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Abstract: Cryptococcus neoformans is a pathogenic yeast that can form Titan cells in the lungs, which
are fungal cells of abnormally large size. The factors that regulate Titan cell formation in vivo are
still unknown, although an increased proportion of these fungal cells of infected mice correlates with
induction of Th2-type responses. Here, we focused on the role played by the cytokine IL-17 in the
formation of cryptococcal Titan cells using 1172/~ knockout mice. We found that after 9 days of
infection, there was a lower proportion of Titan cells in I/17a~/~ mice compared to the fungal cells
found in wild-type animals. Dissemination to the brain occurred earlier in II1 7a~/~ mice, which
correlated with the lower proportion of Titan cells in the lungs. Furthermore, knockout-infected mice
increased brain size more than WT mice. We also determined the profile of cytokines accumulated
in the brain, and we found significant differences between both mouse strains. We found that in
1117a~/~, there was a modest increase in the concentrations of the Th1 cytokine TNF-«. To validate
if the increase in this cytokine had any role in cryptococcal morphogenesis, we injected wild-type
mice with TNF-« t and observed that fungal cell size was significantly reduced in mice treated with
this cytokine. Our results suggest a compensatory production of cytokines in Il17a~/~ mice that
influences both cryptococcal morphology and dissemination.
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1. Introduction

Cryptococcus neoformans is a pathogenic yeast that causes significant morbidity and
mortality in immunosuppressed people, including those with HIV/AIDS, solid organ
transplants, or other immune impairment [1-3]. This yeast is of particular interest because
it has several well-characterized mechanisms that allow its survival in the host and the
escape from the immune response.

The capsule is its main phenotypic feature and the best-characterized virulence fac-
tor. It confers physicochemical characteristics but also plays a very important role in the
interaction with the host. The capsule is essential for the survival of C. neoformans inside
macrophages [4] and also protects it from free radicals and other attacks on the immune
system [5]. In addition, C. neoformans undergoes a typical morphological change, which in-
volves a significant increase in both cell and capsule size, resulting in the appearance of cells
of an enlarged size denominated as Titan cells [6-8] that can reach a size of 80-100 microns
in vivo [6,7,9,10]. Recently, several groups described the in vitro conditions that mimic
this transition [11-13]. These have unraveled some of the factors that induce this process,
such as serum, CO;, and hypoxia [11-15]. However, there are still important aspects about
the formation of these cells in vivo that remain uncharacterized. In particular, little is
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known about the function that Titan cells have during infection. Titan cells contribute to the
persistence of the yeasts in the lungs since they cannot be phagocytosed or eliminated. In
addition, they inhibit phagocytosis of other cells of regular size and induce a nonprotective
Th2-type immune response [16].

An intriguing aspect of Titan cell formation is its relationship with host factors. Early
characterization of this phenomenon indicated that the proportion of Titan cells in mouse
lungs was particularly high in asymptomatic infection models, which could indicate that
these cells participate in the latency phase [7]. In addition, there is evidence that the
host immune response also plays an important role in determining the morphology of
cryptococcal cells in the lungs. In ragl~/~ knockout mice (which do not produce IgM
antibodies), C. neoformans cells have a larger diameter compared to the yeast cells found in
wild-type mice [17].

In a previous work, we showed that the proportion of Titan cells also depends on
the mouse strain used in the infection model. This proportion is particularly high in
C57BL/6] compared to CD1 mice. This difference correlates with the different immuno-
logical responses elicited by these two types of animals; thus, the formation of Titan cells
is associated with a decreased production of IFN-y, TNF-«, and IL-17 and an increase in
Th2-type responses [16]. In this sense, it has also been shown that Th1 responses depending
on TNF-« and Th17 confer protection during cryptococcosis [18,19].

