
22 | W. jogaejeotgali | Korean fermented seafood | [33] |
23 | W. kimchi | Kimchi | [34] |
24 | W. muntiaci | Feces of Formosan barking deer | [1] |
25 | W. sagaensis | Traditional Chinese yogurt | [35] |
26 | W. hanii | kimchi | [36] |
27 | W. salipiscis | fermented fish | [37] |
28 | W. coleopterorum | Intestine of the diving beetle | [38] |
3. Safety and Virulence Genes
4. Opportunistic Infections That Respond to Antibiotics
5. Probiotic/Postbiotic Potential and Health Benefits of Weissella
5.1. Antimicrobial Potential
5.2. Immunomodulatory and Anticancer Potential
5.3. Dental and Skin Health
5.4. Anti-Obesity
6. Starter Culture
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, S.-T.; Wang, L.-T.; Wu, Y.-C.; Guu, J.-R.J.; Tamura, T.; Mori, K.; Huang, L.; Watanabe, K. Weissella muntiaci sp. nov., isolated from faeces of Formosan barking deer (Muntiacus reevesi). Int. J. Syst. Evol. Microbiol. 2020, 70, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Fusco, V.; Quero, G.M.; Cho, G.S.; Kabisch, J.; Meske, D.; Neve, H.; Bockelmann, W.; Franz, C.M.A.P. The genus Weissella: Taxonomy, ecology and biotechnological potential. Front. Microbiol. 2015, 6, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheaito, R.A.; Awar, G.; Alkozah, M.; Cheaito, M.A.; El Majzoub, I. Meningitis due to Weissella Confusa. Am. J. Emerg. Med. 2020, 38, 1298.e1–1298.e3. [Google Scholar] [CrossRef] [PubMed]
- Baugh, A.V.; Howarth, T.M.; West, K.L.; Kerr, L.E.J.; Love, J.; Parker, D.A.; Fedenko, J.R.; Tennant, R.K. Draft Genome Sequence of Weissella paramesenteroides STCH-BD1, Isolated from Ensiled Sorghum bicolor. Microbiol. Resour. Announc. 2021, 10, e01328-20. [Google Scholar] [CrossRef] [PubMed]
- Björkroth, J.; Holzapfel, W. Genera Leuconostoc, Oenococcus and Weissella. Prokaryotes 2006, 4, 267–319. [Google Scholar] [CrossRef]
- Rossi, F.; Amadoro, C.; Colavita, G. Members of the Lactobacillus Genus Complex (LGC) as Opportunistic Pathogens: A Review. Microorganisms 2019, 7, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturino, J.M. Literature-based safety assessment of an agriculture- and animal-associated microorganism: Weissella confusa. Regul. Toxicol. Pharmacol. 2018, 95, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Öz, E.; Kaban, G.; Barış, O.; Kaya, M. Isolation and identification of lactic acid bacteria from pastırma. Food Control 2017, 77, 158–162. [Google Scholar] [CrossRef]
- Kang, B.K.; Cho, M.S.; Park, D.S. Red pepper powder is a crucial factor that influences the ontogeny of Weissella cibaria during kimchi fermentation. Sci. Rep. 2016, 6, 28232. [Google Scholar] [CrossRef] [Green Version]
- Spiegelhauer, M.R.; Yusibova, M.; Rasmussen, I.K.B.; Fuglsang, K.A.; Thomsen, K.; Andersen, L.P. A case report of polymicrobial bacteremia with Weissella confusa and comparison of previous treatment for successful recovery with a review of the literature. Access Microbiol. 2020, 2, e000119. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Fusieger, A.; Milião, G.L.; Martins, E.; Drider, D.; Nero, L.A.; de Carvalho, A.F. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics Antimicrob. Proteins 2021, 13, 915–925. [Google Scholar] [CrossRef]
- Fanelli, F.; Montemurro, M.; Chieffi, D.; Cho, G.-S.; Franz, C.M.A.P.; Dell’Aquila, A.; Rizzello, C.G.; Fusco, V. Novel Insights Into the Phylogeny and Biotechnological Potential of Weissella Species. Front. Microbiol. 2022, 13, 914036. [Google Scholar] [CrossRef]
- Vela, A.I.; Porrero, C.; Goyache, J.; Nieto, A.; Sánchez, B.; Briones, V.; Moreno, M.; Domínguez, L.; Fernandez-Garayzabal, J.F. Weissella confusa Infection in Primate (Cercopithecus mona). Emerg. Infect. Dis. 2003, 9, 1307–1309. [Google Scholar] [CrossRef]
- Niven, C., Jr.; Evans, J.B. Lactobacillus viridescens nov. spec., a heterofermentative species that produces a green discoloration of cured meat pigments. J. Bacteriol. 1957, 73, 758–759. [Google Scholar] [CrossRef] [Green Version]
- Garvie, E.I. The Growth Factor and Amino Acid Requirements of Species of the Genus Leuconostoc, including Leuconostoc paramesenteroides (sp. nov.) and Leuconostoc oenos. J. Gen. Microbiol. 1967, 48, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.; Samelis, J.; Metaxopoulos, J.; Wallbanks, S. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 1993, 75, 595–603. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Van Wyk, E.P. Lactobacillus kandleri sp. nov., a new species of the subgenus betabacterium, with glycine in the peptidoglycan. Zent. Für Bakteriol. Mikrobiol. Hyg. 1982, 3, 495–502. [Google Scholar] [CrossRef]
