The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequences and Alignments
2.2. ANI and Sequence Identity Matrix
2.3. Phylogenetic Comparison
3. Results
3.1. Correlation of 16S rRNA with ANI within the Genus Anaplasma
3.2. 16S rRNA Sequence Similarity across Anaplasma Sequences
3.3. 16S rRNA Variable Region Sequence Analysis across Anaplasma Sequences
3.4. 16S rRNA Single-Nucleotide Polymorphisms across Closely Related Anaplasma Species
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dumler, J.S.; Barbet, A.F.; Bekker, C.P.J.; Dasch, G.A.; Palmer, G.H.; Ray, S.; Rikihisa, Y.; Rurangirwa, F.R. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 2001, 51, 2145–2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB: List No. 57. Int. J. Syst. Bacteriol. 1996, 46, 625–626. [CrossRef] [PubMed] [Green Version]
- Guo, W.-P.; Huang, B.; Zhao, Q.; Xu, G.; Liu, B.; Wang, Y.-H.; Zhou, E.-M. Human-pathogenic Anaplasma spp., and Rickettsia spp. in animals in Xi’an, China. PLOS Negl. Trop. Dis. 2018, 12, e0006916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Liu, Z.; Niu, Q.; Mukhtar, M.U.; Guan, G.; Liu, G.; Luo, J.; Yin, H. A novel genotype of “Anaplasma capra” in wildlife and its phylogenetic relationship with the human genotypes. Emerg. Microbes Infect. 2018, 7, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Wang, K.; Zhao, S.; Yan, Y.; Wang, H.; Jing, J.; Jian, F.; Wang, R.; Zhang, L.; Ning, C. Detection and Phylogenetic Characterization of Anaplasma capra: An Emerging Pathogen in Sheep and Goats in China. Front. Cell. Infect. Microbiol. 2018, 8, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, C.T.; Tindall, B.J.; Garrity, G.M. International Code of Nomenclature of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2019, 69, S1–S111. [Google Scholar] [CrossRef]
- Chávez, A.S.O.; Herron, M.J.; Nelson, C.M.; Felsheim, R.F.; Oliver, J.D.; Burkhardt, N.Y.; Kurtti, T.J.; Munderloh, U.G. Mutational analysis of gene function in the Anaplasmataceae: Challenges and perspectives. Ticks Tick Borne Dis. 2019, 10, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Dumler, J.S.; Choi, K.-S.; Garcia-Garcia, J.C.; Barat, N.S.; Scorpio, D.G.; Garyu, J.W.; Grab, D.J.; Bakken, J.S. Human Granulocytic Anaplasmosis and Anaplasma phagocytophilum. Emerg. Infect. Dis. 2005, 11, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Aubry, P.; Geale, D.W. A Review of Bovine Anaplasmosis. Transbound. Emerg. Dis. 2010, 58, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Wayne, L.G.; Brenner, D.J.; Colwell, R.R.; Grimont, P.A.D.; Kandler, O.; Krichevsky, M.I.; Moore, L.H.; Moore, W.E.C.; Murray, R.G.E.; Stackebrandt, E.; et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Evol. Microbiol. 1987, 37, 463–464. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Oh, H.-S.; Park, S.-C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Khumalo, Z.T.H.; Catanese, H.N.; Liesching, N.; Hove, P.; Collins, N.; Chaisi, M.E.; Gebremedhin, A.H.; Oosthuizen, M.; Brayton, K.A. Characterization of Anaplasma marginale subsp. centrale Strains by Use of msp1aS Genotyping Reveals a Wildlife Reservoir. J. Clin. Microbiol. 