The Thl7-type response is promoted by the cytokines IL-17, IL-6, and IL-23. As
with Thl-type cytokines, IL-17, IL-22, and IL-23 cytokines have been associated with
protection against infection [18,19]. In addition, there are studies that show that protection
against C. neoformans is associated with an increase in the production of antimicrobial
peptides (AMPs) [20]. IL-17A and IL-22 induce the production of AMPs and acute-phase
proteins such as [3-defensins, S100A8, S100A9, lipocalin-2, and serum amyloid protein A3
(SAA3) in bronchial epithelial cells [21-25]. SI00A8 and S100A9 form a heterodimer called
calprotectin [26-28] that is involved in neutrophil recruitment [21,23,24] and has fungistatic
activity against C. neoformans [29-31].

The proinflammatory cytokine TNF-« has been associated with the elimination of the
microorganism and greater protection [19,32]. In contrast, a type of Th2 response has been
associated with a lack of protection against this infection [33].

In this work, we investigated the role of IL-17 in Titan cell formation. Paradoxically,
we found that in II17a~/~ in KO mice, there was a lower proportion of Titan cells compared
to WT mice, which also correlated with an increase in the production of TNF-« in KO
mice. Our results support new functions of Th1 and Th17 responses in the control and
development of this infection.

2. Materials and Methods
2.1. Yeast Strain and Growth Conditions

Cryptococcus neoformans H99 strain was used throughout the work [34]. Yeasts were
incubated in Sabouraud liquid medium (Oxoid Ltd., Basingstoke, Hampshire, UK) at 30 °C
with shaking (150 r.p.m.). For solid media, we added 1.5% agar to the media.

2.2. Mouse Strains

Six- to eight-week-old male mice from C57BL/6] (Charles River Laboratories) and
knockout IL-17A (Il17a~/~) on C57BL/6] genetic background (generated at the Center
for Experimental Medicine and Systems Biology, University of Tokyo, Minato-Ku, Tokyo,
Japan) were used. The animals were kept in ventilated racks at 22-24 °C with proper
environmental enrichment (cupboard houses and hollow cylinders). All animal exper-
iments were performed in agreement with the EU Directive 2010/63 and the National
Law 116/92. The protocol was approved by the Perugia University Ethics Committee
(Permit Number: 223/2016-PR). All animals were housed in the animal facility of the Uni-
versity of Perugia (Authorization Number: 34/2003A). In some experiments, animals were
housed at the Instituto de Salud Carlos III animal facility. In that case, procedures were
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approved by the Bioethical Committee and Animal Welfare of the Instituto de Salud Carlos
III (CBA2014_PAb51) and of the Comunidad de Madrid (PROEX 330/14) and followed the
current Spanish legislation (Real Decreto 53/2013).

2.3. Infections

Cells grown in liquid Sabouraud as described above overnight were washed with
PBS and suspended at 3.3 x 107 cells/mL in the same buffer. Thirty microliters of this
suspension (10° cells) was introduced intranasally in each mouse that was anesthetized
with a subcutaneous injection of a mixture of tiletamine/zolazepam-xylazine (50-5 mg/kg).
Animal health was monitored by evaluating body weight loss, evasion instinct, ruffled
hair, and hunched body. Based on these parameters, a score from 1 to 6 was given to each
animal. Mice were sacrificed after 6 and 9 days of infection unless they reached a clinical
score of >6 or suffered a body weight loss above 25%. In this case, the mice were sacrificed
for humanitarian reasons. Animals were sacrificed by placing them in a chamber that
contained a high CO,-enriched atmosphere. The experiments were performed 3 times on
different days.

2.4. Administration of TNF-u

TNF-« (GenScript, 1 mg) (200 pg/Kg) or PBS (same volume) was injected intraperi-
toneally 1 h prior to the cryptococcal infection. As described above, mice were then
anesthetized and infected intranasally (i.n.) with 10° cells per mouse. Mice were sacrificed
following the above-described criteria 48 h after infection.