- Kandler, O.; Schillinger, U.; Weiss, N. Lactobacillus halotolerans sp. nov., nom. rev. and Lactobacillus minor sp. nov., nom. rev. Syst. Appl. Microbiol. 1983, 4, 280–285. [Google Scholar] [CrossRef]
- Tanasupawat, S.; Shida, O.; Okada, S.; Komagata, K. Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int. J. Syst. Evol. Microbiol. 2000, 50, 1479–1485. [Google Scholar] [CrossRef]
- Magnusson, J.; Jonsson, H.; Schnürer, J.; Roos, S. Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 2002, 52, 831–834. [Google Scholar] [CrossRef]
- Bjorkroth, J.; Schillinger, U.; Geisen, R.; Weiss, N.; Hoste, B.; Holzapfel, W.H.; Korkeala, H.; Vandamme, P. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int. J. Syst. Evol. Microbiol. 2002, 52, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Lee, K.C.; Ahn, J.-S.; Mheen, T.-I.; Pyun, Y.-R.; Park, Y.-H. Weissella koreensis sp. nov., isolated from kimchi. Int. J. Syst. Evol. Microbiol. 2002, 52, 1257–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bruyne, K.; Camu, N.; Lefebvre, K.; De Vuyst, L.; Vandamme, P. Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 2008, 58, 2721–2725. [Google Scholar] [CrossRef] [PubMed]
- Padonou, S.W.; Schillinger, U.; Nielsen, D.S.; Franz, C.M.A.P.; Hansen, M.; Hounhouigan, J.D.; Nago, M.C.; Jakobsen, M. Weissella beninensis sp. nov., a motile lactic acid bacterium from submerged cassava fermentations, and emended description of the genus Weissella. Int. J. Syst. Evol. Microbiol. 2010, 60, 2193–2198. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, K.; Camu, N.; De Vuyst, L.; Vandamme, P. Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 2010, 60, 1999–2005. [Google Scholar] [CrossRef] [Green Version]
- Vela, A.I.; Fernández, A.; de Quirós, Y.B.; Herráez, P.; Domínguez, L.; Fernández-Garayzábal, J.F. Weissella ceti sp. nov., isolated from beaked whales (Mesoplodon bidens). Int. J. Syst. Evol. Microbiol. 2011, 61, 2758–2762. [Google Scholar] [CrossRef] [Green Version]
- Snauwaert, I.; Papalexandratou, Z.; De Vuyst, L.; Vandamme, P. Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. Int. J. Syst. Evol. Microbiol. 2013, 63, 1709–1716. [Google Scholar] [CrossRef] [Green Version]
- Tohno, M.; Kitahara, M.; Inoue, H.; Uegaki, R.; Irisawa, T.; Ohkuma, M.; Tajima, K. Weissella oryzae sp. nov., isolated from fermented rice grains. Int. J. Syst. Evol. Microbiol. 2013, 63, 1417–1420. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.J.; Shin, N.-R.; Hyun, D.-W.; Kim, P.S.; Kim, J.Y.; Kim, M.-S.; Yun, J.-H.; Bae, J.-W. Weisselladiestrammenae sp. nov., isolated from the gut of a camel cricket (Diestrammena coreana). Int. J. Syst. Evol. Microbiol. 2013, 63, 2951–2956. [Google Scholar] [CrossRef] [Green Version]
- Nisiotou, A.; Dourou, D.; Filippousi, M.-E.; Banilas, G.; Tassou, C. Weissella uvarum sp. nov., isolated from wine grapes. Int. J. Syst. Evol. Microbiol. 2014, 64, 3885–3890. [Google Scholar] [CrossRef]
- Heo, J.; Hamada, M.; Cho, H.; Weon, H.-Y.; Kim, J.-S.; Hong, S.-B.; Kim, S.-J.; Kwon, S.-W. Weissella cryptocerci sp. nov., isolated from gut of the insect Cryptocercus kyebangensis. Int. J. Syst. Evol. Microbiol. 2019, 69, 2801–2806. [Google Scholar] [CrossRef] [PubMed]
- Praet, J.; Meeus, I.; Cnockaert, M.; Houf, K.; Smagghe, G.; Vandamme, P. Novel lactic acid bacteria isolated from the bumble bee gut: Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov. Antonie Van Leeuwenhoek 2015, 107, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Ku, H.-J.; Ahn, M.-J.; Hong, J.-S.; Shin, H.; Lee, K.C.; Lee, J.-S.; Ryu, S.; Jeon, C.O.; Lee, J.-H. Weissella jogaejeotgali sp. nov., isolated from jogae jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 2015, 65, 4674–4681. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-J.; Cheigh, C.-I.; Kim, S.-B.; Lee, J.-C.; Lee, D.-W.; Choi, S.-W.; Park, J.-M.; Pyun, Y.-R. Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int. J. Syst. Evol. Microbiol. 2002, 52, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Tian, W.L.; Gu, C.T. Weissella sagaensis sp. nov., isolated from traditional Chinese yogurt. Int. J. Syst. Evol. Microbiol. 2020, 70, 2485–2492. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Jung, J.-H.; Jang, J.; Lee, J.; Chun, J. Weissella hanii sp. nov., from kimchi. Int. J. Syst. Evol. Microbiol. 2011. Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=167774&lvl=3&lin=f (accessed on 18 October 2022).
- Tanasupawat, S.; Sukontasing, S.; Okada, S.; Komagata, K. Weissella salipiscis sp. nov., from fermented fish (pla-ra) in Thailand. 2006. Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=381421&lvl=3&lin=f (accessed on 18 October 2022).