2016, 54, 2503–2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.H.; Ha, S.M.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017, 10, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Dereeper, A.; Audic, S.; Claverie, J.-M.; Blanc, G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 2010, 10, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.-F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Gascuel, O. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anisimova, M.; Gascuel, O. Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative. Syst. Biol. 2006, 55, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Chevenet, F.; Brun, C.; Bañuls, A.-L.; Jacq, B.; Christen, R. TreeDyn: Towards dynamic graphics and annotations for analyses of trees. BMC Bioinform. 2006, 7, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahmani, M.; Davoust, B.; Tahir, D.; Raoult, D.; Fenollar, F.; Mediannikov, O. Molecular investigation and phylogeny of Anaplasmataceae species infecting domestic animals and ticks in Corsica, France. Parasites Vectors 2017, 10, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehounoud, C.B.; Yao, K.P.; Dahmani, M.; Achi, Y.L.; Amanzougaghene, N.; N’Douba, A.K.; N’Guessan, J.D.; Raoult, D.; Fenollar, F.; Mediannikov, O. Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d’Ivoire. PLOS Negl. Trop. Dis. 2016, 10, e0004367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahmani, M.; Davoust, B.; Sambou, M.; Bassene, H.; Scandola, P.; Ameur, T.; Raoult, D.; Fenollar, F.; Mediannikov, O. Molecular investigation and phylogeny of species of the Anaplasmataceae infecting animals and ticks in Senegal. Parasites Vectors 2019, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.-P.; Tian, J.-H.; Lin, X.-D.; Ni, X.-B.; Chen, X.-P.; Liao, Y.; Yang, S.-Y.; Dumler, J.S.; Holmes, E.C.; Zhang, Y.-Z. Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Sci. Rep. 2016, 6, 38770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, S.D.J.; Matos, C.A.; Freschi, C.R.; Ramos, I.A.D.S.; Machado, R.Z.; André, M.R. Diversity of Anaplasma species in cattle in Mozambique. Ticks Tick Borne Dis. 2019, 10, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Bastos, A.D.; Mohammed, O.B.; Bennett, N.; Petevinos, C.; Alagaili, A. Molecular detection of novel Anaplasmataceae closely related to Anaplasma platys and Ehrlichia canis in the dromedary camel (Camelus dromedarius). Veter. Microbiol. 2015, 179, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifiyazdi, H.; Jafari, S.; Ghane, M.; Nazifi, S.; Sanati, A. Molecular investigation of Anaplasma and Ehrlichia natural infections in the dromedary camel (Camelus dromedarius) in Iran. Comp. Clin. Pathol. 2017, 26, 99–103. [Google Scholar] [CrossRef]