2.5. Determination of CFUs and Fungal Morphology

Lungs and brains were excised and placed within cell strainers (100 um size pore, BD
Falcon, Louisville, CO, USA) with 10 mL of sterile PBS with collagenase A (0.5mg/mL,
Roche, Switzerland). The organs were homogenized using the plunger of a 5mL syringe.
After this, the samples were diluted in PBS (1/10, 1/100, and 1/1000), and 100 pL was
plated on Sabouraud plates. The plates were incubated at 30 °C for 2 days, and we then
counted the number of colonies in each plate. In this way, we calculated the total number
of living yeasts in each organ. The size of the yeast cells was obtained by mixing 4 uL of the
organ extracts with India Ink (Remel Bactidrop, Thermo Scientific, Waltham, MA, USA) on
glass slides. The samples were observed using a Zeiss Axio Observer Z1 equipped with
Apotome and a digital camera Axiocam MRm (Zeiss, Oberkochen, Germany). In each
cell, we measured the total cell diameter (which included the capsule) and the cell size
(cell wall) using Adobe Photoshop 7.0 (San Jose, CA, USA). Capsule size was calculated
as the difference between these two parameters. To avoid any bias, different fields of
the slide were imaged by two different people, and the images obtained were measured
independently. The size of 50-200 cells from each mouse was measured.

2.6. Macroscopic Analysis of Brain and Lungs

The weight of the lungs, brain, and spleen from sacrificed mice was obtained, and we
calculated the relative weight of each organ with respect to the total weight of the mouse.

2.7. Histology

To analyze the microscopic structure of the lungs, a small portion was taken and
fixed in formalin (10%). The samples were then dehydrated and embedded in paraffin
following the standard protocols of the Histology Service of the University of Perugia.
Sections of 3.5 um were obtained from each sample, placed on slides, and stained with
hematoxylin/eosin. Finally, the samples were observed with a Zeiss Axio Observer Z1
equipped with Apotome and a digital camera (Zeiss, Oberkochen, Germany).
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2.8. Identification of Different Types of Immune Cells by Flow Cytometry

To identify different types of immune cells, lungs were homogenized in 2 mL of PBS
using 100 pum filters (BD Falcon, Louisville, CO, USA). They were then centrifuged at
3000 g in an Allegra ™ 6R centrifuge (Beckman Coulter, Brea, CA, USA). The pellets were
suspended in 1 mL of PBS, and suspensions were made at 10° cells/mL in flow cytometer
tubes. Cells were washed and fixed in 1.5% p-formaldehyde for 10 min. The samples were
then centrifuged and suspended in PBS. For cell labeling, the following mouse antibodies
were used: anti-CD3e-PE (0.5 ug) to label T-lymphocytes, anti-Ly-6G-FITC (GR-1, clone 1A8-
Ly6g, 0.5 pg) for polymorphonuclear (PMN) cells (Thermo Fisher Scientific, Waltham, MA,
USA), and anti-CD14-PE (1 pg) for monocytes and macrophages (BD, Biosciences, San Jose,
CA, USA). Staining was performed for 10 cells/mL by using each antibody individually in
single tubes for each animal in triplicate. Autofluorescence was checked by using unlabeled
cells, whereby binding specificity was determined by measuring isotype control samples
using anti-mouse IgG-PE and anti-mouse IgG-FITC (Sigma-Aldrich, Saint Louis, MO, USA).
Labeling was performed for 20 min at room temperature and in the dark. Samples were
washed using FB buffer (PBS + FBS) before measuring them on a BD FACSCalibur flow
cytometer using CellQuest software version 3.3. The same software was also used for data
analysis. Briefly, live cells were identified by excluding the debris on a 2D scatter plot (FSC-
H vs. SSC-H). Aggregates were excluded by analyzing the scatter pulse signals (FSC-A
vs. FSC-H and SSC-A vs. SSC-H). Afterwards single cells were analyzed on histograms
for the individual fluorescence intensity of PE or FITC, representing CD3e+, Grl+, and
CD14+ cells. Quantification of T-lymphocytes, PMN, and monocytes/macrophages was
performed by analyzing the percentage, evaluating the absolute cell count from total lung
cells, and normalizing the cell counts per lung.