- Hyun, D.-W.; Lee, J.-Y.; Sung, H.; Kim, P.S.; Jeong, Y.-S.; Lee, J.-Y.; Yun, J.-H.; Choi, J.-W.; Han, J.E.; Lee, S.-Y.; et al. Brevilactibacter coleopterorum sp. nov., isolated from the intestine of the dark diving beetle Hydrophilus acuminatus, and Weissella coleopterorum sp. nov., isolated from the intestine of the diving beetle Cybister lewisianus. Int. J. Syst. Evol. Microbiol. 2021, 71, 004779. [Google Scholar] [CrossRef]
- Wang, L.; Si, W.; Xue, H.; Zhao, X. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands. Cell. Microbiol. 2017, 19, e12731. [Google Scholar] [CrossRef] [Green Version]
- Quattrini, M.; Korcari, D.; Ricci, G.; Fortina, M. A polyphasic approach to characterize Weissella cibaria and Weissella confusa strains. J. Appl. Microbiol. 2019, 128, 500–512. [Google Scholar] [CrossRef]
- Cupi, D.; Elvig-Jørgensen, S.G. Safety assessment of Weissella confusa—A direct-fed microbial candidate. Regul. Toxicol. Pharmacol. 2019, 107, 104414. [Google Scholar] [CrossRef]
- Abriouel, H.; Lerma, L.L.; Muñoz, M.D.C.C.; Montoro, B.P.; Kabisch, J.; Pichner, R.; Cho, G.-S.; Neve, H.; Fusco, V.; Franz, C.M.A.P.; et al. The controversial nature of the Weissella genus: Technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Front. Microbiol. 2015, 6, 1197. [Google Scholar] [CrossRef]
- Riebel, W.J.; Washington, J.A. Clinical and microbiologic characteristics of pediococci. J. Clin. Microbiol. 1990, 28, 1348–1355. [Google Scholar] [CrossRef] [Green Version]
- Green, M.; Wadowsky, R.M.; Barbadora, K. Recovery of vancomycin-resistant gram-positive cocci from children. J. Clin. Microbiol. 1990, 28, 484–488. [Google Scholar] [CrossRef] [Green Version]
- Bantar, C.E.; Relloso, S.; Castell, F.R.; Smayevsky, J.; Bianchini, H.M. Abscess caused by vancomycin-resistant Lactobacillus confusus. J. Clin. Microbiol. 1991, 29, 2063–2064. [Google Scholar] [CrossRef] [Green Version]
- Green, M.; Barbadora, K.; Michaels, M. Recovery of vancomycin-resistant gram-positive cocci from pediatric liver transplant recipients. J. Clin. Microbiol. 1991, 29, 2503–2506. [Google Scholar] [CrossRef] [Green Version]
- Olano, A.; Chua, J.; Schroeder, S.; Minari, A.; La Salvia, M.; Hall, G. Weissella confusa (Basonym: Lactobacillus confusus) Bacteremia: A Case Report. J. Clin. Microbiol. 2001, 39, 1604–1607. [Google Scholar] [CrossRef] [Green Version]
- Flaherty, J.D.; Levett, P.N.; Dewhirst, F.E.; Troe, T.E.; Warren, J.R.; Johnson, S. Fatal Case of Endocarditis Due to Weissella confusa. J. Clin. Microbiol. 2003, 41, 2237–2239. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Kim, D.I.; Kim, H.R.; Kim, D.S.; Kook, J.-K.; Lee, J.N. Severe infective endocarditis of native valves caused by Weissella confusa detected incidentally on echocardiography. J. Infect. 2007, 54, e149–e151. [Google Scholar] [CrossRef]
- Lee, M.-R.; Huang, Y.-T.; Liao, C.-H.; Lai, C.-C.; Lee, P.-I.; Hsueh, P.-R. Bacteraemia caused by Weissella confusa at a university hospital in Taiwan, 1997–2007. Clin. Microbiol. Infect. 2011, 17, 1226–1231. [Google Scholar] [CrossRef] [Green Version]
- Salimnia, H.; Alangaden, G.; Bharadwaj, R.; Painter, T.; Chandrasekar, P.; Fairfax, M. Weissella confusa: An unexpected cause of vancomycin-resistant gram-positive bacteremia in immunocompromised hosts. Transpl. Infect. Dis. 2010, 13, 294–298. [Google Scholar] [CrossRef]
- Harlan, N.; Kempker, R.; Parekh, S.; Burd, E.; Kuhar, D. Weissella confusa bacteremia in a liver transplant patient with hepatic artery thrombosis. Transpl. Infect. Dis. 2010, 13, 290–293. [Google Scholar] [CrossRef]
- Kumar, A.; Augustine, D.; Sudhindran, S.; Kurian, A.M.; Dinesh, K.R.; Karim, S.; Philip, R. Weissella confusa: A rare cause of vancomycin-resistant Gram-positive bacteraemia. J. Med. Microbiol. 2011, 60, 1539–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.; Cho, S.-M.; Kim, M.; Ko, Y.-G.; Yong, D.; Lee, K. Weissella confusa Bacteremia in an Immune-Competent Patient with Underlying Intramural Hematomas of the Aorta. Ann. Lab. Med. 2013, 33, 459–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medford, R.; Patel, S.N.; Evans, G.A. A confusing Case–Weissella confusa Prosthetic Joint Infection: A Case Report and Review of the Literature. Can. J. Infect. Dis. Med. Microbiol. 2014, 25, 173–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasquez, A.; Pancholi, P.; Balada-Llasat, J.-M. Photo Quiz: Confusing Bacteremia in a Crohn’s Disease Patient. J. Clin. Microbiol. 2015, 53, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aberkane, S.; Didelot, M.-N.; Carrière, C.; Laurens, C.; Sanou, S.; Godreuil, S.; Jean-Pierre, H. Bactériémie à Weissella confusa: Un pathogène opportuniste sous-estimé. Médecine et Maladies Infectieuses 2017, 47, 297–299. [Google Scholar] [CrossRef]