- Vanstreels, R.E.T.; Yabsley, M.J.; Parsons, N.J.; Swanepoel, L.; Pistorius, P.A. A novel candidate species of Anaplasma that infects avian erythrocytes. Parasites Vectors 2018, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Koh, F.X.; Kho, K.L.; Panchadcharam, C.; Sitam, F.T.; Tay, S.T. Molecular detection of Anaplasma spp. in pangolins (Manis javanica) and wild boars (Sus scrofa) in Peninsular Malaysia. Veter. Parasitol. 2016, 227, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Cornet, J.-P.; Sanogo, Y.O.; Miller, R.S.; Van Thien, H.; Gonzalez, J.-P.; Raoult, D.; Telford, S.R.; Wongsrichanalai, C. Detection of Ehrlichia spp., Anaplasma spp., Rickettsia spp., and Other Eubacteria in Ticks from the Thai-Myanmar Border and Vietnam. J. Clin. Microbiol. 2003, 41, 1600–1608. [Google Scholar] [CrossRef] [Green Version]
- Crosby, F.L.; Wellehan, J.F.; Pertierra, L.; Wendland, L.D.; Lundgren, A.M.; Barbet, A.F.; Brown, M.B. Molecular characterization of “Candidatus Anaplasma testudinis”: An emerging pathogen in the threatened Florida gopher tortoise (Gopherus polyphemus). Ticks Tick Borne Dis. 2021, 12, 101672. [Google Scholar] [CrossRef] [PubMed]
- Calchi, A.C.; Vultão, J.G.; Alves, M.H.; Yogui, D.R.; Desbiez, A.L.J.; De Santi, M.; de Souza Santana, M.; Da Silva, T.M.V.; Werther, K.; Teixeira, M.M.G.; et al. Ehrlichia spp. and Anaplasma spp. in Xenarthra mammals from Brazil, with evidence of novel ‘Candidatus Anaplasma spp.’. Sci. Rep. 2020, 10, 12615. [Google Scholar] [CrossRef] [PubMed]
- Uilenberg, G.; Van Vorstenbosch, C.J.; Perié, N.M. Blood parasites of sheep in the Netherlands. I. Anaplasma mesaeterum sp.n. (Rickettsiales, Anaplasmataceae). Tijdschr. Voor Diergeneeskd. 1979, 104, 14–22. [Google Scholar]
- Nakamura, Y.; Kawazu, S.-I.; Minami, T. Antigen profiles of Anaplasma ovis and A. mesaeterum and cross infection trials with them and A. marginale. Veter. Microbiol. 1993, 37, 19–30. [Google Scholar] [CrossRef]
- Sun, X.-F.; Zhao, L.; Wen, H.-L.; Luo, L.-M.; Yu, X.-J. Anaplasma species in China. Lancet Infect. Dis. 2015, 15, 1263–1264. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zheng, Y.-C.; Ma, L.; Jia, N.; Jiang, B.-G.; Jiang, R.-R.; Huo, Q.-B.; Wang, Y.-W.; Liu, H.-B.; Chu, Y.-L.; et al. Human infection with a novel tick-borne Anaplasma species in China: A surveillance study. Lancet Infect. Dis. 2015, 15, 663–670. [Google Scholar] [CrossRef]
- Guo, W.-P.; Zhang, B.; Wang, Y.-H.; Xu, G.; Wang, X.; Ni, X.; Zhou, E.-M. Molecular identification and characterization of Anaplasma capra and Anaplasma platys-like in Rhipicephalus microplus in Ankang, Northwest China. BMC Infect. Dis. 2019, 19, 434. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, M.; Rikihisa, Y.; Lin, Q.; Isogai, E.; Tahara, K.; Itagaki, A.; Hiramitsu, Y.; Tajima, T. Novel Genetic Variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a Novel Ehrlichia sp. in Wild Deer and Ticks on Two Major Islands in Japan. Appl. Environ. Microbiol. 2006, 72, 1102–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawahara, M.; Tajima, T.; Torii, H.; Yabutani, M.; Ishii, J.; Harasawa, M.; Isogai, E.; Rikihisa, Y. High prevalence of an Ehrlichia sp. closely related to Ehrlichia chaffeensis and three Anaplasma spp. infection in deer from Nara Park, Japan. Genbank, 2008; submitted. [Google Scholar]