2.9. Measurement of Cytokine Concentration in Lungs and Brains

The organs were homogenized in 2mL of PBS, and the homogenate was centrifuged
at 3000 g in an Allegra™ 6R centrifuge (Beckman Coulter, Brea, CA, USA). For response
type Thl, the cytokines TNF-«, IFN-y, IL-13, IL-12, and IL-6 were measured; for type
Th2, IL-4, and IL-10 were measured; and for type Th17, IL-17, IL-21, IL-22, and IL-23 were
measured. For this, ELISA Ready-SET-Go kits (eBioscience Inc., San Diego, CA, USA) were
used. Cytokines were expressed as pg/mL of lung extract.

2.10. Statistics

To determine the statistical test to apply, we first evaluated the normality of the samples
with the Kolmogorov—-Smirnov test (non-normal distribution when p < 0.1). For normally
distributed samples, we applied one- or two-way ANOVA and Student ¢-tests. When a
nonparametric distribution was obtained, we used the Kruskal-Wallis and Mann-Whitney
tests. p values were obtained using GraphPad Prism 5 (GraphPad Software. Inc, San Diego,
CA, USA). For survival analysis, we applied the log-rank test, and significant differences
were considered when p < 0.05.

3. Results
3.1. C. neoformans Formed a Lower Proportion of Titan Cells in 1117a~/~ Mouse Model

First, we focused on the role played by the cytokine IL-17 in the formation of this
type of cell, and to do this, we used il1 7a~/~ KO mice, which are deficient in this cytokine.
Infections were carried out in wild-type mice (WT) and KO 1/1 7a~/~ mice with the H99
strain. Groups of five animals per condition were sacrificed after 6 and 9 days of infection.
After this time, the morphology of the yeasts in the lungs was analyzed (Figure 1, top
panels). As shown in Figure 1, Titan cells were observed in both mouse strains at 9 days of
infection. However, in the wild-type mouse strain, the mean cell size of C. neoformans was
around 50 microns, while in I/17a~/~ mice, there was a lower proportion of these cells, and
their mean size was between 35 and 40 microns (p < 0.0001). When analyzing the total cell
size, we found that the proportion of Titan cells (>30 pm) was around 95% in wild-type
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mice, while in II17a~/~ mice, it was 83% (Figure 2A). This correlated with differences in cell
body size, and we found that in wild-type mice, the percentage was around 60% compared
to 35% in IL-17-deficient mice (Figure 2B).
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Figure 1. Morphology of C. neoformans in C57BL/6] and Il17a~/~ mice (top panels). Cells of
C. neoformans H99 (10° cells/mouse) were inoculated male C57BL/6] and 11174/~ mice as indi-
cated in M&M. After 9 days of infection, lungs were isolated and homogenized. Size of yeasts was
visualized after suspending extracts in India ink. (A) Distribution of total cell size, (B) cell body
size, and (C) capsule size of C. neoformans. Red lines represent mean and standard error. Green
lines indicate extent to which Titan cells were considered. Box and whisker plot of total cell size
distribution. Line inside box represents median, and top and bottom lines represent 75th and 25th
percentiles, respectively. Numbers above each distribution indicate percentage of Titan cells found
in each animal. (D) Total cell size and (E) cell body size obtained in 5 mice of each strain. Asterisks
indicate significant differences.
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Figure 2. Size distribution of C. neoformans in C57BL/6] and I117a~/~ mice. Frequency representation
of total cell size (A) and cell body size (B) of C. neoformans WT H99 cells isolated from C57BL/6] mice
(dotted line) and 1172/~ mice (black line) after 9 days of infection with a dose of 106 cells/mouse.

