Algae and Their Metabolites as Potential Bio-Pesticides
Abstract
:1. Introduction
2. Biological Roles of Algal Compounds or Extracts
2.1. Antibacterial Action
2.2. Antiviral Action
2.3. Antifungal Action
2.4. Nematocidal Action
2.5. Insecticidal—Acaricidal Action of Algae
2.6. Herbicidal Activity
2.7. Plant Growth Stimulation (Biostimulators and Biofertilizers) and Bioprotection
3. Mechanism of Action of Algal Metabolites
3.1. Inhibition of Photosynthesis
3.2. Induction of Plant Defense Responses
3.3. Inhibition of Quorum Sensing
3.4. Neurotoxicity
3.5. Production of Antimetabolites
3.6. Blocking Virus Entry into the Plant
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gärtner, G.; Stoyneva-Gärtner, M.; Uzunov, B. Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins 2021, 13, 322. [Google Scholar] [CrossRef] [PubMed]
- Specht, E.A.; Karunanithi, P.S.; Gimpel, J.A.; Ansari, W.S.; Mayfield, S.P. Host Organisms: Algae. In Industrial Biotechnology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 605–641. ISBN 978-3-527-80779-6. [Google Scholar]
- Yan, N.; Fan, C.; Chen, Y.; Hu, Z. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int. J. Mol. Sci. 2016, 17, 962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosales-Mendoza, S.; García-Silva, I.; González-Ortega, O.; Sandoval-Vargas, J.M.; Malla, A.; Vimolmangkang, S. The Potential of Algal Biotechnology to Produce Antiviral Compounds and Biopharmaceuticals. Molecules 2020, 25, 4049. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, E.; Cifuentes, A. Benefits of Using Algae as Natural Sources of Functional Ingredients. J. Sci. Food Agric. 2013, 93, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Parihar, P.; Singh, M.; Bajguz, A.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects. Front. Microbiol. 2017, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- De Jesus Raposo, M.F.; De Morais, A.M.B.; De Morais, R.M.S.C. Marine Polysaccharides from Algae with Potential Biomedical Applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef]
- Cardozo, K.H.M.; Guaratini, T.; Barros, M.P.; Falcão, V.R.; Tonon, A.P.; Lopes, N.P.; Campos, S.; Torres, M.A.; Souza, A.O.; Colepicolo, P.; et al. Metabolites from Algae with Economical Impact. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 60–78. [Google Scholar] [CrossRef]
- Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J.M. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Rodríguez, A.D.; Berlinck, R.G.S.; Fusetani, N. Marine Pharmacology in 2007–8: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-Inflammatory, Antimalarial, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous System, and Other Miscellaneous Mechanisms of Action. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2011, 153, 191–222. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wu, H.; Liu, R. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years. Mar. Drugs 2014, 12, 4984–5020. [Google Scholar] [CrossRef]
- Fletcher, S.P.; Muto, M.; Mayfield, S.P. Optimization of Recombinant Protein Expression in the Chloroplasts of Green Algae. In Transgenic Microalgae as Green Cell Factories; León, R., Galván, A., Fernández, E., Eds.; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2007; pp. 90–98. ISBN 978-0-387-75532-8. [Google Scholar]
- Cheung, R.C.F.; Wong, J.H.; Pan, W.L.; Chan, Y.S.; Yin, C.M.; Dan, X.L.; Wang, H.X.; Fang, E.F.; Lam, S.K.; Ngai, P.H.K.; et al. Antifungal and Antiviral Products of Marine Organisms. Appl. Microbiol. Biotechnol. 2014, 98, 3475–3494. [Google Scholar] [CrossRef] [Green Version]
- Hamed, S.M.; Abd El-Rhman, A.A.; Abdel-Raouf, N.; Ibraheem, I.B.M. Role of Marine Macroalgae in Plant Protection & Improvement for Sustainable Agriculture Technology. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 104–110. [Google Scholar] [CrossRef]
- Kulik, M.M. The Potential for Using Cyanobacteria (Blue-Green Algae) and Algae in the Biological Control of Plant Pathogenic Bacteria and Fungi. Eur. J. Plant Pathol. 1995, 101, 585–599. [Google Scholar] [CrossRef]
- Kumar, K.A.; Rengasamy, R. Antibacterial Activities of Seaweed Extracts/Fractions Obtained through a TLC Profile against the Phytopathogenic Bacterium Xanthomonas Oryzae Pv. Oryzae. Bot. Mar. 2000, 43, 417–421. [Google Scholar] [CrossRef]
- Jiménez, E.; Dorta, F.; Medina, C.; Ramírez, A.; Ramírez, I.; Peña-Cortés, H. Anti-Phytopathogenic Activities of Macro-Algae Extracts. Mar. Drugs 2011, 9, 739–756. [Google Scholar] [CrossRef] [Green Version]
- Esserti, S.; Smaili, A.; Rifai, L.A.; Koussa, T.; Makroum, K.; Belfaiza, M.; Kabil, E.M.; Faize, L.; Burgos, L.; Alburquerque, N.; et al. Protective Effect of Three Brown Seaweed Extracts against Fungal and Bacterial Diseases of Tomato. J. Appl. Phycol. 2017, 29, 1081–1093. [Google Scholar] [CrossRef]
- Caccamese, S.; Azzolina, R.; Furnari, G.; Cormaci, M.; Grasso, S. Antimicrobial and Antiviral Activities of Some Marine Algae from Eastern Sicily. Bot. Mar. 1981, 24, 365–368. [Google Scholar] [CrossRef]
- Biondi, N.; Piccardi, R.; Margheri, M.C.; Rodolfi, L.; Smith, G.D.; Tredici, M.R. Evaluation of Nostoc Strain ATCC 53789 as a Potential Source of Natural Pesticides. Appl. Environ. Microbiol. 2004, 70, 3313–3320. [Google Scholar] [CrossRef] [Green Version]
- Sano, Y. Antiviral Activity of Alginate against Infection by Tobacco Mosaic Virus. Carbohydr. Polym. 1999, 38, 183–186. [Google Scholar] [CrossRef]
- Nagorskaia, V.P.; Reunov, A.V.; Lapshina, L.A.; Ermak, I.M.; Barabanova, A.O. Inhibitory effect of kappa/beta-carrageenan from red alga Tichocarpus crinitus on the development of a potato virus X infection in leaves of Datura stramonium L. Izv. Akad. Nauk. Ser. Biol. 2010, 6, 756–761. [Google Scholar]
- Pardee, K.I.; Ellis, P.; Bouthillier, M.; Towers, G.H.; French, C.J. Plant Virus Inhibitors from Marine Algae. Can. J. Bot. 2004, 82, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Sultana, V.; Baloch, G.N.; Ara, J.; Ehteshamul-Haque, S.; Tariq, R.M.; Athar, M. Seaweeds as an Alternative to Chemical Pesticides for the Management of Root Diseases of Sunflower and Tomato. J. Appl. Bot. Food Qual. 2012, 84, 162. [Google Scholar]
- Ali, M.Y.S.; Ravikumar, S.; Beula, J.M. Mosquito Larvicidal Activity of Seaweeds Extracts against Anopheles Stephensi, Aedes aegypti and Culex Quinquefasciatus. Asian Pac. J. Trop. Dis. 2013, 3, 196–201. [Google Scholar] [CrossRef]
- Hankins, S.D.; Hockey, H.P. The Effect of a Liquid Seaweed Extract from Ascophyllum nodosum (Fucales, Phaeophyta) on the Two-Spotted Red Spider Mite Tetranychus Urticae. Hydrobiologia 1990, 204, 555–559. [Google Scholar] [CrossRef]
- Rashwan, R.S.; Hammad, D.M. Toxic Effect of Spirulina Platensis and Sargassum Vulgar as Natural Pesticides on Survival and Biological Characteristics of Cotton Leaf Worm Spodoptera littoralis. Sci. Afr. 2020, 8, e00323. [Google Scholar] [CrossRef]
- López-González, D.; Ledo, D.; Cabeiras-Freijanes, L.; Verdeguer, M.; Reigosa, M.J.; Sánchez-Moreiras, A.M. Phytotoxic Activity of the Natural Compound Norharmane on Crops, Weeds and Model Plants. Plants 2020, 9, 1328. [Google Scholar] [CrossRef]
- Gleason, F.K.; Case, D.E. Activity of the Natural Algicide, Cyanobacterin, on Angiosperms. Plant Physiol. 1986, 80, 834–837. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Feng, C.; Wu, K.; Chen, W.; Chen, Y.; Hao, X.; Wu, Y. Advances and Prospects in Biogenic Substances against Plant Virus: A Review. Pestic. Biochem. Physiol. 2017, 135, 15–26. [Google Scholar] [CrossRef]
- Gerasimenko, N.I.; Martyyas, E.A.; Logvinov, S.V.; Busarova, N.G. Biological Activity of Lipids and Photosynthetic Pigments of Sargassum pallidum C. Agardh. Appl. Biochem. Microbiol. 2014, 50, 73–81. [Google Scholar] [CrossRef]
- Kumar, C.S.; Sarada, D.V.L.; Rengasamy, R. Seaweed Extracts Control the Leaf Spot Disease of the Medicinal Plant Gymnema Sylvestre. Indian J. Sci. Technol. 2008, 1, 1–5. [Google Scholar] [CrossRef]
- Arun Kumar, K.; Selvapalam, N.; Rengasamy, R. The Antibacterial Compound Sulphoglycerolipid 1-0 Palmitoyl-3-0(6′-Sulpho-α-Quinovopyranosyl)-Glycerol from Sargassum wightii Greville (Phaeophyceae). Bot. Mar. 2005, 48, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Paulert, R.J.; Smania Stadnik, M.J.; Pizzolatti, M.G. Antimicrobial Properties of Extracts from the Green Seaweed Ulva fasciata Delile against Pathogenic Bacteria and Fungi. Algol. Stud. 2007, 123, 123–130. [Google Scholar] [CrossRef]