- Sato, M.; Nishizawa, I.; Fujihara, M.; Nishimura, T.; Matsubara, K.; Harasawa, R. Phylogenetic Analysis of the 16S rRNA Gene of Anaplasma Species Detected from Japanese Serows (Capricornis crispus). J. Veter. Med. Sci. 2009, 71, 1677–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuzawa, T.; Uchishima, Y.; Fukui, T.; Okamoto, Y.; Muto, M.; Koizumi, N.; Yamada, A. Detection of Anaplasma phagocytophilum from Wild Boars and Deer in Japan. Jpn. J. Infect. Dis. 2011, 64, 333–336. [Google Scholar] [PubMed]
- Inokuma, H.; Terada, Y.; Kamio, T.; Raoult, D.; Brouqui, P. Analysis of the 16S rRNA gene sequence of Anaplasma centrale and its phylogenetic relatedness to other ehrlichiae. Clin. Diagn. Lab. Immunol. 2001, 8, 241–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Nie, K.; Tang, C.; Wang, Z.; Zhou, R.; Hu, S.; Zhang, Z. Phylogenetic analysis of the genus Anaplasma in Southwestern China based on 16S rRNA sequence. Res. Veter. Sci. 2010, 89, 262–265. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, M.; Wang, Z.; Wang, J.; Peng, Y.; Li, Y.; Guan, G.; Luo, J.; Yin, H. Molecular Survey and Genetic Identification of Anaplasma Species in Goats from Central and Southern China. Appl. Environ. Microbiol. 2012, 78, 464–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Y.; Yin, H.; Rikihisa, Y.; Pan, W.; Yin, H. Molecular Detection of Tick-Borne Rickettsiales in Goats and Sheep from Southeastern China. Vector Borne Zoonotic Dis. 2016, 16, 309–316. [Google Scholar] [CrossRef]
- Zhuang, L.; Du, J.; Cui, X.-M.; Li, H.; Tang, F.; Zhang, P.-H.; Hu, J.-G.; Tong, Y.-G.; Feng, Z.-C.; Liu, W. Identification of tick-borne pathogen diversity by metagenomic analysis in Haemaphysalis longicornis from Xinyang, China. Infect. Dis. Poverty 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Lu, M.; Tian, J.-H.; Yu, B.; Guo, W.-P.; Holmes, E.C.; Zhang, Y.-Z. Extensive diversity of rickettsiales bacteria in ticks from Wuhan, China. Ticks Tick Borne Dis. 2017, 8, 574–580. [Google Scholar] [CrossRef]
- Amer, S.; Kim, S.; Yun, Y.; Na, K.-J. Novel variants of the newly emerged Anaplasma capra from Korean water deer (Hydropotes inermis argyropus) in South Korea. Parasites Vectors 2019, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Miranda, E.A.; Han, S.-W.; Cho, Y.-K.; Choi, K.-S.; Chae, J.-S. Co-Infection with Anaplasma Species and Novel Genetic Variants Detected in Cattle and Goats in the Republic of Korea. Pathogens 2021, 10, 28. [Google Scholar] [CrossRef]
- Staji, H.; Yousefi, M.; Ghaffari Khaligh, S.; Keyvanloo, M.; Ashrafi Tamai, I. No Title. Genbank, 2021; submitted. [Google Scholar]