3.2. C. neoformans Caused Increased Inflammation in Brains of I117a~/~ Mice

When we calculated the organosomatic index, we observed that the lungs increased
significantly in size after infection in both mouse strains compared to the lungs of uninfected
animals, although we found no difference between WT and KO mice (Figure 3). With respect
to the brain, in both cases, there was also an increase in size in infected mice, although
it was more marked in KO mice. In the case of the spleen, and in contrast to the brain,
the wild strain C57BL/6] significantly increased the size of this organ in infected mice
compared to the I117a~/~ strain (Figure 3B).
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Figure 3. Effect of C. neoformans on target organ size in C57BL/6] and Il17a/~ animals. Weight of
lungs (A), brains (B), and spleens (C) relative to total weight of mouse in C57BL/6] and I 172~/ mice
after 9 days of infection with H99 strain of C. neoformans. Asterisks indicate significant differences.

3.3. Correlation of C. neoformans Morphology with Dissemination to Central Nervous System

Next, we studied whether there was a correlation between C. neoformans morphology
and CNS dissemination. For this, after 6 and 9 days of infection, the lungs and brains of
the mice were extracted, homogenized in PBS, and the number of CFUs was determined.
As shown in Figure 4A,B, no significant differences in fungal burden in the lungs were
observed between both types of animals. On the other hand, the number of CFUs in the
brain was significantly higher in Il17a~/~ mice compared to wild mice after 6 days of
infection (Figure 4C), while this difference was not observed at 9 days (Figure 4D). These
results suggest that in mice deficient for IL-17, the dissemination of C. neoformans to the
CNS occurs earlier than in wild-type C57BL/6] mice.
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Figure 4. Fungal burden and spread of C. neoformans in C57BL/6] and 1I1 7a~/~ mice. C7BL/ 6] mice
(black bars) and Il17a~/~ (white bars) infected as described in M&M were sacrificed after 6 (A,C)
and 9 (B,D) days of infection, and number of CFUs was quantified in lungs (A,B) and brains (C,D).
Asterisk indicates statistically significant differences.

3.4. Analysis of Cytokine Production during Infection

As shown in Figure 5, differences in the concentration of cytokines were observed in
the lungs of both mouse strains. Regarding Thl-type cytokines, although not statistically
significant, we found that there was a trend to find higher concentrations of TNF-« in
1117a~/~ mice compared to wild-type animals (Figure 5A). IFN-y increased in both WT and
KO mice after infection, although this increase was stronger in WT mice. No differences
were obtained when we measured other Th1 cytokines. IL-4 and IL-10 (Th2-type cytokines)
increased in response to C. neoformans in the same way in both mouse strains, confirming
that C57BL/6] mice have a Th2-type polarized response. Finally, in Th17 response type
cytokines, there was a significant increase in IL-21 during infection in C57BL/6] mice that
was not observed in 1172/~ mice. IL-22 was similarly increased in wild animals and
[117a~/~. Finally, IL-17 was increased in infected wild-type mice, and as expected, it was
not detected in 11172/~ mice.
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Figure 5. Cytokine concentration in lungs of C57BL/6] and 11 7a~/~ mice. C57BL/6) and 11172/~
mice were infected with 10° yeast strain H99 per mouse (black bars) or treated with PBS (white
bars). Concentration of TNF-« (A), IEN-y (B), IL-6 (C), IL-4 (D), IL-10 (E), IL-12 (F), IL-22 (G), and
IL-23 (H) was determined from lung extracts after 9 days of infection, as indicated in M&M. Figure
represents mean and standard deviation of five different mice. Asterisks indicate significant difference
between control and infected mice.