- Ibraheem, B.M.I.; Hamed, S.M.; Abd Elrhman, A.A.; Farag, M.F.; Abdel-Raouf, N. Antimicrobial Activities of Some Brown Macroalgae against Some Soil Borne Plant Pathogens and in Vivo Management of Solanum melongena Root Diseases. Aust. J. Basic Appl. Sci. 2017, 11, 157–168. [Google Scholar]
- Smyrniotopoulos, V.; Vagias, C.; Rahman, M.M.; Gibbons, S.; Roussis, V. Structure and Antibacterial Activity of Brominated Diterpenes from the Red Alga Sphaerococcus coronopifolius. Chem. Biodivers. 2010, 7, 186–195. [Google Scholar] [CrossRef]
- Smyrniotopoulos, V.; Vagias, C.; Rahman, M.M.; Gibbons, S.; Roussis, V. Ioniols I and II, Tetracyclic Diterpenes with Antibacterial Activity, from Sphaerococcus coronopifolius. Chem. Biodivers. 2010, 7, 666–676. [Google Scholar] [CrossRef]
- Kuniyoshi, M.; Yamada, K.; Higa, T. A Biologically Active Diphenyl Ether from the Green AlgaCladophora Fascicularis. Experientia 1985, 41, 523–524. [Google Scholar] [CrossRef]
- Al-Saif, S.S.A.; Abdel-Raouf, N.; El-Wazanani, H.A.; Aref, I.A. Antibacterial Substances from Marine Algae Isolated from Jeddah Coast of Red Sea, Saudi Arabia. Saudi J. Biol. Sci. 2014, 21, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Raouf, N.; Al-Enazi, N.M.; Al-Homaidan, A.A.; Ibraheem, I.B.M.; Al-Othman, M.R.; Hatamleh, A.A. Antibacterial β-Amyrin Isolated from Laurencia Microcladia. Arab. J. Chem. 2015, 8, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Mohy El-Din, S.M.; El-Ahwany, A.M.D. Bioactivity and Phytochemical Constituents of Marine Red Seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J. Taibah Univ. Sci. 2016, 10, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Asthana, R.K.; Tripathi, M.K.; Srivastava, A.; Singh, A.P.; Singh, S.P.; Nath, G.; Srivastava, R.; Srivastava, B.S. Isolation and Identification of a New Antibacterial Entity from the Antarctic cyanobacterium Nostoc CCC537. J. Appl. Phycol. 2008, 21, 81. [Google Scholar] [CrossRef]
- Borbón, H.; Herrera, J.M.; Calvo, M.; Sierra, H.T.L.; Soto, R.; Vega, I. Antimicrobial Activity of Most Abundant Marine Macroalgae of the Caribbean Coast of Costa Rica. J. Asian Sci. Res. 2012, 2, 292. [Google Scholar]
- Pesando, D.; Caram, B. Screening of Marine Algae from the French Mediterranean Coast for Antibacterial and Antifungal Activity. Bot. Mar. 1984, 27, 381–386. [Google Scholar] [CrossRef]
- Rao, P.S.; Parekh, K.S. Antibacterial Activity of Indian Seaweed Extracts. Bot. Mar. 1981, 24, 577–582. [Google Scholar] [CrossRef]
- Salvador, N.; Garreta, A.G.; Lavelli, L.; Ribera, M.A. Antimicrobial Activity of Iberian Macroalgae. Sci. Mar. 2007, 71, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, E.; Quesada, A.; Rahman, M.M.; Gibbons, S.; Vagias, C.; Roussis, V. Structures and Antibacterial Activities of Minor Dolabellanes from the Brown Alga Dilophus spiralis. Eur. J. Org. Chem. 2012, 2012, 5177–5186. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Ibraheem, I.B. Antibiotic Activity of Two Anabaena Species against Four Fish Pathogenic Aeromonas Species. Afr. J. Biotechnol. 2008, 7, 2644–2648. [Google Scholar]
- Ramkissoon, A.; Ramsubhag, A.; Jayaraman, J. Phytoelicitor Activity of Three Caribbean Seaweed Species on Suppression of Pathogenic Infections in Tomato Plants. J. Appl. Phycol. 2017, 29, 3235–3244. [Google Scholar] [CrossRef]
- Vera, J.; Castro, J.; Gonzalez, A.; Moenne, A. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants. Mar. Drugs 2011, 9, 2514–2525. [Google Scholar] [CrossRef]
- Aziz, E.; Batool, R.; Khan, M.U.; Rauf, A.; Akhtar, W.; Heydari, M.; Rehman, S.; Shahzad, T.; Malik, A.; Mosavat, S.H.; et al. An Overview on Red Algae Bioactive Compounds and Their Pharmaceutical Applications. J. Complementary Integr. Med. 2020, 17, 20190203. [Google Scholar] [CrossRef]
- Nagorskaia, V.P.; Reunov, A.V.; Lapshina, L.A.; Ermak, I.M.; Barabanova, A.O. Influence of kappa/beta-carrageenan from red alga Tichocarpus crinitus on development of local infection induced by tobacco mosaic virus in Xanthi-nc tobacco leaves. Izv. Akad. Nauk. Ser. Biol. 2008, 3, 360–364. [Google Scholar]
- Wang, S.; Zhong, F.-D.; Zhang, Y.-J.; Wu, Z.-J.; Lin, Q.-Y.; Xie, L.-H. Molecular Characterization of a New Lectin from the Marine Alga Ulva Pertusa. Acta Biochim. Biophys. Sin. 2004, 36, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.Y.; Xie, L.Y.; Wu, Z.J.; Lin, Q.Y.; Xie, L.H. Purification and Characterization of Anti-TMV Protein from a Marine Algae Ulva Pertusa. Acta Phytopathol. Sin. 2005, 35, 256–261. [Google Scholar]
- Aguilar-Briseño, J.A.; Cruz-Suarez, L.E.; Sassi, J.-F.; Ricque-Marie, D.; Zapata-Benavides, P.; Mendoza-Gamboa, E.; Rodríguez-Padilla, C.; Trejo-Avila, L.M. Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds Both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection. Mar. Drugs 2015, 13, 697–712. [Google Scholar] [CrossRef] [PubMed]
- Moga, M.A.; Dima, L.; Balan, A.; Blidaru, A.; Dimienescu, O.G.; Podasca, C.; Toma, S. Are Bioactive Molecules from Seaweeds a Novel and Challenging Option for the Prevention of HPV Infection and Cervical Cancer Therapy?—A Review. Int. J. Mol. Sci. 2021, 22, 629. [Google Scholar] [CrossRef] [PubMed]
- Artan, M.; Li, Y.; Karadeniz, F.; Lee, S.-H.; Kim, M.-M.; Kim, S.-K. Anti-HIV-1 Activity of Phloroglucinol Derivative, 6,6′-Bieckol, from Ecklonia Cava. Bioorg. Med. Chem. 2008, 16, 7921–7926. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, W.; Zhang, X.; Zhao, X.; Yu, G. Anti-HBV Activity and Mechanism of Marine-Derived Polyguluronate Sulfate (PGS) In Vitro. Carbohydr. Polym. 2016, 143, 139–148. [Google Scholar] [CrossRef]
- Harden, E.A.; Falshaw, R.; Carnachan, S.M.; Kern, E.R.; Prichard, M.N. Virucidal Activity of Polysaccharide Extracts from Four Algal Species against Herpes Simplex Virus. Antivir. Res. 2009, 83, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Talarico, L.B.; Duarte, M.E.R.; Zibetti, R.G.M.; Noseda, M.D.; Damonte, E.B. An Algal-Derived DL-Galactan Hybrid Is an Efficient Preventing Agent for In Vitro Dengue Virus Infection. Planta Med. 2007, 73, 1464–1468. [Google Scholar] [CrossRef]
- Carbone, D.A.; Pellone, P.; Lubritto, C.; Ciniglia, C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics 2021, 10, 746. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Ramessar, K.; O’Keefe, B.R. Antiviral Lectins: Selective Inhibitors of Viral Entry. Antivir. Res. 2017, 142, 37–54. [Google Scholar] [CrossRef]
- Arad, S.; Adda, M.; Cohen, E. The Potential of Production of Sulfated Polysaccharides from Porphyridium. Plant Soil 1985, 89, 117–127. [Google Scholar] [CrossRef]
- Abu-Ghannam, N.; Rajauria, G. 8—Antimicrobial Activity of Compounds Isolated from Algae. In Functional Ingredients from Algae for Foods and Nutraceuticals; Domínguez, H., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, Cambridge, UK, 2013; pp. 287–306. ISBN 978-0-85709-512-1. [Google Scholar]
- Baloch, G.N.; Tariq, S.; Ehteshamul-Haque, S.; Athar, M.; Sultana, V.; Ara, J. Management of Root Diseases of Eggplant and Watermelon with the Application of Asafoetida and Seaweeds. J. Appl. Bot. Food Qual. 2013, 86, 138–142. [Google Scholar]
- Begum, A.J.M.; Selvaraju, P.; Vijayakumar, A. Evaluation of Antifungal Activity of Seaweed Extract (Turbinaria conoides) against Fusarium oxysporum. J. Appl. Nat. Sci. 2016, 8, 60–62. [Google Scholar] [CrossRef] [Green Version]
- Cluzet, S.; Torregrosa, C.; Jacquet, C.; Lafitte, C.; Fournier, J.; Mercier, L.; Salamagne, S.; Briand, X.; Esquerré-Tugayé, M.-T.; Dumas, B. Gene Expression Profiling and Protection of Medicago truncatula against a Fungal Infection in Response to an Elicitor from Green Algae Ulva Spp. Plant Cell Environ. 2004, 27, 917–928. [Google Scholar] [CrossRef]
- De Corato, U.; Salimbeni, R.; De Pretis, A.; Avella, N.; Patruno, G. Antifungal Activity of Crude Extracts from Brown and Red Seaweeds by a Supercritical Carbon Dioxide Technique against Fruit Postharvest Fungal Diseases. Postharvest Biol. Technol. 2017, 131, 16–30. [Google Scholar] [CrossRef]
- Galal, H.R.M.; Salem, W.M.; Nasr El-Deen, F. Biological Control of Some Pathogenic Fungi Using Marine Algae. Res. J. Microbiol. 2011, 6, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Khallil, A.M.; Daghman, I.M. Antifungal Potential in Crude Extracts of Five Selected Brown Seaweeds Collected from the Western Libya Coast. J. Micro Creat. 2015, 1, 103. [Google Scholar]