- Inokuma, H.; Oyamada, M.; Kelly, P.J.; Jacobson, L.A.; Fournier, P.-E.; Itamoto, K.; Okuda, M.; Brouqui, P. Molecular detection of a new Anaplasma species closely related to Anaplasma phagocytophilumin canine blood from South Africa. J. Clin. Microbiol. 2005, 43, 2934–2937. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.C.; Krücken, J.; Ahmed, J.S.; Majumder, S.; Baumann, M.P.; Clausen, P.-H.; Nijhof, A.M. Molecular identification of tick-borne pathogens infecting cattle in Mymensingh district of Bangladesh reveals emerging species of Anaplasmaand and Babesia. Transbound. Emerg. Dis. 2017, 65, e231–e242. [Google Scholar] [CrossRef] [PubMed]
- Kolo, A.O.; Collins, N.E.; Brayton, K.A.; Chaisi, M.; Blumberg, L.; Frean, J.; Gall, C.A.; Wentzel, J.M.; Wills-Berriman, S.; De Boni, L.; et al. Anaplasma phagocytophilum and Other Anaplasma spp. in Various Hosts in the Mnisi Community, Mpumalanga Province, South Africa. Microorganisms 2020, 8, 1812. [Google Scholar] [CrossRef] [PubMed]
- Tate, C.M.; Howerth, E.W.; Mead, D.G.; Dugan, V.G.; Luttrell, M.P.; Sahora, A.I.; Munderloh, U.G.; Davidson, W.R.; Yabsley, M.J. Anaplasma odocoilei sp. nov. (family Anaplasmataceae) from white-tailed deer (Odocoileus virginianus). Ticks Tick Borne Dis. 2013, 4, 110–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allsopp, M.T.E.P.; Visser, E.S.; Du Plessis, J.L.; Vogel, S.W.; Allsopp, B.A. Different organisms associated with heartwater as shown by analysis of 16S ribosomal RNA gene sequences. Veter. Parasitol. 1997, 71, 283–300. [Google Scholar] [CrossRef]
- Debeila, E.; Oosthuizen, M.; Collins, N. Occurrence of Anaplasma and Ehrlichia species in African buffalo (Syncerus caffer) in Kruger National Park and Hluhluwe-iMfolozi Park in South Africa. Genbank, 2012; submitted. [Google Scholar]
- Fischer, T.; Myalkhaa, M.; Krücken, J.; Battsetseg, G.; Batsukh, Z.; Baumann, M.P.O.; Clausen, P.; Nijhof, A.M. Molecular detection of tick-borne pathogens in bovine blood and ticks from Khentii, Mongolia. Transbound. Emerg. Dis. 2020, 67, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Vlahakis, P.A.; Chitanga, S.; Simuunza, M.C.; Simulundu, E.; Qiu, Y.; Changula, K.; Chambaro, H.M.; Kajihara, M.; Nakao, R.; Takada, A.; et al. Molecular detection and characterization of zoonotic Anaplasma species in domestic dogs in Lusaka, Zambia. Ticks Tick Borne Dis. 2018, 9, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Laloy, E.; Petit, E.; Boulouis, H.-J.; Lacroux, C.; Corbiere, F.; Schelcher, F.; Bonnet, S.; Maillard, R. First detection of Anaplasma phagocytophilum-like DNA in the French izard Rupricapra pyrenaica. Clin. Microbiol. Infect. 2009, 15, 26–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hailemariam, Z.; Krücken, J.; Baumann, M.; Ahmed, J.S.; Clausen, P.-H.; Nijhof, A.M. Molecular detection of tick-borne pathogens in cattle from Southwestern Ethiopia. PLoS ONE 2017, 12, e0188248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.; Simuunza, M.; Kajihara, M.; Chambaro, H.; Harima, H.; Eto, Y.; Simulundu, E.; Squarre, D.; Torii, S.; Takada, A.; et al. Screening of tick-borne pathogens in argasid ticks in Zambia: Expansion of the geographic distribution of Rickettsia lusitaniae and Rickettsia hoogstraalii and detection of putative novel Anaplasma species. Ticks Tick Borne Dis. 2021, 12, 101720. [Google Scholar] [CrossRef]