We also measured the concentration of these cytokines in the brain after 9 days of
infection. As shown in Figure 6, the production of all cytokines tested increased in the
brains of II174~/~ mice. The concentration of the cytokines TNF-o and IFN-y (Th1) was
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higher in the infected animals (p < 0.05) compared to the controls (without infection), and
this increase was much more marked in the II172~/~ mice than in wild C57BL/6] mice
(infected). IL-10 (Th2) concentration was also higher in the brains of infected 117/~ mice
compared to controls (p < 0.05). Regarding the Th17 cytokines, all increased in the 11172/~
mice than in the wild-type mice, but only IL-21 increased significantly compared to the
control (p < 0.05). The cytokines IL-1§3, IL-6, and IL-4 did not accumulate in the brains of
either of the two mouse strains (data not shown).
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Figure 6. Cytokine concentration in brains of C57BL /6] and II17a/~ mice. Mice were infected as
indicated in Figure 7, and concentration of TNF-« (A), IFN-y (B), IL-6 (C), IL-10 (D), IL-21 (E), IL-22
(F), and IL-23 (G) was determined from brain extracts after 9 days of infection. Figure represents
mean and standard deviation of five different mice. Asterisks indicate significant difference between
control and infected mice.
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Figure 7. Recruitment of immune cells in lungs of C57BL /6] and I/17a/~ mice. Animals were infected
as described in M&M, and after 9 days, lungs (A—C) were removed. Organs were homogenized
as described in M&M, and total number of lymphocytes (A), macrophages (B), and PMNs (C) was
quantified. Asterisks indicate significant differences.

3.5. Cell Recruitment in Lungs

To quantify cell recruitment in the lungs, we measured the number of lymphocytes,
macrophages, and polymorphonuclear cells (PMNs) by flow cytometry (see Materials and
Methods (Section 2)) in mice from both mouse strains after 9 days of infection. As shown
in Figure 7, in infected C57BL/6] mice, the proportion of lymphocytes, macrophages, and
PMNs increased after infection, which was not observed in infected 11172/~ mice.

3.6. Exogenous Administration of TNF-a Reduced Proportion of Titan Cells in Lungs

The decrease in the proportion of Titan cells in infected mice correlated with an
increase in the proinflammatory cytokine TNF-a. Although the increase in the lungs was
not statistically significant, the trend observed was in agreement with previous findings of
our group, where we observed that in mice that developed a Thl-polarized response, there
is also a significantly lower proportion of Titan cells in the lungs [16]. To confirm whether
TNEF-o had a direct inhibitory role in cryptococcal Titan cell formation, we administered
this cytokine to C57BL/6] mice and examined its effect on cryptococcal morphology in the
lungs. We observed that the administration of this cytokine resulted in a clear reduction
in the proportion of Titan cells in the lungs and in the diameter of fungal cells (p < 0.0001)
(Figure 8).
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Figure 8. Size of C. neoformans in lungs of mice after administration of TNF-«. (A) Distribution
of total cell size, (B) cell body size, and (C) capsule size of C. neoformans H99 cells isolated from
lungs of C57BL/6] after 48 h of infection with a dose of 106 cells/mouse. Groups of 4 mice were
administered TNF-o 200 ng/Kg or PBS (same volume) intraperitoneally 1 h prior to cryptococcal
infection. Experiment was repeated twice with similar results.

4. Discussion

Cryptococcus neoformans is characterized as yeast that changes in size during infection.
This increase can occur by enlarging the capsule or both the capsule and cell body size. As a
result, C. neoformans can form Titan cells during in vivo. These changes make the population
of yeast found in the lungs during infection very heterogeneous, which contributes to
evading the immune response. To date, little is known about the factors and molecular
mechanisms responsible for the morphogenesis of C. neoformans in vivo. In general, Titan
cell formation is a complex process and requires not only the activation of signaling
pathways of the yeast but also specific inducing factors from the host [7,10,35-37].

In a previous work of our group, we investigated how the host environment influences
the formation of Titan cells by comparing cryptococcal morphology in different mouse
strains, CD1 and C57BL/6. We described that the proportion of Titan cells was much
higher in C57BL/6] than in CD1, and this difference correlated with a different immune
response polarization, so the lower percentage of Titan cells in CD1 correlated with the
induction of Th1 responses. We hypothesized that under a nonaggressive environment
for yeasts in the lungs (Th2), the yeasts significantly increase in size and form more Titan
cells [16]. Furthermore, a possible relationship between the cytokine IL-17 with prevention
in the dissemination of C. neoformans to the CNS has already been suggested by previous
work [18]. Despite the experimental differences between our work and this article (mouse
strains, inoculum, infection times, use of KO mice vs. depletion of IL-17 with Abs, etc.), our
results are in agreement with those previously published [18].