- Kim, J.; Kim, J.-D. Inhibitory Effect of Algal Extracts on Mycelial Growth of the Tomato-Wilt Pathogen, Fusarium oxysporum f. sp. lycopersici. Mycobiology 2008, 36, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Mahakhant, A.; Padungwong, P.; Arunpairojana, V.; Atthasampunna, P. Control of the Plant Pathogenic Fungus Macrophomina phaseolina in Mung Bean by a Microalgal Extract. Phycol. Res. 1998, 46, 3–7. [Google Scholar] [CrossRef]
- Prasanna, R.; Chaudhary, V.; Gupta, V.; Babu, S.; Kumar, A.; Singh, R.; Shivay, Y.S.; Nain, L. Cyanobacteria Mediated Plant Growth Promotion and Bioprotection against Fusarium Wilt in Tomato. Eur. J. Plant Pathol. 2013, 136, 337–353. [Google Scholar] [CrossRef]
- Roberti, R.; Righini, H.; Reyes, C.P. Activity of Seaweed and Cyanobacteria Water Extracts against Podosphaera xanthii on Zucchini. Ital. J. Mycol. 2016, 45, 66–77. [Google Scholar] [CrossRef]
- Soliman, A.S.; Ahmed, A.Y.; Abdel-Ghafour, S.E.; El-Sheekh, M.M.; Sobhy, H.M. Antifungal Bio-Efficacy of the Red Algae Gracilaria confervoides Extracts against Three Pathogenic Fungi of Cucumber Plant. Middle East J. Appl. Sci. 2018, 8, 727–735. [Google Scholar]
- Sultana, V.; Ehteshamul-Haque, S.; Ara, J.; Athar, M. Comparative Efficacy of Brown, Green and Red Seaweeds in the Control of Root Infecting Fungi and Okra. Int. J. Environ. Sci. Technol. 2005, 2, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Ben Salah, I.; Aghrouss, S.; Douira, A.; Aissam, S.; El Alaoui-Talibi, Z.; Filali-Maltouf, A.; El Modafar, C. Seaweed Polysaccharides as Bio-Elicitors of Natural Defenses in Olive Trees against Verticillium Wilt of Olive. J. Plant Interact. 2018, 13, 248–255. [Google Scholar] [CrossRef]
- de Borba, M.C.; de Freitas, M.B.; Stadnik, M.J. Ulvan Enhances Seedling Emergence and Reduces Fusarium Wilt Severity in Common Bean (Phaseolus vulgaris L.). Crop Prot. 2019, 118, 66–71. [Google Scholar] [CrossRef]
- de Freitas, M.B.; Stadnik, M.J. Race-Specific and Ulvan-Induced Defense Responses in Bean (Phaseolus vulgaris) against Colletotrichum lindemuthianum. Physiol. Mol. Plant Pathol. 2012, 78, 8–13. [Google Scholar] [CrossRef]
- Jaulneau, V.; Lafitte, C.; Corio-Costet, M.-F.; Stadnik, M.J.; Salamagne, S.; Briand, X.; Esquerré-Tugayé, M.-T.; Dumas, B. An Ulva armoricana Extract Protects Plants against Three Powdery Mildew Pathogens. Eur. J. Plant Pathol. 2011, 131, 393. [Google Scholar] [CrossRef]
- Kobayashi, A.; Tai, A.; Kanzaki, H.; Kawazu, K. Elicitor-Active Oligosaccharides from Algal Laminaran Stimulate the Production of Antifungal Compounds in Alfalfa. Z. Für Nat. C 1993, 48, 575–579. [Google Scholar] [CrossRef]
- Paulert, R.; Ebbinghaus, D.; Urlass, C.; Moerschbacher, B.M. Priming of the Oxidative Burst in Rice and Wheat Cell Cultures by Ulvan, a Polysaccharide from Green Macroalgae, and Enhanced Resistance against Powdery Mildew in Wheat and Barley Plants. Plant Pathol. 2010, 59, 634–642. [Google Scholar] [CrossRef]
- Paulert, R.; Talamini, V.; Cassolato, J.E.F.; Duarte, M.E.R.; Noseda, M.D.; Smania, A.; Stadnik, M.J. Effects of Sulfated Polysaccharide and Alcoholic Extracts from Green Seaweed Ulva fasciata on Anthracnose Severity and Growth of Common Bean (Phaseolus vulgaris L.). J. Plant Dis. Prot. 2009, 116, 263–270. [Google Scholar] [CrossRef]
- Stadnik, M.J.; de Freitas, M.B. Algal Polysaccharides as Source of Plant Resistance Inducers. Trop. Plant Pathol. 2014, 39, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.; Poinssot, B.; Daire, X.; Adrian, M.; Bézier, A.; Lambert, B.; Joubert, J.-M.; Pugin, A. Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against Botrytis cinerea and Plasmopara viticola. Mol. Plant-Microbe Interact. 2003, 16, 1118–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righini, H.; Baraldi, E.; García Fernández, Y.; Martel Quintana, A.; Roberti, R. Different Antifungal Activity of Anabaena sp., Ecklonia sp., and Jania sp. against Botrytis cinerea. Mar. Drugs 2019, 17, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Herrera, R.M.; Virgen-Calleros, G.; Ruiz-López, M.; Zañudo-Hernández, J.; Délano-Frier, J.P.; Sánchez-Hernández, C. Extracts from Green and Brown Seaweeds Protect Tomato (Solanum lycopersicum) against the Necrotrophic Fungus Alternaria solani. J. Appl. Phycol. 2014, 26, 1607–1614. [Google Scholar] [CrossRef]
- Araujo, L.; Stadnik, M.J. Cultivar-Specific and Ulvan-Induced Resistance of Apple Plants to Glomerella Leaf Spot Are Associated with Enhanced Activity of Peroxidases. Acta Sci. Agron. 2013, 35, 287–293. [Google Scholar] [CrossRef] [Green Version]
- El-Sheekh, M.M.; Ahmed, A.Y.; Soliman, A.S.; Abdel-Ghafour, S.E.; Sobhy, H.M. Biological Control of Soil Borne Cucumber Diseases Using Green Marine Macroalgae. Egypt. J. Biol. Pest Control 2021, 31, 72. [Google Scholar] [CrossRef]
- Ammar, N.; Jabnoun-Khiareddine, H.; Mejdoub-Trabelsi, B.; Nefzi, A.; Mahjoub, M.A.; Daami-Remadi, M. Pythium Leak Control in Potato Using Aqueous and Organic Extracts from the Brown Alga Sargassum vulgare (C. Agardh, 1820). Postharvest Biol. Technol. 2017, 130, 81–93. [Google Scholar] [CrossRef]
- Raj, T.S.; Graff, K.H.; Suji, H.A. Bio Chemical Characterization of a Brown Seaweed Algae and Its Efficacy on Control of Rice Sheath Blight Caused by Rhizoctonia solani Kuhn. Int. J. Trop. Agric. 2016, 34, 429–439. [Google Scholar]
- Veronico, P.; Melillo, M.T. Marine Organisms for the Sustainable Management of Plant Parasitic Nematodes. Plants 2021, 10, 369. [Google Scholar] [CrossRef]
- Awad, N.E. Bioactive Brominated Diterpenes from the Marine Red Alga Jania rubens (L.) Lamx. Phytother. Res. 2004, 18, 275–279. [Google Scholar] [CrossRef]
- Ara, J.; Ehteshamul-Haque, S.; Sultana, V.; Ghaffar, A.; Qasim, R. Use of Sargassum Species for the Control of Meloidogyne Javanica in Okra. Nematol. Mediterr. 1997, 25, 125–128. [Google Scholar]
- Rizvi, M.A.; Shameel, M. In Vitro Nematicidal Activities of Seaweed Extracts from Karachi Coast. Pak. J. Bot. 2006, 38, 1245. [Google Scholar]
- Featonby-Smith, B.C.; Van Staden, J. The Effect of Seaweed Concentrate on the Growth of Tomato Plants in Nematode-Infested Soil. Sci. Hortic. 1983, 20, 137–146. [Google Scholar] [CrossRef]
- Ngala, B.M.; Valdes, Y.; dos Santos, G.; Perry, R.N.; Wesemael, W.M.L. Seaweed-Based Products from Ecklonia maxima and Ascophyllum nodosum as Control Agents for the Root-Knot Nematodes Meloidogyne chitwoodi and Meloidogyne hapla on Tomato Plants. J. Appl. Phycol. 2016, 28, 2073–2082. [Google Scholar] [CrossRef]
- Morgan, K.T.; Tarjan, A.C. Management of Sting Nematode on Centipede Grass with Kelp Extracts. Proc. Fla. State Hort. Soc. 1980, 93, 97–99. [Google Scholar]
- Radwan, M.A.; Farrag, S.A.A.; Abu-Elamayem, M.M.; Ahmed, N.S. Biological Control of the Root-Knot Nematode, Meloidogyne Incognita on Tomato Using Bioproducts of Microbial Origin. Appl. Soil Ecol. 2012, 56, 58–62. [Google Scholar] [CrossRef]
- Radwan, M.A.; Abu-Elamayem, M.M.; Farrag, S.A.A.; Ahmed, N.S. Integrated Management of Meloidogyne Incognita Infecting Tomato Using Bio-Agents Mixed with Either Oxamyl or Organic Amendments. Nematol. Mediterr. 2011, 39, 151–156. [Google Scholar]
- Tarjan, A.C. Kelp Derivatives for Nematode-Infected Citrus Trees. J. Nematol. 1977, 9, 287. [Google Scholar]
- Isman, M.B. Leads and Prospects for the Development of New Botanical Insecticides. Rev. Pestic. Toxicol. 1995, 3, 1–20. [Google Scholar]
- Schrader, K.K.; Nagle, D.G.; Wedge, D.E. Algal and Cyanobacterial Metabolites as Agents for Pest Management. In Advances in Microbial Toxin Research and Its Biotechnological Exploitation; Upadhyay, R.K., Ed.; Springer: Boston, MA, USA, 2002; pp. 171–195. ISBN 978-1-4757-4439-2. [Google Scholar]
- Argandoña, V.; Del Pozo, T.; San-Martín, A.; Rovirosa, J. Insecticidal Activity of Plocamium cartilagineum Monoterpenes. Boletín de la Sociedad Chilena de Química 2000, 45, 371–376. [Google Scholar] [CrossRef]
- Asha, A.; Rathi, J.M.; Raja, D.P.; Sahayaraj, K. Biocidal Activity of Two Marine Green Algal Extracts against Third Instar Nymph of Dysdercus cingulatus (Fab.)(Hemiptera: Pyrrhocoridae). J. Biopest. 2012, 5, 129–134. [Google Scholar]
- Asharaja, A.; Sahayaraj, K. Screening of Insecticidal Activity of Brown Macroalgal Extracts against Dysdercus cingulatus (Fab.)(Hemiptera: Pyrrhocoridae). J. Biopest. 2013, 6, 193–203. [Google Scholar]
- Bantoto, V.; Dy, D. The Larvicidal Activity of Brown Algae Padina Minor (Yamada 1925) and Dicyota linearis (Greville 1830) against the Dengue Vector, Aedes aegypti (Linn 1762)(Diptera: Culicidae). J. Vector Borne Dis. 2013, 50, 68. [Google Scholar] [PubMed]