- Novick, A.; Doolittle, W.F. ‘Species’ without species. Stud. Hist. Philos. Sci. Part A 2021, 87, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Coque, T.M.; Galán, J.C.; Martinez, J.L. The Origin of Niches and Species in the Bacterial World. Front. Microbiol. 2021, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, M.; Belkahia, H.; Selmi, R.; Messadi, L. Computational selection of minimum length groESL operon required for Anaplasma species attribution and strain diversity analysis. Mol. Cell. Probes 2019, 48, 101467. [Google Scholar] [CrossRef]
A. phagocytophilum | A. marginale | A. centrale | A. ovis | |||||
---|---|---|---|---|---|---|---|---|
Strain | HZ | HZ2 | Norway V2 | JM | St. Maries | Florida | Israel | Haibei |
HZ | 99.98–100% | 96.51–99.8% | 99.69–100% | 67.89–96.3% | 68.10–96.3% | 68.17–96.3% | 68.32–96.2% | |
HZ2 | 99.98–100% | 96.57–99.8% | 99.63–100% | 67.78–96.3% | 68.38–96.3% | 68.20–96.3% | 68.22–96.2% | |
Norway V2 | 96.51–99.8% | 96.57–99.8% | 96.43–99.8% | 68.16–96.3% | 68.44–96.3% | 68.26–96.3% | 68.13–96.2% | |
JM | 99.69–100% | 99.30–100% | 96.43–99.8% | 68.10–96.3% | 68.27–96.3% | 67.96–96.3% | 67.70–96.2% | |
St. Maries | 67.89–96.3% | 67.78–96.3% | 68.16–96.3% | 68.10–96.3% | 99.02–99.9% | 87.56–99.3% | 84.87–99.3% | |
Florida | 68.1–96.3% | 68.38–96.3% | 68.44–96.3% | 68.27–96.3% | 99.02–99.9% | 87.81–99.2% | 85.28–99.3% | |
Israel | 68.17–96.3% | 68.20–96.3% | 68.26–96.3% | 67.96–96.3% | 87.56–99.3% | 87.81–99.2% | 81.46–99.5% | |
Haibei | 68.32–96.2% | 68.22–96.2% | 68.13–96.2% | 67.70–96.2% | 84.87–99.3% | 85.28–99.3% | 81.46–99.5% |
Putative Species | Host | Accession # | Ref |
---|---|---|---|
“Candidatus A. corsicanum” | Sheep | None | [24] |
“Candidatus A. ivorensis” | Tick (Amblyomma variegatum) | None | [25] |
“Candidatus A. mediterraneum” | Sheep | None | [24] |
“Candidatus A. africae” | Sheep, Cattle, Goats | MN317253–MN317255 * | [26] |
“Candidatus A. boleense” | Mosquitos, Cattle | KU585969, KU586025 | [27] |
KU586041, KU586162 | [27] | ||
KU586164, KU586169 | [27] | ||
KU586177, KU586180 | [27] | ||
KU586182 | [27] | ||
MH169152 * | [28] | ||
“Candidatus A. camelii” | Camels | KX765882 | [29] |
KF843823–KF843825 | [30] | ||
“Candidatus A. rodmosense” | Mosquitos | KU586127 *, KU586148 * | [27] |
KU586144–KU586146 * | [27] | ||
KU586134–KU586136 * | [27] | ||
KU586141 * | [27] | ||
“Candidatus A. sphenisci” | Penguin (Spheniscus demersus) | MG748724 * | [31] |
“Candidatus A. pangolinii” | Pangolin (Manis javanica), | KU189193 | [32] |
Tick (Amblyoma javanense) | AF497580 * | [33] | |
“Candidatus A. testudines” | Tortise (Gopherus polyphemus) | MT62341-MT62345 | [34] |
“Cadidatus A. amazonensis” | Sloths | None | [35] |
“Candidatus A. brasiliensis” | Anteaters | None | [35] |
A. mesaeterum | Sheep | None | [36,37] |
A. capra | Human, | KR261618–KR261622 | [38] |
domestic and wild ruminants, | KP314237–KP314238 | [38] | |
Dogs | KM206273 | [39] | |
MG869526–MG869594 | [3] | ||
MG869482–MG869510 | [3] | ||
MH762071–MH762077 | [40] | ||
AB211164 | [41] | ||