- Kankaya, D.A.; Tuncer, Y. Antibiotic resistance in vancomycin-resistant lactic acid bacteria (VRLAB) isolated from foods of animal origin. J. Food Process. Preserv. 2020, 44, e14468. [Google Scholar] [CrossRef]
- Suwannaphan, S. Isolation, identification and potential probiotic characterization of lactic acid bacteria from Thai traditional fermented food. AIMS Microbiol. 2021, 7, 431–446. [Google Scholar] [CrossRef]
- Oh, A.; Daliri, E.B.-M.; Oh, D.H. Screening for potential probiotic bacteria from Korean fermented soybean paste: In vitro and Caenorhabditis elegans model testing. LWT 2018, 88, 132–138. [Google Scholar] [CrossRef]
- Mahmood, A. Mechanistic Insights into Vancomycin Resistance in Clostridioides Difficile; The University of Texas MD Anderson Cancer Center UT: Houston, TX, USA, 2020. [Google Scholar]
- Panthee, S.; Paudel, A.; Blom, J.; Hamamoto, H.; Sekimizu, K. Complete Genome Sequence of Weissella hellenica 0916-4-2 and Its Comparative Genomic Analysis. Front. Microbiol. 2019, 10, 1619. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Huang, L.; Cui, K.; Mao, W.; Du, Y.; Yao, N.; Li, Z.; Zhao, H.; Ma, W. Weissella cibaria Attenuated LPS-Induced Dysfunction of Intestinal Epithelial Barrier in a Caco-2 Cell Monolayer Model. Front. Microbiol. 2020, 11, 2039. [Google Scholar] [CrossRef]
- Lakra, A.K.; Domdi, L.; Hanjon, G.; Tilwani, Y.M.; Arul, V. Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. LWT 2020, 125, 109261. [Google Scholar] [CrossRef]
- Hamoud, N.-E.; Sifour, M. Biodegradation of chlorpyrifos by a Weissella confusa strain and evaluation of some probiotic traits. Arch. Microbiol. 2021, 203, 3615–3621. [Google Scholar] [CrossRef]
- Aggarwal, S.; Sabharwal, V.; Kaushik, P.; Joshi, A.; Aayushi, A.; Suri, M. Postbiotics: From emerging concept to application. Front. Sustain. Food Syst. 2022, 6, 887642. [Google Scholar] [CrossRef]
- Moraes, R.M.; Schlagenhauf, U.; Anbinder, A.L. Outside the limits of bacterial viability: Postbiotics in the management of periodontitis. Biochem. Pharmacol. 2022, 201, 115072. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Jin, H.; Jeong, Y.; Yoo, S.-H.; Johnston, T.V.; Ku, S.; Ji, G.E. Isolation and characterization of high exopolysaccharide-producing Weissella confusa VP30 from young children’s feces. Microb. Cell Factories 2019, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zakuan, N.M.; Ling, F.H.; Yazan, L.S. Anti-microbial, anti-cancer and immunomodulatory properties of proteinaceous postbiotic metabolite produced by Lactobacillus plantarum I-UL4. Mal. J. Med. Health Sci. 2019, 15, 81–84. [Google Scholar]
- Thorakkattu, P.; Khanashyam, A.C.; Shah, K.; Babu, K.S.; Mundanat, A.S.; Deliephan, A.; Deokar, G.S.; Santivarangkna, C.; Nirmal, N.P. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022, 11, 3094. [Google Scholar] [CrossRef]
- Adesulu-Dahunsi, A.; Sanni, A.; Jeyaram, K. Production, characterization and In vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT 2018, 87, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Wang, Y.; Zhao, F.; Kang, L. Complete Genome Sequence of Weissella confusa LM1 and Comparative Genomic Analysis. Front. Microbiol. 2021, 12, 2830. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Saravanakumar, K.; Sathiyaseelan, A.; Han, K.-S.; Lee, J.; Wang, M.-H. Polysaccharides of Weissella cibaria Act as a Prebiotic to Enhance the Probiotic Potential of Lactobacillus rhamnosus. Appl. Biochem. Biotechnol. 2022, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, S.; Heng, X.; Chu, W. Weissella confusa CGMCC 19,308 Strain Protects Against Oxidative Stress, Increases Lifespan, and Bacterial Disease Resistance in Caenorhabditis elegans. Probiotics Antimicrob. Proteins 2021, 14, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Sandes, S.; Figueiredo, N.; Pedroso, S.; Sant’Anna, F.; Acurcio, L.; Junior, M.A.; Barros, P.; Oliveira, F.; Cardoso, V.; Generoso, S.; et al. Weissella paramesenteroides WpK4 plays an immunobiotic role in gut-brain axis, reducing gut permeability, anxiety-like and depressive-like behaviors in murine models of colitis and chronic stress. Food Res. Int. 2020, 137, 109741. [Google Scholar] [CrossRef] [PubMed]