- Cetin, H.; Gokoglu, M.; Oz, E. Larvicidal Activity of the Extract of Seaweed, Caulerpa scalpelliformis, Against Culex pipiens. J. Am. Mosq. Control. Assoc. 2010, 26, 433–435. [Google Scholar] [CrossRef]
- González-Castro, A.L.; Muñoz-Ochoa, M.; Hernández-Carmona, G.; López-Vivas, J.M. Evaluation of Seaweed Extracts for the Control of the Asian Citrus Psyllid Diaphorina citri. J. Appl. Phycol. 2019, 31, 3815–3821. [Google Scholar] [CrossRef]
- Kiviranta, J.; Abdel-Hameed, A.; Sivonen, K.; Niemelä, S.I.; Carlberg, G. Toxicity of Cyanobacteria to Mosquito Larvae—Screening of Active Compounds. Environ. Toxicol. Water Qual. 1993, 8, 63–71. [Google Scholar] [CrossRef]
- Rima, M.; Chbani, A.; Roques, C.; El Garah, F. Comparative Study of the Insecticidal Activity of a High Green Plant (Spinacia oleracea) and a Chlorophytae algae (Ulva lactuca) Extracts against Drosophila melanogaster Fruit Fly. Ann. Pharm. Françaises 2021, 79, 36–43. [Google Scholar] [CrossRef]
- Ruangsomboon, S.; Pumnuan, J. Acaricidal Activities of Algal Extracts against the House Dust Mite, Dermatophagoides Pteronyssinus (Trouessart). J. Acarol. Soc. Jpn. 2016, 25, S169–S178. [Google Scholar] [CrossRef] [Green Version]
- Saber, A.A.; Hamed, S.M.; Abdel-Rahim, E.F.M.; Cantonati, M. Insecticidal Prospects of Algal and Cyanobacterial Extracts against the Cotton Leafworm Spodoptera littoralis. Vie Et Milieu 2018, 68, 199–212. [Google Scholar]
- Sahayaraj, K.; Jeeva, Y.M. Nymphicidal and Ovipositional Efficacy of Seaweed Sargassum tenerrimum (J. Agardh) against Dysdercus cingulatus (Fab.) (Pyrrhocoridae). Chil. J. Agric. Res. 2012, 72, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Sahayaraj, K.; Kalidas, S. Evaluation of Nymphicidal and Ovicidal Effect of a Seaweed, Padina pavonica (Linn.)(Phaeophyceae) on Cotton Pest, Dysdercus cingulatus (Fab.). Indian J. Geo-Mar. Sci. 2011, 40, 125–129. [Google Scholar]
- Yu, K.-X.; Jantan, I.; Ahmad, R.; Wong, C.-L. The Major Bioactive Components of Seaweeds and Their Mosquitocidal Potential. Parasitol. Res. 2014, 113, 3121–3141. [Google Scholar] [CrossRef] [PubMed]
- Abbassy, M.A.; Marzouk, M.A.; Rabea, E.I.; Abd-Elnabi, A.D. Insecticidal and Fungicidal Activity of Ulva lactuca Linnaeus (Chlorophyta) Extracts and Their Fractions. Annu. Res. Rev. Biol. 2014, 4, 2252–2262. [Google Scholar] [CrossRef]
- Kombiah, P.; Sahayaraj, K. Repellent Activity of Caulerpa scalpelliformis Extracts and Its Formulations against Spodoptera litura and Dysdercus cingulatus (Fab.). J. Biopestic. 2012, 5, 145. [Google Scholar]
- Pasdaran, A.; Hamedi, A.; Mamedov, N.A. Antibacterial and Insecticidal Activity of Volatile Compounds of Three Algae Species of Oman Sea. Int. J. Second. Metab. 2016, 3, 66–73. [Google Scholar] [CrossRef]
- Cueto, G.M.; Zerba, E.; Picollo, M.I. Biological Effect of 1-Dodecanol in Teneral and Post-Teneral Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae). Mem. Inst. Oswaldo Cruz 2005, 100, 59–61. [Google Scholar] [CrossRef]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural Products in Crop Protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef]
- Berry, J.P.; Gantar, M.; Perez, M.H.; Berry, G.; Noriega, F.G. Cyanobacterial Toxins as Allelochemicals with Potential Applications as Algaecides, Herbicides and Insecticides. Mar. Drugs 2008, 6, 117–146. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Sinha, R.P. Biotechnological and Industrial Significance of Cyanobacterial Secondary Metabolites. Biotechnol. Adv. 2009, 27, 521–539. [Google Scholar] [CrossRef]
- Smith, G.D.; Thanh Doan, N. Cyanobacterial Metabolites with Bioactivity against Photosynthesis in Cyanobacteria, Algae and Higher Plants. J. Appl. Phycol. 1999, 11, 337–344. [Google Scholar] [CrossRef]
- Żak, A.; Kosakowska, A. Cyanobacterial and Microalgal Bioactive Compounds—The Role of Secondary Metabolites in Allelopathic Interactions. Oceanol. Hydrobiol. Stud. 2016, 45, 131–143. [Google Scholar] [CrossRef]
- Mohamed Allelopathic Activity of the Norharmane-Producing Cyanobacterium Synechocystis aquatilis against Cyanobacteria and Microalgae. Oceanol. Hydrobiol. Stud. 2013, 42, 1–7. [CrossRef]
- Gromov, B.V.; Vepritskiy, A.A.; Titova, N.N.; Mamkayeva, K.A.; Alexandrova, O.V. Production of the Antibiotic Cyanobacterin LU-1 by Nostoc linckia CALU 892 (Cyanobacterium). J. Appl. Phycol. 1991, 3, 55–59. [Google Scholar] [CrossRef]
- Ishibashi, F.; Park, S.; Kusano, T.; Kuwano, K. Synthesis and Algicidal Activity of (+)-Cyanobacterin and Its Stereoisomer. Biosci. Biotechnol. Biochem. 2005, 69, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Blom, J.F.; Brütsch, T.; Barbaras, D.; Bethuel, Y.; Locher, H.H.; Hubschwerlen, C.; Gademann, K. Potent Algicides Based on the Cyanobacterial Alkaloid Nostocarboline. Org. Lett. 2006, 8, 737–740. [Google Scholar] [CrossRef]
- Hirata, K.; Yoshitomi, S.; Dwi, S.; Iwabe, O.; Mahakhant, A.; Polchai, J.; Miyamoto, K. Bioactivities of Nostocine a Produced by a Freshwater Cyanobacterium Nostoc spongiaeforme TISTR 8169. J. Biosci. Bioeng. 2003, 95, 512–517. [Google Scholar] [CrossRef]
- Todorova, A.K.; Juettner, F.; Linden, A.; Pluess, T.; von Philipsborn, W. Nostocyclamide: A New Macrocyclic, Thiazole-Containing Allelochemical from Nostoc sp. 31 (Cyanobacteria). J. Org. Chem. 1995, 60, 7891–7895. [Google Scholar] [CrossRef]
- Casanova, M.T.; Burch, M.D.; Brock, M.A.; Bond, P.M. Does Toxic Microcystis Aeruginosa Affect Aquatic Plant Establishment? Environ. Toxicol. 1999, 14, 97–109. [Google Scholar] [CrossRef]
- Jang, M.-H.; Ha, K.; Takamura, N. Reciprocal Allelopathic Responses between Toxic Cyanobacteria (Microcystis Aeruginosa) and Duckweed (Lemna japonica). Toxicon 2007, 49, 727–733. [Google Scholar] [CrossRef]
- Brilisauer, K.; Rapp, J.; Rath, P.; Schöllhorn, A.; Bleul, L.; Weiß, E.; Stahl, M.; Grond, S.; Forchhammer, K. Cyanobacterial Antimetabolite 7-Deoxy-Sedoheptulose Blocks the Shikimate Pathway to Inhibit the Growth of Prototrophic Organisms. Nat. Commun. 2019, 10, 545. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed Extract Stimuli in Plant Science and Agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Crouch, I.J.; van Staden, J. Evidence for the Presence of Plant Growth Regulators in Commercial Seaweed Products. Plant Growth Regul. 1993, 13, 21–29. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Lee, S.-M.; Ryu, C.-M. Algae as New Kids in the Beneficial Plant Microbiome. Front. Plant Sci. 2021, 12, 599742. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant Biostimulants: A Review on the Processing of Macroalgae and Use of Extracts for Crop Management to Reduce Abiotic and Biotic Stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Hines, S.; van der Zwan, T.; Shiell, K.; Shotton, K.; Prithiviraj, B. Alkaline Extract of the Seaweed Ascophyllum nodosum Stimulates Arbuscular Mycorrhizal Fungi and Their Endomycorrhization of Plant Roots. Sci. Rep. 2021, 11, 13491. [Google Scholar] [CrossRef]
- Renaut, S.; Masse, J.; Norrie, J.P.; Blal, B.; Hijri, M. A Commercial Seaweed Extract Structured Microbial Communities Associated with Tomato and Pepper Roots and Significantly Increased Crop Yield. Microb. Biotechnol. 2019, 12, 1346–1358. [Google Scholar] [CrossRef] [Green Version]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulatory Activities of Ascophyllum nodosum Extract in Tomato and Sweet Pepper Crops in a Tropical Environment. PLoS ONE 2019, 14, e0216710. [Google Scholar] [CrossRef] [Green Version]
- Rayorath, P.; Khan, W.; Palanisamy, R.; MacKinnon, S.L.; Stefanova, R.; Hankins, S.D.; Critchley, A.T.; Prithiviraj, B. Extracts of the Brown Seaweed Ascophyllum nodosum Induce Gibberellic Acid (GA3)-Independent Amylase Activity in Barley. J. Plant Growth Regul. 2008, 27, 370–379. [Google Scholar] [CrossRef]
- Stirk, W.A.; Arthur, G.D.; Lourens, A.F.; Novák, O.; Strnad, M.; van Staden, J. Changes in Cytokinin and Auxin Concentrations in Seaweed Concentrates When Stored at an Elevated Temperature. J. Appl. Phycol. 2004, 16, 31. [Google Scholar] [CrossRef]
- Stirk, W.A.; Van Staden, J. Isolation and Identification of Cytokinins in a New Commercial Seaweed Product Made from Fucus serratus L. J. Appl. Phycol. 1997, 9, 327. [Google Scholar] [CrossRef]
- Stirk, W.A.; Van Staden, J. Comparison of Cytokinin- and Auxin-like Activity in Some Commercially Used Seaweed Extracts. J. Appl. Phycol. 1996, 8, 503–508. [Google Scholar] [CrossRef]