In this work, we carried out several approaches to delve into the factors of the immune
system that regulate the formation of Titan cells, which were based on the modulation of
the immune system and the use of knockout mice. First, we investigated the role of IL-17 in
the morphogenesis of C. neoformans using mice that do not produce this cytokine [38]. IL-17
primarily stimulates macrophages and endothelial cells to produce factors that contribute
to local inflammation and has been described as a key mediator during host defense against
fungal infections [39-43]. When comparing the morphology of the yeasts recovered from
the lungs of C57BL /6] and Il17a~/~ mice, we observed that the average cell size of the yeasts
was lower in the mice that do not produce IL-17. These results were initially unexpected
since I117a~/~ mice are deficient in inflammatory response but confirmed that the absence
of IL-17 has an effect on the morphology of C. neoformans.

We argued that the effect of IL-17 on cryptococcal morphology was related to a
different immune response, so we next investigated if the absence of IL-17 had any effect
on immune polarization. We found that cryptococcal disease induced inflammation in
the lungs of both mouse strains, which was more noticeable in the brains of I/17a~/~ mice.
The lower proportion of Titan cells in the lungs of Il17a~/~ mice correlated with higher
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dissemination to the brain [18]. Previous studies have shown that IL-17A is crucial in
preventing the dissemination of C. albicans [44]. Other studies have also linked IL-23 in
defense against chronic infection by C. neoformans [45]. IL-23 has been shown to enhance
IL-17 production [46].

Furthermore, mice lacking IL-23 or IL-17 show a decreased cellular immune re-
sponse [38,47]. Overall, our results support the hypothesis that the cytokine IL-17 is
important in preventing yeasts from escaping from the lungs and spreading to the brain.

To understand the mechanism by which the cytokine IL-17 regulates yeast growth
and dissemination in the mice, we also measured the profile of accumulated cytokines
in the brain and lungs [42]. This approach confirmed that C57BL/6] mice have a Th2-
type response. Interestingly, we found a modest increase in the concentration of TNF-«
in I117a~/~ mice that was not observed in wild-type mice. Since C57BL/6] mice have a
Th2-polarized response in response to C. neoformans and reduced production of TNF-a
compared to other mouse models [16], we believe that this increase in 1/1 7a~/~ mice might
reflect a compensatory mechanism to overcome the absence of IL-17, which is consistent
with the fact that the yeasts in the lungs of these mice are smaller in size. In our previous
work, an increase in the proportion of Titan cells in C57BL /6] mice compared to CD1 was
also associated with a lower concentration of IFN-y and TNF«. To test this hypothesis, we
injected recombinant TNF-« in C57BL/6] mice and found that this significantly reduced
the cryptococcal size in the lungs, confirming that TNF-« helps control and diminish the
number of Titan cells. These data support our previous hypothesis that enhancement of Th1
responses creates a more aggressive environment for the yeast, making the process of Titan
cell induction difficult. TNF-« is involved in the expression of some antimicrobial factors,
such as reactive nitrogen species through iNOS expression activation [48]. TNF-« also
induces the expression of NADPH oxidases and consequently the production of reactive
oxygen species [49]. For this reason, we hypothesized that among others conditions, that
increase the concentration of TNF-« result in a more stressful environment for the yeasts
due to higher amount of ROS and RNS. Further experiments are required to investigate in
detail the factors that regulate the induction of Titan cells in vivo.

This work highlighted several aspects that regulate the formation of Titan cells
in mouse models. This morphological transition plays a key role in the adaptation of
C. neoformans to the host. Our work contributes to unraveling how some key elements of
the immune response, such as IL-17 and TNF-«, regulate this transition in vivo. This work
can also help to understand how different patients with a different immunological state can
have different susceptibility to develop cryptococcosis by having a different predisposition
to accumulate more Titan cells in vivo.
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