- Prado, G.; Torrinha, K.; Cruz, R.; Gonçalves, A.; Silva, C.; Oliveira, F.; Nunes, A.; Gomes, M.; Caliari, M. Weissella paramesenteroides WpK4 ameliorate the experimental amoebic colitis by increasing the expression of MUC-2 and the intestinal epithelial regeneration. J. Appl. Microbiol. 2020, 129, 1706–1719. [Google Scholar] [CrossRef]
- Lim, S.K.; Kwon, M.-S.; Lee, J.; Oh, Y.J.; Jang, J.-Y.; Lee, J.-H.; Park, H.W.; Nam, Y.-D.; Seo, M.-J.; Roh, S.W.; et al. Weissella cibaria WIKIM28 ameliorates atopic dermatitis-like skin lesions by inducing tolerogenic dendritic cells and regulatory T cells in BALB/c mice. Sci. Rep. 2017, 7, 40040. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.-J.; Chen, Z.; Chen, P.T.; Ng, I.-S. Production, characterization and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect. J. Biosci. Bioeng. 2018, 126, 769–777. [Google Scholar] [CrossRef]
- Yeu, J.-E.; Lee, H.-G.; Park, G.-Y.; Lee, J.; Kang, M.-S. Antimicrobial and Antibiofilm Activities of Weissella cibaria against Pathogens of Upper Respiratory Tract Infections. Microorganisms 2021, 9, 1181. [Google Scholar] [CrossRef]
- Kibar, H.; Arslan, Y.E.; Ceylan, A.; Karaca, B.; Haliscelik, O.; Kiran, F. Weissella cibaria EIR/P2-derived exopolysaccharide: A novel alternative to conventional biomaterials targeting periodontal regeneration. Int. J. Biol. Macromol. 2020, 165, 2900–2908. [Google Scholar] [CrossRef]
- Xiong, L.; Ni, X.; Niu, L.; Zhou, Y.; Wang, Q.; Khalique, A.; Liu, Q.; Zeng, Y.; Shu, G.; Pan, K.; et al. Isolation and Preliminary Screening of a Weissella confusa Strain from Giant Panda (Ailuropoda melanoleuca). Probiotics Antimicrob. Proteins 2018, 11, 535–544. [Google Scholar] [CrossRef]
- Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 1993, 12, 39–85. [Google Scholar] [CrossRef]
- Nath, S.; Roy, M.; Sikidar, J.; Deb, B.; Sharma, I.; Guha, A. Characterization and in-vitro screening of probiotic potential of novel Weissella confusa strain GCC_19R1 isolated from fermented sour rice. Curr. Res. Biotechnol. 2021, 3, 99–108. [Google Scholar] [CrossRef]
- Srionnual, S.; Yanagida, F.; Lin, L.-H.; Hsiao, K.-N.; Chen, Y.-S. Weissellicin 110, a Newly Discovered Bacteriocin from Weissella cibaria 110, Isolated from Plaa-Som, a Fermented Fish Product from Thailand. Appl. Environ. Microbiol. 2007, 73, 2247–2250. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-W.; Chen, Y.-S.; Lee, Y.-S.; Yang, C.-H.; Srionnual, S.; Wu, H.-C.; Chang, C.-H. Comparative genomic analysis of bacteriocin-producing Weissella cibaria 110. Appl. Microbiol. Biotechnol. 2017, 101, 1227–1237. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Rodrigues, R.D.S.; Yamatogi, R.S.; Lucau-Danila, A.; Drider, D.; Nero, L.A.; de Carvalho, A.F. Genomic Analyses of Weissella cibaria W25, a Potential Bacteriocin-Producing Strain Isolated from Pasture in Campos das Vertentes, Minas Gerais, Brazil. Microorg. 2022, 10, 314. [Google Scholar] [CrossRef]
- Chen, C.; Chen, X.; Jiang, M.; Rui, X.; Li, W.; Dong, M. A newly discovered bacteriocin from Weissella hellenica D1501 associated with Chinese Dong fermented meat (Nanx Wudl). Food Control 2014, 42, 116–124. [Google Scholar] [CrossRef]
- Chen, C.; Rui, X.; Lu, Z.; Li, W.; Dong, M. Enhanced shelf-life of tofu by using bacteriocinogenic Weissella hellenica D1501 as bioprotective cultures. Food Control 2014, 46, 203–209. [Google Scholar] [CrossRef]
- Papagianni, M.; Papamichael, E.M. Purification, amino acid sequence and characterization of the class IIa bacteriocin weissellin A, produced by Weissella paramesenteroides DX. Bioresour. Technol. 2011, 102, 6730–6734. [Google Scholar] [CrossRef]
- Leong, K.-H.; Chen, Y.-S.; Lin, Y.-H.; Pan, S.-F.; Yu, B.; Wu, H.-C.; Yanagida, F. Weissellicin L, a novel bacteriocin from sian-sianzih -isolated Weissella hellenica 4-7. J. Appl. Microbiol. 2013, 115, 70–76. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Lee, Y.-S.; Wu, H.-C.; Chiang, C.-M.; Pan, S.-F.; Leong, K.-H. Identification of nucleotide sequence involved in Weissellicin L production. SpringerPlus 2014, 3, 617. [Google Scholar] [CrossRef] [Green Version]
- Masuda, Y.; Perez, R.; Zendo, T.; Sonomoto, K. Nutrition-adaptive control of multiple-bacteriocin production by Weissella hellenica QU 13. J. Appl. Microbiol. 2015, 120, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Tenea, G.N.; Lara, M.I. Antimicrobial compounds produced by Weissella confusa Cys2-2 strain inhibit Gram-negative bacteria growth. CyTA J. Food 2019, 17, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Goh, H.F.; Philip, K. Purification and Characterization of Bacteriocin Produced by Weissella confusa A3 of Dairy Origin. PLoS ONE 2015, 10, e0140434. [Google Scholar] [CrossRef] [PubMed]