- Allen, V.G.; Pond, K.R.; Saker, K.E.; Fontenot, J.P.; Bagley, C.P.; Ivy, R.L.; Evans, R.R.; Schmidt, R.E.; Fike, J.H.; Zhang, X.; et al. Tasco: Influence of a Brown Seaweed on Antioxidants in Forages and Livestock—A Review. J. Anim. Sci. 2001, 79, E21–E31. [Google Scholar] [CrossRef]
- Kim, M.-J.; Shim, C.-K.; Kim, Y.-K.; Ko, B.-G.; Park, J.-H.; Hwang, S.-G.; Kim, B.-H. Effect of Biostimulator Chlorella fusca on Improving Growth and Qualities of Chinese Chives and Spinach in Organic Farm. Plant Pathol. J. 2018, 34, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, M.M. Green Microalgae Water Extract as Foliar Feeding to Wheat Plants. Pak. J. Biol. Sci. 2001, 4, 628–632. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, M.M. Nutritional Status and Growth of Maize Plants as Affected by Green Microalgae as Soil Additives. J. Biol. Sci. 2001, 1, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Barone, V.; Baglieri, A.; Stevanato, P.; Broccanello, C.; Bertoldo, G.; Bertaggia, M.; Cagnin, M.; Pizzeghello, D.; Moliterni, V.M.C.; Mandolino, G.; et al. Root Morphological and Molecular Responses Induced by Microalgae Extracts in Sugar Beet (Beta vulgaris L.). J. Appl. Phycol. 2018, 30, 1061–1071. [Google Scholar] [CrossRef]
- Bumandalai, O.; Tserennadmid, R. Effect of Chlorella Vulgaris as a Biofertilizer on Germination of Tomato and Cucumber Seeds. Int. J. Aquat. Biol. 2019, 7, 95–99. [Google Scholar] [CrossRef]
- Faheed, F.A.; Fattah, Z.A. Effect of Chlorella Vulgaris as Bio-Fertilizer on Growth Parameters and Metabolic Aspects of Lettuce Plant. J. Agric. Soc. Sci. 2008, 4, 165–169. [Google Scholar]
- Coppens, J.; Grunert, O.; Van Den Hende, S.; Vanhoutte, I.; Boon, N.; Haesaert, G.; De Gelder, L. The Use of Microalgae as a High-Value Organic Slow-Release Fertilizer Results in Tomatoes with Increased Carotenoid and Sugar Levels. J. Appl. Phycol. 2016, 28, 2367–2377. [Google Scholar] [CrossRef]
- Innok, S.; Chunleuchanon, S.; Boonkerd, N.; Teaumroong, N. Cyanobacterial Akinete Induction and Its Application as Biofertilizer for Rice Cultivation. J. Appl. Phycol. 2009, 21, 737. [Google Scholar] [CrossRef]
- Singh, S.; Datta, P. Outdoor Evaluation of Herbicide Resistant Strains of Anabaena variabilis as Biofertilizer for Rice Plants. Plant Soil 2007, 296, 95–102. [Google Scholar] [CrossRef]
- Kumar, M.; Prasanna, R.; Bidyarani, N.; Babu, S.; Mishra, B.K.; Kumar, A.; Adak, A.; Jauhari, S.; Yadav, K.; Singh, R.; et al. Evaluating the Plant Growth Promoting Ability of Thermotolerant Bacteria and Cyanobacteria and Their Interactions with Seed Spice Crops. Sci. Hortic. 2013, 164, 94–101. [Google Scholar] [CrossRef]
- Karthikeyan, N.; Prasanna, R.; Sood, A.; Jaiswal, P.; Nayak, S.; Kaushik, B.D. Physiological Characterization and Electron Microscopic Investigation of Cyanobacteria Associated with Wheat Rhizosphere. Folia Microbiol. 2009, 54, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Trejo Valencia, R.; Sánchez Acosta, L.; Fortis Hernández, M.; Preciado Rangel, P.; Gallegos Robles, M.Á.; Antonio Cruz, R.d.C.; Vázquez Vázquez, C. Effect of Seaweed Aqueous Extracts and Compost on Vegetative Growth, Yield, and Nutraceutical Quality of Cucumber (Cucumis sativus L.) Fruit. Agronomy 2018, 8, 264. [Google Scholar] [CrossRef] [Green Version]
- Wuang, S.C.; Khin, M.C.; Chua, P.Q.D.; Luo, Y.D. Use of Spirulina Biomass Produced from Treatment of Aquaculture Wastewater as Agricultural Fertilizers. Algal Res. 2016, 15, 59–64. [Google Scholar] [CrossRef]
- Rayirath, P.; Benkel, B.; Mark Hodges, D.; Allan-Wojtas, P.; MacKinnon, S.; Critchley, A.T.; Prithiviraj, B. Lipophilic Components of the Brown Seaweed, Ascophyllum nodosum, Enhance Freezing Tolerance in Arabidopsis Thaliana. Planta 2009, 230, 135–147. [Google Scholar] [CrossRef]
- Shukla, P.S.; Prithiviraj, B. Ascophyllum nodosum Biostimulant Improves the Growth of Zea Mays Grown Under Phosphorus Impoverished Conditions. Front. Plant Sci. 2021, 11, 601843. [Google Scholar] [CrossRef]
- Mancuso, S.; Briand, X.; Mugnai, S.; Azzarello, E. Marine Bioactive Substances (IPA Extract) Improve Foliar Ion Uptake and Water Stress Tolerance in Potted “Vitis vinifera” Plants. Adv. Hortic. Sci. 2006, 20, 1000–1006. [Google Scholar] [CrossRef]
- Li, Y.; Xu, S.-S.; Gao, J.; Pan, S.; Wang, G.-X. Chlorella Induces Stomatal Closure via NADPH Oxidase-Dependent ROS Production and Its Effects on Instantaneous Water Use Efficiency in Vicia faba. PLoS ONE 2014, 9, e93290. [Google Scholar] [CrossRef]
- Rodríguez, A.; Stella, A.; Storni, M.; Zulpa, G.; Zaccaro, M. Effects of Cyanobacterial Extracellular Products and Gibberellic Acid on Salinity Tolerance in Oryza sativa L. Saline Syst. 2006, 2, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Arroussi, H.; Benhima, R.; Elbaouchi, A.; Sijilmassi, B.; EL Mernissi, N.; Aafsar, A.; Meftah-Kadmiri, I.; Bendaou, N.; Smouni, A. Dunaliella salina Exopolysaccharides: A Promising Biostimulant for Salt Stress Tolerance in Tomato (Solanum lycopersicum). J. Appl. Phycol. 2018, 30, 2929–2941. [Google Scholar] [CrossRef]
- Abd El-Baky, H.H.; El-Baz, F.K.; El Baroty, G.S. Enhancing Antioxidant Availability in Wheat Grains from Plants Grown under Seawater Stress in Response to Microalgae Extract Treatments. J. Sci. Food Agric. 2010, 90, 299–303. [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Functional Properties of Carotenoids Originating from Algae. J. Sci. Food Agric. 2013, 93, 5–11. [Google Scholar] [CrossRef]
- Nowruzi, B.; Porzani, S.J. Toxic Compounds Produced by Cyanobacteria Belonging to Several Species of the Order Nostocales: A Review. J. Appl. Toxicol. 2021, 41, 510–548. [Google Scholar] [CrossRef]
- Chaïb, S.; Pistevos, J.C.A.; Bertrand, C.; Bonnard, I. Allelopathy and Allelochemicals from Microalgae: An Innovative Source for Bio-Herbicidal Compounds and Biocontrol Research. Algal Res. 2021, 54, 102213. [Google Scholar] [CrossRef]
- Mason, C.P.; Edwards, K.R.; Carlson, R.E.; Pignatello, J.; Gleason, F.K.; Wood, J.M. Isolation of Chlorine-Containing Antibiotic from the Freshwater Cyanobacterium Scytonema hofmanni. Science 1982, 215, 400–402. [Google Scholar] [CrossRef]
- Gleason, F.K.; Paulson, J.L. Site of Action of the Natural Algicide, Cyanobacterin, in the Blue-Green Alga, Synechococcus sp. Arch. Microbiol. 1984, 138, 273–277. [Google Scholar] [CrossRef]
- Gleason, F.K.; Case, D.E.; Sipprell, K.D.; Magnuson, T.S. Effect of the Natural Algicide, Cyanobacterin, on a Herbicide-Resistant Mutant of Anacystis Nidulans R2. Plant Sci. 1986, 46, 5–10. [Google Scholar] [CrossRef]
- Mallipudi, L.R.; Gleason, F.K. Characterization of a Mutant of Anacystis Nidulans R2 Resistant to the Natural Herbicide, Cyanobacterin. Plant Sci. 1989, 60, 149–154. [Google Scholar] [CrossRef]
- Arlene Klapes, N. Acute Toxicity of the Natural Algicide, Cyanobacterin, to Daphnia Magna. Ecotoxicol. Environ. Saf. 1990, 20, 167–174. [Google Scholar] [CrossRef]
- Bagchi, S.N.; Palod, A.; Chauhan, V.S. Algicidal Properties of a Bloom-Forming Blue-Green Alga, Oscillatoria sp. J. Basic Microbiol. 1990, 30, 21–29. [Google Scholar] [CrossRef]
- Chauhan, V.S.; Marwah, J.B.; Bagchi, S.N. Effect of an Antibiotic from Oscillatoria sp. on Phytoplankters, Higher Plants and Mice. New Phytol. 1992, 120, 251–257. [Google Scholar] [CrossRef]
- Becher, P.G.; Beuchat, J.; Gademann, K.; Jüttner, F. Nostocarboline: Isolation and Synthesis of a New Cholinesterase Inhibitor from Nostoc 78-12A. J. Nat. Prod. 2005, 68, 1793–1795. [Google Scholar] [CrossRef] [PubMed]
- Becher, P.G.; Baumann, H.I.; Gademann, K.; Jüttner, F. The Cyanobacterial Alkaloid Nostocarboline: An Inhibitor of Acetylcholinesterase and Trypsin. J. Appl. Phycol. 2009, 21, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Gross, E.M.; Wolk, C.P.; Jüttner, F. Fischerellin, a New Allelochemical from the Freshwater Cyanobacterium Fischerella muscicola. J. Phycol. 1991, 27, 686–692. [Google Scholar] [CrossRef] [Green Version]
- Hagmann, L.; Jüttner, F. Fischerellin A, a Novel Photosystem-II-Inhibiting Allelochemical of the Cyanobacterium Fischerella muscicola with Antifungal and Herbicidal Activity. Tetrahedron Lett. 1996, 37, 6539–6542. [Google Scholar] [CrossRef]
- Srivastava, A.; Jüttner, F.; Strasser, R.J. Action of the Allelochemical, Fischerellin A, on Photosystem II. Biochim. Biophys. Acta-Bioenerg. 1998, 1364, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Jamiołkowska, A. Natural Compounds as Elicitors of Plant Resistance Against Diseases and New Biocontrol Strategies. Agronomy 2020, 10, 173. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.S.; Borza, T.; Critchley, A.T.; Prithiviraj, B. Carrageenans from Red Seaweeds as Promoters of Growth and Elicitors of Defense Response in Plants. Front. Mar. Sci. 2016, 3, 81. [Google Scholar] [CrossRef]