AB454075 | [42] | ||
AB509223 | [43] | ||
AB588977 | [44] | ||
AF283007 | [45] | ||
EU709493 | [46] | ||
FJ389574, FJ389576 | [46] | ||
JN558820, JN558827 | [47] | ||
KP062964–KP062966 | [48] | ||
KP314241 | [38] | ||
KX817983 | [49] | ||
KX987331 | [50] | ||
LC432092–LC432126 | [51] | ||
MT798599–MT798604 | [52] | ||
MW721591 | [53] | ||
A. sp. SA dog | Dogs | AY570538–AY570540 | [54] |
A. sp. Mymensingh | Ticks (Rhipicephalus microplus; | MF576175.1 | [55] |
Haemaphysalis bispinosa) | MK815558-MK814449 | [56] | |
A. odocoilei | Deer (Odocoileus virginianus) | NR_118489, JX876644 | [57] |
A. sp. Omatjenne | Sheep, Cattle, Goats | U54806 | [58] |
KC189853 | [59] | ||
A. sp. Mongolia | Sheep | MK575506 | [60] |
A. sp. ZAM dog | Dogs | LC269823 | [61] |
A. sp. Izard agent | Izard (Rupricapra pyrenaica) | EU857675 * | [62] |
A. sp. Hadesa | Cattle | KY924884 | [63] |
A. sp. Saso | Cattle | KY924885 | [63] |
A. sp. Dedessa | Cattle | KY924886 | [63] |
A. sp. O. moubata | Tick (Ornithodoros moubata) | LC558313 | [64] |
A. sp. Ar. walkerae | Tick (Argas walkerae) | LC558314 | [64] |
A. sp. Shizhu | Goats | FJ389575 | [46] |
cent | marg | ovis | Mon | capra | bovis | phag | platys | Mym | Omat | cam | odoc | SA | ZAM | Saso | Hade | bole | Dede | pang | test | walk | moub | Shiz | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A. centrale | ID | 99.7 | 99.2 | 99.3 | 98.1 | 94.6 | 95.5 | 95.7 | 96.0 | 95.9 | 95.9 | 95.7 | 95.8 | 95.9 | 94.3 | 94.3 | 96.2 | 96.5 | 96.3 | 96.4 | 96.8 | 96.1 | 97.2 |
A. marginale | 99.7 | ID | 99.0 | 99.0 | 98.1 | 94.5 | 95.5 | 95.8 | 96.0 | 95.9 | 95.9 | 95.6 | 95.7 | 95.8 | 94.0 | 94.0 | 96.1 | 96.4 | 96.1 | 96.4 | 96.8 | 96.1 | 97.0 |
A. ovis | 99.2 | 99.0 | ID | 99.5 | 97.8 | 94.5 | 95.6 | 95.6 | 95.9 | 95.9 | 95.9 | 95.9 | 95.7 | 95.8 | 94.3 | 94.3 | 96.0 | 96.3 | 96.0 | 96.5 | 96.8 | 96.2 | 96.9 |
A. sp. Mongolia | 99.3 | 99.0 | 99.5 | ID | 97.9 | 94.6 | 95.6 | 95.7 | 96.0 | 95.9 | 95.9 | 96.0 | 96.0 | 96.1 | 94.4 | 94.4 | 96.2 | 96.5 | 96.3 | 96.7 | 96.8 | 96.4 | 97.0 |
A. capra | 98.1 | 98.1 | 97.8 | 97.9 | ID | 93.9 | 95.2 | 95.5 | 95.9 | 95.5 | 95.8 | 95.4 | 95.7 | 95.8 | 93.9 | 93.9 | 95.8 | 96.1 | 95.6 | 95.4 | 96.5 | 95.9 | 97.2 |
A. bovis | 94.6 | 94.5 | 94.5 | 94.6 | 93.9 | ID | 94.9 | 94.9 | 95.4 | 95.1 | 95.5 | 95.3 | 95.4 | 95.5 | 92.9 | 92.9 | 94.6 | 94.7 | 96.4 | 93.2 | 94.2 | 94.5 | 96.3 |
A. phagocytophilum | 95.5 | 95.5 | 95.6 | 95.6 | 95.2 | 94.9 | ID | 96.9 | 97.0 | 96.8 | 97.0 | 96.8 | 97.8 | 97.9 | 94.0 | 94.0 | 96.7 | 96.9 | 96.4 | 94.4 | 95.5 | 95.2 | 95.9 |
A. platys | 95.7 | 95.8 | 95.6 | 95.7 | 95.5 | 94.9 | 96.9 | ID | 99.0 | 98.9 | 99.0 | 98.2 | 97.2 | 97.2 | 93.9 | 93.9 | 96.6 | 96.8 | 96.4 | 94.5 | 95.6 | 95.2 | 95.9 |
A. sp. Mymensingh | 96.0 | 96.0 | 95.9 | 96.0 | 95.9 | 95.4 | 97.0 | 99.0 | ID | 99.5 | 99.9 | 98.9 | 97.9 | 98.0 | 94.1 | 94.1 | 97.1 | 97.2 | 97.0 | 94.7 | 96.0 | 95.7 | 96.3 |
A. sp. Omatjenne | 95.9 | 95.9 | 95.9 | 95.9 | 95.5 | 95.1 | 96.8 | 98.9 | 99.5 | ID | 99.5 | 98.8 | 97.5 | 97.6 | 94.0 | 94.0 | 96.9 | 97.1 | 96.7 | 94.7 | 95.9 | 95.4 | 96.0 |