- Techo, S.; Visessanguan, W.; Vilaichone, R.-K.; Tanasupawat, S. Characterization and Antibacterial Activity Against Helicobacter pylori of Lactic Acid Bacteria Isolated from Thai Fermented Rice Noodle. Probiotics Antimicrob. Proteins 2018, 11, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Ha, M.; Bae, O.; Lee, Y. Effect of Weissella confusa Strain PL9001 on the Adherence and Growth of Helicobacter pylori. Appl. Environ. Microbiol. 2002, 68, 4642–4645. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Ramana, K. Isolation and preliminary characterization of a nonbacteriocin antimicrobial compound from Weissella paramesenteroides DFR-8 isolated from cucumber (Cucumis sativus). Process Biochem. 2009, 44, 499–503. [Google Scholar] [CrossRef]
- Malik, A.; Sumayyah, S.; Yeh, C.-W.; Heng, N.C. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa. FEMS Microbiol. Lett. 2016, 363, fnw059. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.-S.; Yeu, J.-E.; Hong, S.-P.; Kang, M.-S. Characterization of Antibacterial Cell-Free Supernatant from Oral Care Probiotic Weissella cibaria, CMU. Molecules 2018, 23, 1984. [Google Scholar] [CrossRef] [Green Version]
- Kanjan, P.; Kimtun, A.; Chaimongkol, S.; Sakpetch, P. Probiotic Weissella cibaria KY10 derived from digestive tract of healthy shrimp exhibits strong antibacterial effects against Vibrio parahaemolyticus causing AHPND in shrimp. Aquac. Res. 2022, 53, 2597–2607. [Google Scholar] [CrossRef]
- Dey, D.K.; Khan, I.; Kang, S.C. Anti-bacterial susceptibility profiling of Weissella confusa DD_A7 against the multidrug-resistant ESBL-positive E. coli. Microb. Pathog. 2018, 128, 119–130. [Google Scholar] [CrossRef]
- Stedman, A.; van Vliet, A.H.M.; Chambers, M.A.; Gutierrez-Merino, J. Gut commensal bacteria show beneficial properties as wildlife probiotics. Ann. N. Y. Acad. Sci. 2020, 1467, 112–132. [Google Scholar] [CrossRef]
- Dey, D.K.; Kang, S.C. Weissella confusa DD_A7 pre-treatment to zebrafish larvae ameliorates the inflammation response against Escherichia coli O157:H7. Microbiol. Res. 2020, 237, 126489. [Google Scholar] [CrossRef]
- Kim, M.J.; You, Y.O.; Kang, J.Y.; Kim, H.J.; Kang, M.S. Weissella cibaria CMU exerts an anti-inflammatory effect by inhibiting Aggregatibacter actinomycetemcomitans-induced NF-κB activation in macrophages. Mol. Med. Rep. 2020, 22, 4143–4150. [Google Scholar] [CrossRef]
- Christovich, A.; Luo, X.M. Gut Microbiota, Leaky Gut, and Autoimmune Diseases. Front. Immunol. 2022, 13, 946248. [Google Scholar] [CrossRef]
- Silva, M.S.; Ramos, C.L.; González-Avila, M.; Gschaedler, A.; Arrizon, J.; Schwan, R.F.; Dias, D.R. Probiotic properties of Weissella cibaria and Leuconostoc citreum isolated from tejuino—A typical Mexican beverage. LWT 2017, 86, 227–232. [Google Scholar] [CrossRef]
- Devi, P.B.; Kavitake, D.; Jayamanohar, J.; Shetty, P.H. Preferential growth stimulation of probiotic bacteria by galactan exopolysaccharide from Weissella confusa KR780676. Food Res. Int. 2021, 143, 110333. [Google Scholar] [CrossRef]
- Xu, H.-M.; Huang, H.-L.; Xu, J.; He, J.; Zhao, C.; Peng, Y.; Zhao, H.-L.; Huang, W.-Q.; Cao, C.-Y.; Zhou, Y.-J.; et al. Cross-Talk Between Butyric Acid and Gut Microbiota in Ulcerative Colitis Following Fecal Microbiota Transplantation. Front. Microbiol. 2021, 12, 658292. [Google Scholar] [CrossRef]
- Fatmawati, N.N.D.; Gotoh, K.; Mayura, I.P.B.; Nocianitri, K.A.; Suwardana, G.N.R.; Komalasari, N.L.G.Y.; Ramona, Y.; Sakaguchi, M.; Matsushita, O.; Sujaya, I.N. Enhancement of intestinal epithelial barrier function by Weissella confusa F213 and Lactobacillus rhamnosus FBB81 probiotic candidates in an in vitro model of hydrogen peroxide-induced inflammatory bowel disease. BMC Res. Notes 2020, 13, 1–7. [Google Scholar] [CrossRef]
- Park, S.-H.; Lee, M.-R.; Yang, S.Y.; Lee, J.Y.; Lee, H.H.; Seong, Y.-J.; Kim, B.; Kim, H.-J.; Jin, H.; Johnston, T.V.; et al. In vivo functional effects of Weissella confusa VP30 exopolysaccharides on loperamide-induced constipation in rats. Food Sci. Biotechnol. 2022, 31, 1703–1715. [Google Scholar] [CrossRef]
- Cha, S.; Ahn, B.; Kim, J. Korea Food Research Institute, Assignee Weissella cibaria 148-2 Lactic Bacteria for Functional Healthy Effect and Makgeolli Containing the Same. Korea Patent KR 1020080133488, 2008. [Google Scholar]