- Mercier, L.; Lafitte, C.; Borderies, G.; Briand, X.; Esquerré-Tugayé, M.-T.; Fournier, J. The Algal Polysaccharide Carrageenans Can Act as an Elicitor of Plant Defence. New Phytol. 2001, 149, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Sangha, J.S.; Ravichandran, S.; Prithiviraj, K.; Critchley, A.T.; Prithiviraj, B. Sulfated Macroalgal Polysaccharides λ-Carrageenan and ι-Carrageenan Differentially Alter Arabidopsis Thaliana Resistance to Sclerotinia sclerotiorum. Physiol. Mol. Plant Pathol. 2010, 75, 38–45. [Google Scholar] [CrossRef]
- Graiff, A.; Ruth, W.; Kragl, U.; Karsten, U. Chemical Characterization and Quantification of the Brown Algal Storage Compound Laminarin—A New Methodological Approach. J. Appl. Phycol. 2016, 28, 533–543. [Google Scholar] [CrossRef]
- Klarzynski, O.; Plesse, B.; Joubert, J.-M.; Yvin, J.-C.; Kopp, M.; Kloareg, B.; Fritig, B. Linear β-1,3 Glucans Are Elicitors of Defense Responses in Tobacco. Plant Physiol. 2000, 124, 1027–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, S.; Tebben, J.; Coffinet, S.; Wiltshire, K.; Iversen, M.H.; Harder, T.; Hinrichs, K.-U.; Hehemann, J.-H. Laminarin Is a Major Molecule in the Marine Carbon Cycle. Proc. Natl. Acad. Sci. USA 2020, 117, 6599–6607. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yang, J.; Du, H.; Aslam, M.; Wang, W.; Chen, W.; Li, T.; Liu, Z.; Liu, X. Laminarin, a Major Polysaccharide in Stramenopiles. Mar. Drugs 2021, 19, 576. [Google Scholar] [CrossRef]
- Klarzynski, O.; Descamps, V.; Plesse, B.; Yvin, J.-C.; Kloareg, B.; Fritig, B. Sulfated Fucan Oligosaccharides Elicit Defense Responses in Tobacco and Local and Systemic Resistance Against Tobacco Mosaic Virus. Mol. Plant-Microbe Interact. 2003, 16, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Pearce, R.B.; Ride, J.P. Chitin and Related Compounds as Elicitors of the Lignification Response in Wounded Wheat Leaves. Physiol. Plant Pathol. 1982, 20, 119–123. [Google Scholar] [CrossRef]
- Roby, D.; Gadelle, A.; Toppan, A. Chitin Oligosaccharides as Elicitors of Chitinase Activity in Melon Plants. Biochem. Biophys. Res. Commun. 1987, 143, 885–892. [Google Scholar] [CrossRef]
- Kaku, H.; Nishizawa, Y.; Ishii-Minami, N.; Akimoto-Tomiyama, C.; Dohmae, N.; Takio, K.; Minami, E.; Shibuya, N. Plant Cells Recognize Chitin Fragments for Defense Signaling through a Plasma Membrane Receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 11086–11091. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Nakano, T.; Takamizawa, D.; Desaki, Y.; Ishii-Minami, N.; Nishizawa, Y.; Minami, E.; Okada, K.; Yamane, H.; Kaku, H.; et al. Two LysM Receptor Molecules, CEBiP and OsCERK1, Cooperatively Regulate Chitin Elicitor Signaling in Rice: LysM Receptors for Rice Chitin Signaling. Plant J. 2010, 64, 204–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. [Google Scholar]
- Bastiaens, L.; Soetemans, L.; D’Hondt, E.; Elst, K. Sources of Chitin and Chitosan and Their Isolation. In Chitin and Chitosan; Broek, L.A.M., Boeriu, C.G., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 1–34. ISBN 978-1-119-45043-6. [Google Scholar]
- Chiriboga, O.G.; LeDuff, P.; Rorrer, G.L. Extracellular Chitin Nanofibers from Marine Diatoms. In Encyclopedia of Marine Biotechnology; Kim, S., Ed.; Wiley: Hoboken, NJ, USA, 2020; pp. 1083–1092. ISBN 978-1-119-14377-2. [Google Scholar]
- Ozkan, A.; Rorrer, G.L. Effects of CO2 Delivery on Fatty Acid and Chitin Nanofiber Production during Photobioreactor Cultivation of the Marine Diatom Cyclotella sp. Algal Res. 2017, 26, 422–430. [Google Scholar] [CrossRef]
- Korunic, Z. ReviewDiatomaceous Earths, a Group of Natural Insecticides. J. Stored Prod. Res. 1998, 34, 87–97. [Google Scholar] [CrossRef]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic Acid Signaling Pathway in Plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef] [Green Version]
- Seyfferth, C.; Tsuda, K. Salicylic Acid Signal Transduction: The Initiation of Biosynthesis, Perception and Transcriptional Reprogramming. Front. Plant Sci. 2014, 5, 697. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Han, X.; Feng, D.; Yuan, D.; Huang, L.-J. Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant Defense: Do We Understand What They Are Whispering? Int. J. Mol. Sci. 2019, 20, 671. [Google Scholar] [CrossRef] [Green Version]
- De Nys, R.; Steinberg, P.D.; Willemsen, P.; Dworjanyn, S.A.; Gabelish, C.L.; King, R.J. Broad Spectrum Effects of Secondary Metabolites from the Red Alga Delisea pulchra in Antifouling Assays. Biofouling 1995, 8, 259–271. [Google Scholar] [CrossRef]
- Kjelleberg, S.; Steinberg, P.; Givskov, M.; Gram, L.; Manefield, M.; de Nys, R. Do Marine Natural Products Interfere with Prokaryotic AHL Regulatory Systems? Aquat. Microb. Ecol. 1997, 13, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Bhowmick, S.; Mazumdar, A.; Moulick, A.; Adam, V. Algal Metabolites: An Inevitable Substitute for Antibiotics. Biotechnol. Adv. 2020, 43, 107571. [Google Scholar] [CrossRef]
- Manefield, M.; Welch, M.; Givskov, M.; Salmond, G.P.C.; Kjelleberg, S. Halogenated Furanones from the Red Alga, Delisea pulchra, Inhibit Carbapenem Antibiotic Synthesis and Exoenzyme Virulence Factor Production in the Phytopathogen Erwinia carotovora. FEMS Microbiol. Lett. 2001, 205, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Hentzer, M.; Riedel, K.; Rasmussen, T.B.; Heydorn, A.; Andersen, J.B.; Parsek, M.R.; Rice, S.A.; Eberl, L.; Molin, S.; Høiby, N.; et al. Inhibition of Quorum Sensing in Pseudomonas Aeruginosa Biofilm Bacteria by a Halogenated Furanone Compound. Microbiology 2002, 148, 87–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manefield, M.; de Nys, R.; Naresh, K.; Roger, R.; Givskov, M.; Peter, S.; Kjelleberg, S. Evidence That Halogenated Furanones from Delisea pulchra Inhibit Acylated Homoserine Lactone (AHL)-Mediated Gene Expression by Displacing the AHL Signal from Its Receptor Protein. Microbiology 1999, 145, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manefield, M.; Rasmussen, T.B.; Henzter, M.; Andersen, J.B.; Steinberg, P.; Kjelleberg, S.; Givskov, M. Halogenated Furanones Inhibit Quorum Sensing through Accelerated LuxR Turnover. Microbiology 2002, 148, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Teplitski, M.; Chen, H.; Rajamani, S.; Gao, M.; Merighi, M.; Sayre, R.T.; Robinson, J.B.; Rolfe, B.G.; Bauer, W.D. Chlamydomonas reinhardtii Secretes Compounds That Mimic Bacterial Signals and Interfere with Quorum Sensing Regulation in Bacteria. Plant Physiol. 2004, 134, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Natrah, F.M.I.; Kenmegne, M.M.; Wiyoto, W.; Sorgeloos, P.; Bossier, P.; Defoirdt, T. Effects of Micro-Algae Commonly Used in Aquaculture on Acyl-Homoserine Lactone Quorum Sensing. Aquaculture 2011, 317, 53–57. [Google Scholar] [CrossRef]
- Kwan, J.C.; Meickle, T.; Ladwa, D.; Teplitski, M.; Paul, V.; Luesch, H. Lyngbyoic Acid, a “Tagged” Fatty Acid from a Marine Cyanobacterium, Disrupts Quorum Sensing in Pseudomonas Aeruginosa. Mol. BioSyst. 2011, 7, 1205. [Google Scholar] [CrossRef]
- Kwan, J.C.; Teplitski, M.; Gunasekera, S.P.; Paul, V.J.; Luesch, H. Isolation and Biological Evaluation of 8-Epi-Malyngamide C from the Floridian Marine Cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2010, 73, 463–466. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Umeda, K.; Kurita, Y.; Takayama, C.; Miyakado, M. Two Insecticidal Monoterpenes, Telfairine and Aplysiaterpenoid A, from the Red Alga Plocamium telfairiae: Structure Elucidation, Biological Activity, and Molecular Topographical Consideration by a Semiempirical Molecular Orbital Study. Pestic. Biochem. Physiol. 1990, 37, 275–286. [Google Scholar] [CrossRef]
- Zemolin, A.P.P.; Cruz, L.C.; Paula, M.T.; Pereira, B.K.; Albuquerque, M.P.; Victoria, F.C.; Pereira, A.B.; Posser, T.; Franco, J.L. Toxicity Induced by Prasiola crispa to Fruit Fly Drosophila melanogaster and Cockroach Nauphoeta cinerea: Evidence for Bioinsecticide Action. J. Toxicol. Environ. Health Part A 2014, 77, 115–124. [Google Scholar] [CrossRef]
- Holken Lorensi, G.; Soares Oliveira, R.; Leal, A.P.; Zanatta, A.P.; Moreira de Almeida, C.G.; Barreto, Y.C.; Eduarda Rosa, M.; de Brum Vieira, P.; Brito Ramos, C.J.; de Carvalho Victoria, F.; et al. Entomotoxic Activity of Prasiola crispa (Antarctic Algae) in Nauphoeta cinerea Cockroaches: Identification of Main Steroidal Compounds. Mar. Drugs 2019, 17, 573. [Google Scholar] [CrossRef] [Green Version]
- Rapp, J.; Wagner, B.; Brilisauer, K.; Forchhammer, K. In Vivo Inhibition of the 3-Dehydroquinate Synthase by 7-Deoxysedoheptulose Depends on Promiscuous Uptake by Sugar Transporters in Cyanobacteria. Front. Microbiol. 2021, 12, 692986. [Google Scholar] [CrossRef]
- Herrmann, K.M.; Weaver, L.M. The Shikimate Pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 473–503. [Google Scholar] [CrossRef]
- Fenoradosoa, T.A.; Ali, G.; Delattre, C.; Laroche, C.; Petit, E.; Wadouachi, A.; Michaud, P. Extraction and Characterization of an Alginate from the Brown Seaweed Sargassum turbinarioides Grunow. J. Appl. Phycol. 2010, 22, 131–137. [Google Scholar] [CrossRef]
- Guiry, M.D. How Many Species of Algae Are There? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef]
Algal Species | Compound/Type of Extract | Target Organism | Disease/Pathogenic Phenotype/Significance | Protected Plant/Organism | Mode of Action | Reference |
---|---|---|---|---|---|---|
Sargassum wightii | Methanolic extracts | Pseudomonas syringae | Leaf spot disease | Gymnema sylvestre | NK | [32] |
Gracilaria edulis, Sargassum wightii, Enteromorpha flexuosa | Petroleum ether extracts, methanolic extracts, unsaponified and lipophilic fractions | Xanthomonas oryzae | Bacterial blight | Rice plants | NK | [16] |
Sargassum wightii | Sulphoglycerolipid (methanol extract) | Xanthomonas oryzae | Bacterial blight | Rice plants | NK | [33] |
Ulva fasciata | Methanolic extracts | Xanthomonas campestris, Erwinia carotovora | Plant pathogens | Various plant species | NK | [34] |
Cystoseira myriophylloides, Fucus spiralis | Aqueous extracts | Agrobacterium tumefaciens | Crown gall disease | Solanum lycopersicum | NK | [18] |
Sargassum latifolium, Hydroclathrus clathratus, Padina gymnospora | Methanolic extracts | Ralstonia solanacearum, Pectobacterium carotovorum | Brown rot disease | Potato plants | Induction of plant defenses, formation of bioactive secondary metabolites | [35] |
Lessonia trabeculate, Macrocystis integrifolia | Ethanolic extracts | Erwinia carotovora Pseudomonas syringae | Plant pathogens | Various plant species (tomato, Arabidopsis, potato plants) | NK | [17] |
Ulva lactuca, Gelidium serrulatum | Alkaline extracts | Xanthomonas vesicatoria | Plant pathogen | Tomato plants (in vitro) | Induction of plant defenses | [49] |
Ulva lactuca, Sargassum filipendula, Gelidium serrulatum | Alkaline extracts | Xanthomonas vesicatoria | Plant pathogen | Tomato plants (in vivo) | Induction of plant defenses | [49] |
Anabaena variabilis, A. circinalis | Ethyl acetate extracts | Aeromonas sp. | Skin infections, ulcers, hemorrhagic and septicemic infections | Fish | NK | [48] |
Algal Class/Species | Compound/Type of Extract | Target Organism | Disease/Pathogenic Phenotype | Protected Plant/Organism | Mode of Action | Reference |
---|---|---|---|---|---|---|
Phaeophyceae (brown seaweeds) | Sodium alginate | Tobacco mosaic virus (TMV) | Mottling and discoloration on leaves | Nicotiana tabacum | Aggregation of viral particles, blocking of decapsulation process | [21] |
Tichocarpus crinitus | Kappa/beta-carrageenan | Tobacco mosaic virus (TMV) | Mottling and discoloration on leaves | Nicotiana tabacum | Plant tissue resistance, effect on the plant genome | [52] |
Tichocarpus crinitus | Kappa/beta-carrageenan | Potato virus X (PVX) | Crinkle symptoms/plant death | Datura stramonium | Stimulation of lytic processes | [22] |
Fucus gardneri, Alaria marginata, Ralfsia sp., Codium fragile, Fragilaria oceanica, Egregia menziesii | Methanolic extract (alginate) | Potato virus X (PVX) | Crinkle symptoms/plant death | Chenopodium quinoa | Aggregation of viral particles | [23] |
Ulva pertusa | Lectins | Tobacco mosaic virus (TMV) | Mottling and discoloration on leaves | Nicotiana glutinosa, Chenopodium amaranticolor | NK | [53,54] |
13 species tested – Cystoseira balearica, Lophocladia lallemandii, and Gastroclonium clavatum exhibited the strongest effect | Lipid extracts | Tobacco mosaic virus (TMV) | Mottling and discoloration on leaves | Nicotiana tabacum | NK | [19] |
Durvillaea antarctica | Aqueous and ethanolic extracts | Tobacco mosaic virus (TMV) | Mottling and discoloration on leaves | Nicotiana tabacum | NK | [17] |
Ulva clathrata, Cladosiphon okamuranus | Sulphated polysaccharides | Newcastle disease virus (NDV) | Respiratory infection, enteric disease, mortality | Poultry | Inhibition of cell–cell fusion | [55] |
Algal Species | Compound/Type of Extract | Target Organism | Disease/Pathogenic Phenotype/Significance | Protected Plant/Organism | Mode of Action | Reference |
---|---|---|---|---|---|---|
Nostoc sp. | Ethanolic extracts | Armillaria sp., Fusarium oxysporum f. sp. melonis, Penicillium expansum, Phytophthora cambivora, P. cinnamomi, Rhizoctonia solani, Rosellinia, sp., Sclerotinia sclerotiorum, Verticillium albo-atrum | Plant pathogens | In vitro (action against Sclerotinia sclerotiorum was verified in the presence of tomato plant). | Induction of plant defenses | [20] |
Cystoseira myriophylloides, Laminaria digitata, Fucus spiralis | Aqueous extracts | Verticillium dahliae | Verticillium wilt disease | Tomato seedlings | Induction of plant defenses | [18] |
Lessonia trabeculata | Ethanolic extracts | Botrytis cinerea | necrotic lesions in leaves | Tomato plants | NK | [17] |
Gracillaria chilensis | Aqueous and ethanolic extracts | Phytophthora cinnamomi | Plant pathogen | In vitro | NK | [17] |
Sargassum latifolium, Padina gymnospora | Methanolic extracts | Fusarium solani, Rhizoctonia solani | Plant pathogens | In vitro, in vivo (Solanum melongena) | Induction of plant defenses, formation of bioactive secondary metabolites | [35] |
Ulva lactuca, Sargassum filipendula, Gelidium serrulatum | Alkaline extracts | Alternaria solani | Plant pathogen | Tomato plants | Induction of plant defenses | [49] |
Laminaria digitata, Undaria pinnatifida, Porphyra umbilicalis, Eucheuma denticulatum Gelidium pusillum | Fatty acids, polysaccharides, phlorotannins | Botrytis cinerea, Monilinia laxa, Penicillium digitatum | Postharvest pathogens | In vitro, in vivo (Fragaria × ananassa, Prunus persica, Citrus limon) | Direct toxicity of fatty acids, induction of plant defenses | [68] |
10 algal species - Cystoseira balearica, Codium effusum and Codium coralloides exhibited the strongest effect | Lipid extracts | Phoma tracheiphila | Mal secco disease | In vitro | NK | [19] |
Ulva fasciata | Ulvan | Fusarium oxysporum f. sp. phaseoli | Bean Fusarium wilt | Phaseolus vulgaris | Induction of plant defenses, reduced fungal colonization in plant tissues | [78] |
Ulva fasciata | Ulvan | Colletotrichum lindemuthianum | Anthracnose | Phaseolus vulgaris | Induction of plant defenses | [79] |
Ulva armoricana | Aqueous extracts (ulvan) | Erysiphe polygoni, E. necator, Sphareotheca fuliginea | Plant pathogens | Phaseolus vulgaris, grapevine plants, Cucumis sativus | Induction of plant defenses | [80] |
Ulva fasciata | Ulvan | Blumeria graminis | Plant pathogen | Triticum aestivum cv. Kanzler, Hordeum vulgare cv. Villa | Induction of plant defenses | [82] |
Ulva fasciata | Sulphated polysaccharides, alcoholic extracts | Colletotrichum lindemuthianum | Anthracnose | In vitro, Phaseolus vulgaris | Induction of plant defenses | [83] |
Laminaria digitata | Laminarin | Botrytis cinerea, Plasmopara viticola | Plant pathogens | Grapevine plants | Induction of plant defenses | [85] |
Anabaena sp., Ecklonia sp., Jania sp. | Aqueous extracts containing polysaccharides | Botrytis cinerea | Grey mold (postharvest plant pathogen) | Strawberry plants | Direct effect, induction of plant defenses | [86] |
Ulva lactuca, Caulerpa sertularioides, Padina gymnospora, Sargassum liebmannii | Polysaccharide-rich extracts | Alternaria solani | Plant pathogen | Tomato plants | Induction of plant defenses (Ulva lactuca) | [87] |
Ulva sp. | Ulvan | Colletotrichumgloeosporioides | Glomerella leaf spot (GLS) disease | Apple plant seedlings (Malus domestica) | Induction of plant defenses | [88] |
Ulva fasciata Enteromorpha flexuosa | Ethyl acetate, benzene, acetone, methanolic and chloroformic extracts | Macrophomina phaseolina Fusarium solani | Plant pathogens | Cucumber plants | NK | [89] |
Gracilaria confervoides | Chloroformic extracts | Rhizoctonia solani, Fusarium solani, Macrophomina phaseolina | Plant pathogens | Cucumber plants | NK | [75] |