- Kwak, S.-H.; Cho, Y.-M.; Noh, G.-M.; Om, A.-S. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum). J. Cancer Prev. 2014, 19, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Ankaiah, D.; Mitra, S.; Srivastava, D.; Sivagnanavelmurugan, M.; Ayyanna, R.; Jha, N.; Venkatesan, A. Probiotic characterization of bacterial strains from fermented South Indian tomato pickle and country chicken intestine having antioxidative and antiproliferative activities. J. Appl. Microbiol. 2021, 131, 949–963. [Google Scholar] [CrossRef] [PubMed]
- Alvim, L.; Sandes, S.; Silva, B.; Steinberg, R.; Campos, M.; Acurcio, L.; Arantes, R.; Nicoli, J.; Neumann, E.; Nunes, A. Weissella paramesenteroides WpK4 reduces gene expression of intestinal cytokines, and hepatic and splenic injuries in a murine model of typhoid fever. Benef. Microbes 2016, 7, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Chae, S.H.; Jung, H.J.; Shin, H.M.; Ban, O.-H.; Yang, J.; Kim, J.H.; Jeong, J.E.; Jeon, H.M.; Kang, Y.W.; et al. The effect of probiotics supplementation in postoperative cancer patients: A prospective pilot study. Ann. Surg. Treat. Res. 2021, 101, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.; Eldiwany, A.; Elgammal, E.; Atwa, N.A.; Dawoud, I.; Rashad, F.M. Nano-exopolysaccharide from the probiotic Weissella paramesenteroides MN2C2: Production, characterization and anticancer activity. Egypt. J. Chem. 2021. [Google Scholar] [CrossRef]
- Park, H.-E.; Kang, K.-W.; Kim, B.-S.; Lee, S.-M.; Lee, W.-K. Immunomodulatory Potential of Weissella cibaria in Aged C57BL/6J Mice. J. Microbiol. Biotechnol. 2017, 27, 2094–2103. [Google Scholar] [CrossRef]
- Park, H.-E.; Do, K.-H.; Lee, W.-K. The immune-modulating effects of viable Weissella cibaria JW15 on RAW 264.7 macrophage cells. J. Biomed. Res. 2019, 34, 36–43. [Google Scholar] [CrossRef]
- Hitch, T.C.A.; Hall, L.J.; Walsh, S.K.; Leventhal, G.E.; Slack, E.; de Wouters, T.; Walter, J.; Clavel, T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol. 2022, 15, 1095–1113. [Google Scholar] [CrossRef]
- Adebayo-Tayo, B.; Ishola, R.; Oyewunmi, T. Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnol. Rep. 2018, 19, e00271. [Google Scholar] [CrossRef]
- Reid, G.; Younes, J.A.; Van Der Mei, H.C.; Gloor, G.B.; Knight, R.; Busscher, H.J. Microbiota restoration: Natural and supplemented recovery of human microbial communities. Nat. Rev. Genet. 2011, 9, 27–38. [Google Scholar] [CrossRef]
- Moon, Y.; Soh, J.; Yu, J.; Sohn, H.; Cha, Y.; Oh, S. Intracellular lipid accumulation inhibitory effect of W eissella koreensis OK 1-6 isolated from K imchi on differentiating adipocyte. J. Appl. Microbiol. 2012, 113, 652–658. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, H.; Lee, J.; Won, G.; Choi, S.-I.; Kim, G.-H.; Kang, C.-H. The Antioxidant, Anti-Diabetic, and Anti-Adipogenesis Potential and Probiotic Properties of Lactic Acid Bacteria Isolated from Human and Fermented Foods. Fermentation 2021, 7, 123. [Google Scholar] [CrossRef]
- Choi, S.-I.; You, S.; Kim, S.; Won, G.; Kang, C.-H.; Kim, G.-H. Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 attenuated fat accumulation in adipose and hepatic steatosis in high-fat diet-induced C57BL/6J obese mice. Food Nutr. Res. 2021, 65. [Google Scholar] [CrossRef]
- Lee, J.S.; Hyun, I.K.; Seo, H.-J.; Song, D.; Kim, M.Y.; Kang, S.-S. Biotransformation of whey by Weissella cibaria suppresses 3T3-L1 adipocyte differentiation. J. Dairy Sci. 2021, 104, 3876–3887. [Google Scholar] [CrossRef]
- Zhao, C.; Su, W.; Mu, Y.; Jiang, L.; Mu, Y. Correlations between microbiota with physicochemical properties and volatile flavor compo-nents in black glutinous rice wine fermentation. Food Res. Int. 2020, 138, 109800. [Google Scholar] [CrossRef]
- Byakika, S.; Mukisa, I.M.; Byaruhanga, Y.B.; Muyanja, C. Probiotic Potential of Lactic Acid Starter Cultures Isolated from a Traditional Fermented Sorghum-Millet Beverage. Int. J. Microbiol. 2020, 2020, 7825943. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Tian, H.; Ai, L.; Yu, H. Metagenomic analysis reveals the impact of JIUYAO microbial diversity on fermentation and the volatile profile of Shaoxing-jiu. Food Microbiol. 2019, 86, 103326. [Google Scholar] [CrossRef]
- Lopez, C.M.; Rocchetti, G.; Fontana, A.; Lucini, L.; Rebecchi, A. Metabolomics and gene-metabolite networks reveal the potential of Leuconostoc and Weissella strains as starter cultures in the manufacturing of bread without baker’s yeast. Food Res. Int. 2022, 162, 112023. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Coda, R.; Maina, N.H.; Granchi, L. Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough. Food Res. Int. 2020, 138, 109785. [Google Scholar] [CrossRef]