Sargassum vulgare | Methanolic extracts | Pythium aphanidermatum | Pythium leak disease | Potato plants | NK | [90] |
Sargassum wightii | Acetone extracts (n-Hexadecanoic acid) | Rhizoctonia solani | Rice sheath blight | Rice plant | Induction of plant defenses | [91] |
Algal Species | Compound/Type of Extract/Product | Target Organism | Protected Plant/Organism | Mode of Action | Reference |
---|---|---|---|---|---|
Jania rubens | Brominated diterpenes | Allolobophora caliginosa | In vitro | ΝΚ | [93] |
Nostoc sp. | Methanolic extracts | Caenorhabditis elegans | In vitro | Induction of plant defenses | [20] |
Spatoglossum variabile, Stokeyia indica, Melanothamnus afaqhusainii | Dry powders | Meloidogyne incognita | Eggplant, watermelon | Direct cytotoxic effect, effect on plant metabolism/resistance to stress | [65] |
Spatoglossum variabile, Melanothamnus afaqhusainii, Halimeda tuna | Aqueous and ethanolic extracts | Meloidogyne javanica | Sunflower, tomato | Induction of plant defenses | [24] |
Sargassum tenerrimum, S. swartzii, S. wightii | Ethanolic extracts (dry powders) | Meloidogyne javanica | Okra (Abelmoschus esculentus) | ΝΚ | [94] |
Stoechospermum polypodioides | Methanolic extracts | Meloidogyne javanica | In vitro | ΝΚ | [95] |
Ecklonia maxima | Commercial formulation—Kelpak 66 liquid concentrate (cancelled product) | Meloidogyne incognita | Tomato plants (Lycopersicon esculentum) | ΝΚ | [96] |
Ascophyllum nodosum, Ecklonia maxima | Commercial formulations—Kelpak (Kelp Products Ltd., Simon’s Town, South Africa), OSMO® (OSMO® International NV, Diksmuide, Belgium) | Meloidogyne chitwoodi, Meloidogyne hapla | Tomato plants (Lycopersicon esculentum) | Interrupt enzymatic activities of hatching process, alter sensory perception of the roots by the nematodes | [97] |
Ascophyllum nodosum | Commercial formulation—Algaefol® (Chema Industries, Egypt) | Radopholus similis, Meloidogyne incognita, Belonolaimus longicaudatus | Citrus, tomato, centipede grass | Cytotoxic effect | [98,99,100,101] |
Insecticidal Activity | ||||||
---|---|---|---|---|---|---|
Algal Species | Compound/Type of Extract | Target Organism | Disease/Significance | Protected Plant/Organism | Mode of Action | Reference |
Caulerpa racemosa | Ethanol and water extracts | Anopheles stephensi, Aedes aegypti, Culex quinquefasciatus | Disease vectors | - | Toxic effect (larvicidal) | [25] |
Plocamium cartilagineum | Mertensene, violacene, and derivatives (dibromomertensene and dihydromertensene) | Tuta absoluta, Schizaphis graminum | Crop pests | Tomato plants, cereals | Toxic effect (insecticidal, reduced reproduction) | [104] |
Spirulina platensis, Sargassum vulgar | Water and ethanol extracts | Spodoptera littoralis | Crop pest | Cotton plants, tomato, maize etc. | Toxic effect | [27] |
Caulerpa sertularioides, Laurencia johnstonii, Sargassum horridum | Ethanol extracts | Diaphorina citri | Citrus greening disease | Citrus plants | Toxicity, repellent activity | [109] |
Ulva lactuca | acetone, ethanol, chloroform, methanol, petroleum ether extracts | Culex pipiens, Spodoptera littoralis | Disease vector, crop pest | - | Inhibition of adult emergence and larval growth | [117] |
Caulerpa scalpelliformis | Chloroform, methanol, hexane extracts | Dysdercus cingulatus, Spodoptera litura | Crop pests | Cotton seeds, tomato, maize, vegetables | Repellent activity | [118] |
Padina pavonica | Chloroform, benzene extracts | Dysdercus cingulatus | Crop pest | Cotton, citrus, maize | Toxic effect (nymphicidal, ovicidal) | [115] |
Sargassum tenerrimum | Chloroform, benzene extracts | Dysdercus cingulatus | Crop pest | Cotton, citrus, maize | Toxic effect (nymphicidal, oviposition efficacy) | [114] |
Ulva fasciata, U. lactuca | Methanol extracts | Dysdercus cingulatus | Crop pest | Cotton, citrus, maize | Toxic effect (nymphicidal) | [105] |
Nostoc sp. | Methanol extracts | Helicoverpa armigera | Crop pest | Cotton, tomato, rice etc. | Toxic effect (larvicidal) | [20] |
Sargassum wightii, Padina pavonica | Chloroform, methanol, water extracts | Dysdercus cingulatus | Crop pest | Cotton, citrus, maize | Toxic effect (nymphicidal), effect on biophysical parameters | [106] |
Dictyota linearis, Padina minor | Ethanol extracts | Aedes aegypti | Disease vector | - | Toxic effect (larvicidal) | [107] |
Caulerpa scalpelliformis | Acetone extract | Culex pipiens | Disease vector | - | Toxic effect (larvicidal) | [108] |
Microcystis, Oscillatoria, Nodularia, Nostoc, Anabaena | Hydrophilic, lipophilic extracts | Aedes aegypti | Disease vector | - | Toxic effect | [110] |
Ulva lactuca | Acetone extract | Drosophila melanogaster | Fruit fly, model organism | - | Toxic effect | [111] |
Chara vulgaris, Parachlorella kessleri, Ulva intestinalis, Cladophora glomerata, Nostoc carneum | Ethanol extracts | Spodoptera littoralis | Crop pest | Cotton, tomato, maize, vegetables | Toxic effect (larvicidal), effect on biophysical parameters | [113] |
Acaricidal activity | ||||||
Ascophyllum nodosum | Commercial formulation—Maxicrop® (Maxicrop International Ltd.) | Tetranychus urticae | Mottled leaves, early leaf loss | Strawberry plant | - | [26] |
Oscillatoria sp., Phormidium sp., Spirulina platensis, Spirulina maxima, Ulva intestinalis, Sargassum sp., Dictyota sp. | Methanol, dichloromethane, hexane extracts | Dermatophagoides pteronyssinus | Disease vector | - | Toxic effect | [112] |
Algal Species | Compound/Type of Extract | Target Organism | Disease/Significance | Mode of Action | Reference |
---|---|---|---|---|---|
Synechocystis aquatilis | Norharmane | Microcystis aeruginosa, Oscillatoria limnetica, Chlorella vulgaris, Ulothrix sp. | Management of algal blooms | Effect on metabolism, effect on the photosynthetic apparatus | [126] |
Synechocystis aquatilis, Nodularia harveyana | Norharmane | Avena fatua, Plantago lanceolata, Portulaca oleracea, Echinochloa crusgalli, Amaranthus retroflexus | Crop weeds | Effect on metabolism, effect on the photosynthetic apparatus | [28] |
Schytonema hofmanni | Cyanobacterin | Lemna gibba, Setaria viridis, Avena fatua, Rumex crispus, Polygonium convolvulus, Zea mays, Pisum sativum | Management of phototrophic organisms | Inhibition of photosynthesis | [29] |
Nostoc linckia, Schytonema hofmanni | Cyanobacterins | Synechococcus sp. | Management of algal blooms | Inhibition of photosynthesis | [127,128] |
Nostoc sp., N. spongiaeforme | Nostocyclamide, nostocine A, nostocarboline | Microcystis aeruginosa, Synechococcus sp., Kirchneriella contorta, Chlamydomonas reinhardtii, Chorella pyrenoidosa, Chlorella fusca, Dunaliella tertiolecta, D. salina | Management of algal blooms | Inhibition of photosynthesis, generation of reactiveoxygen species (ROS) | [129,130,131] |
Microcystis aeruginosa | Microcystins | Myriophyllum variifolium, Lemna japonica | Management of eutrophic waters | Inhibition of protein phosphatases, cell regulation | [132,133] |
Synechococcus elongatus | 7-Deoxy-sedoheptulose (methanolic extract) | Anabaena variabilis, Arabidopsis | Management of phototrophic organisms | Inhibition of the shikimate pathway, cell metabolism | [134] |
Nostoc sp. | Methanolic extract | grass seedlings | Crop weeds | Toxicity, antimitotic agents with inhibitory effects | [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asimakis, E.; Shehata, A.A.; Eisenreich, W.; Acheuk, F.; Lasram, S.; Basiouni, S.; Emekci, M.; Ntougias, S.; Taner, G.; May-Simera, H.; et al. Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms 2022, 10, 307. https://doi.org/10.3390/microorganisms10020307
Asimakis E, Shehata AA, Eisenreich W, Acheuk F, Lasram S, Basiouni S, Emekci M, Ntougias S, Taner G, May-Simera H, et al. Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms. 2022; 10(2):307. https://doi.org/10.3390/microorganisms10020307
Chicago/Turabian StyleAsimakis, Elias, Awad A. Shehata, Wolfgang Eisenreich, Fatma Acheuk, Salma Lasram, Shereen Basiouni, Mevlüt Emekci, Spyridon Ntougias, Gökçe Taner, Helen May-Simera, and et al. 2022. "Algae and Their Metabolites as Potential Bio-Pesticides" Microorganisms 10, no. 2: 307. https://doi.org/10.3390/microorganisms10020307
APA StyleAsimakis, E., Shehata, A. A., Eisenreich, W., Acheuk, F., Lasram, S., Basiouni, S., Emekci, M., Ntougias, S., Taner, G., May-Simera, H., Yilmaz, M., & Tsiamis, G. (2022). Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms, 10(2), 307. https://doi.org/10.3390/microorganisms10020307