- Montemurro, M.; Pontonio, E.; Rizzello, C. Design of a “Clean-Label” Gluten-Free Bread to Meet Consumers Demand. Foods 2021, 10, 462. [Google Scholar] [CrossRef]
- Hernández-Alcántara, A.M.; Chiva, R.; Mohedano, M.L.; Russo, P.; Ruiz-Masó, J.; del Solar, G.; Spano, G.; Tamame, M.; López, P. Weissella cibaria riboflavin-overproducing and dextran-producing strains useful for the development of functional bread. Front. Nutr. 2022, 9, 978831. [Google Scholar] [CrossRef]
- Han, J.; Lin, X.; Liang, H.; Zhang, S.; Zhu, B.; Ji, C. Improving the safety and quality of Roucha using amine-degrading lactic acid bacteria starters. Food Res. Int. 2022, 161, 111918. [Google Scholar] [CrossRef] [PubMed]
- Bourdichon, F.; Patrone, V.; Fontana, A.; Milani, G.; Morelli, L. Safety demonstration of a microbial species for use in the food chain: Weissella confusa. Int. J. Food Microbiol. 2020, 339, 109028. [Google Scholar] [CrossRef] [PubMed]
- Fessard, A.; Remize, F. Why Are Weissella spp. Not Used as Commercial Starter Cultures for Food Fermentation? Fermentation 2017, 3, 38. [Google Scholar] [CrossRef]
Age, Sex | Underlying Conditions | Clinical Infection | Treatment | Outcome | Ref. |
---|---|---|---|---|---|
12, F | Gastrostomy | Bacteremia | Cephalosporin | Cured | [43] |
71, M | Cecal carcinoma | Bacteremia | Cephalosporin | Cured | [43] |
- | - | Organ colonization | Ampicillin | Cured | [44] |
49, M | None | Abscess infection | Cephalothin | Cured | [45] |
- | - | Organ colonization | Ampicillin | Cured | [46] |
46, M | Abdominal aortic dissection repair, coronary artery bypass grafting, parenteral nutrition | Bacteremia | Piperacillin-tazobactam | Cured | [47] |
49, M | Alcohol abuse history, treatment with corticosteroids | Endocarditis, Bacteremia | None | Fatal | [48] |
65, M | Aortic insufficiency | Infective endocarditis | Penicillin G, gentamicin, moxifloxacin, cefoperazone | Cured | [49] |
56.6, 6F, and 4M | Malignancy (4), chronic steroid use (3), chemotherapy (3), abdominal surgery (4), polymicrobial infection (5), central catheter (6) | Bacteremia | Vancomycin, ceftazidime, ampicillin-sulbactam, amoxicillin-clavulanate, gentamicin, ciprofloxacin, and trimethoprim-sulfamethoxazole | Cured (4), Fatal (6) | [50] |
34, M | Hematopoietic stem cell transplant recipient | Bacteremia | Vancomycin, aztreonam, and daptomycin | Cured | [51] |
58, M | Severe burns, polymicrobial infection, central catheter | Bacteremia | Vancomycin, imipenem, and daptomycin | Cured | [51] |
54, M | Hepatocellular carcinoma, Liver transplant, hepatic artery thrombosis, diabetes | Bacteremia | Metronidazole and levofloxacin | Cured | [52] |
48, M | Gastroesophageal adenocarcinoma | Bacteremia | Cefoperazone-sulbactam Metronidazole | Cured | [53] |
60, F | Hypertension, aortic intramural hematoma | Bacteremia | Teicoplanin and piperacillin-tazobactam | Cured | [54] |
94, F | Osteoarthritis, total knee arthroplasty | Prosthetic joint | Levofloxacin | Cured | [55] |
63, F | Crohn’s disease with gastrointestinal strictures, central venous catheter | Bacteremia | Piperacillin/tazobactam | Cured | [56] |
14, M | Medulloblastoma, surgery, chemo and radiotherapy, polymicrobial infection | Bacteremia | Clindamycin, amikacin | Cured | [57] |
78, M | Immunodeficiency | Meningitis | Ampicillin | [3] | |
25, M | Crohn’s disease, short bowel syndrome, intestinal failure | Bacteremia | Meropenem, metronidazole, and cefuroxime | Cured | [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; Singh, S.; Singh, V.; Roberts, K.D.; Zaidi, A.; Rodriguez-Palacios, A. The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer. Microorganisms 2022, 10, 2427. https://doi.org/10.3390/microorganisms10122427
Ahmed S, Singh S, Singh V, Roberts KD, Zaidi A, Rodriguez-Palacios A. The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer. Microorganisms. 2022; 10(12):2427. https://doi.org/10.3390/microorganisms10122427
Chicago/Turabian StyleAhmed, Sadia, Sargun Singh, Vaidhvi Singh, Kyle D. Roberts, Arsalan Zaidi, and Alexander Rodriguez-Palacios. 2022. "The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer" Microorganisms 10, no. 12: 2427. https://doi.org/10.3390/microorganisms10122427
APA StyleAhmed, S., Singh, S., Singh, V., Roberts, K. D., Zaidi, A., & Rodriguez-Palacios, A. (2022). The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer. Microorganisms, 10(12), 2427. https://doi.org/10.3390/microorganisms10122427