Can A. camelii | 95.9 | 95.9 | 95.9 | 95.9 | 95.8 | 95.5 | 97.0 | 99.0 | 99.9 | 99.5 | ID | 98.8 | 97.8 | 97.9 | 94.0 | 94.0 | 97.0 | 97.2 | 96.9 | 94.8 | 95.9 | 95.8 | 96.3 |
A. odocoilei | 95.7 | 95.6 | 95.9 | 96.0 | 95.4 | 95.3 | 96.8 | 98.2 | 98.9 | 98.8 | 98.8 | ID | 97.5 | 97.6 | 94.1 | 94.1 | 96.8 | 97.0 | 96.8 | 94.9 | 95.9 | 95.7 | 96.1 |
A. sp. SA Dog | 95.8 | 95.7 | 95.7 | 96.0 | 95.7 | 95.4 | 97.8 | 97.2 | 97.9 | 97.5 | 97.8 | 97.5 | ID | 99.9 | 94.6 | 94.6 | 97.4 | 97.6 | 97.2 | 94.8 | 95.8 | 95.8 | 96.5 |
A. sp. ZAM dog | 95.9 | 95.8 | 95.8 | 96.1 | 95.8 | 95.5 | 97.9 | 97.2 | 98.0 | 97.6 | 97.9 | 97.6 | 99.9 | ID | 94.7 | 94.7 | 97.5 | 97.7 | 97.2 | 94.9 | 95.8 | 95.9 | 96.6 |
A. sp. Saso | 94.3 | 94.0 | 94.3 | 94.4 | 93.9 | 92.9 | 94.0 | 93.9 | 94.1 | 94.0 | 94.0 | 94.1 | 94.6 | 94.7 | ID | 100 | 94.4 | 94.5 | 94.8 | 93.6 | 94.0 | 93.7 | 94.3 |
A. sp. Hadesa | 94.3 | 94.0 | 94.3 | 94.4 | 93.9 | 92.9 | 94.0 | 93.9 | 94.1 | 94.0 | 94.0 | 94.1 | 94.6 | 94.7 | 100 | ID | 94.4 | 94.5 | 94.8 | 93.6 | 94.0 | 93.7 | 94.3 |
Can A. boleense | 96.2 | 96.1 | 96.0 | 96.2 | 95.8 | 94.6 | 96.7 | 96.6 | 97.1 | 96.9 | 97.0 | 96.8 | 97.4 | 97.5 | 94.4 | 94.4 | ID | 99.6 | 96.6 | 95.2 | 96.4 | 95.3 | 96.4 |
A. sp. Dedessa | 96.5 | 96.4 | 96.3 | 96.5 | 96.1 | 94.7 | 96.9 | 96.8 | 97.2 | 97.1 | 97.2 | 97.0 | 97.6 | 97.7 | 94.5 | 94.5 | 99.6 | ID | 96.7 | 95.4 | 96.5 | 95.4 | 96.7 |
Can A. pangolini | 96.3 | 96.1 | 96.0 | 96.3 | 95.6 | 96.4 | 96.4 | 96.4 | 97.0 | 96.7 | 96.9 | 96.8 | 97.2 | 97.2 | 94.8 | 94.8 | 96.6 | 96.7 | ID | 94.7 | 95.6 | 96.6 | 96.5 |
Can A. testudinis | 96.4 | 96.4 | 96.5 | 96.7 | 95.4 | 93.2 | 94.4 | 94.5 | 94.7 | 94.7 | 94.8 | 94.9 | 94.8 | 94.9 | 93.6 | 93.6 | 95.2 | 95.4 | 94.7 | ID | 96.2 | 95.3 | 94.9 |
A. sp. Ar. walkerae | 96.8 | 96.8 | 96.8 | 96.8 | 96.5 | 94.2 | 95.5 | 95.6 | 96.0 | 95.9 | 95.9 | 95.9 | 95.8 | 95.8 | 94.0 | 94.0 | 96.4 | 96.5 | 95.6 | 96.2 | ID | 95.9 | 96.4 |
A. sp. O. moubata | 96.1 | 96.1 | 96.2 | 96.4 | 95.9 | 94.5 | 95.2 | 95.2 | 95.7 | 95.4 | 95.8 | 95.7 | 95.8 | 95.9 | 93.7 | 93.7 | 95.3 | 95.4 | 96.6 | 95.3 | 95.9 | ID | 95.7 |
A. sp. Shizhu | 97.2 | 97.0 | 96.9 | 97.0 | 97.2 | 96.3 | 95.9 | 95.9 | 96.3 | 96.0 | 96.3 | 96.1 | 96.5 | 96.6 | 94.3 | 94.3 | 96.4 | 96.7 | 96.5 | 94.9 | 96.4 | 95.7 | ID |
Base Number * | ||||||
---|---|---|---|---|---|---|
144 | 156 | 220 | 265 | 274 | 1250 | |
A. centrale | A | A | T | T | G | T |
A. marginale | A | G | T | T | G | T |
A. ovis | G | R | Y | C | T | T |
Anaplasma sp. Mongolia | G | A | C | C | G | C |
Base Number * | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
213 | 224 | 262 | 289 | 693 | 696 | 878 | 879 | 885 | 886 | 890 | 1052 | 1309 | 1358 | |
A. platys | A | T | T | T | N | T | R | C | G | T | T | R | Y | C |
Anaplasma sp. Mymensingh | A | T | T | T | C | T | A | C | G | T | T | A | C | C |
Anaplasma sp. Omatjenne | A | C | T | T | C | T | R | C | G | T | T | G | C | T |
“Candidatus Anaplasma camelii” | A | T | T | T | C | T | A | C | G | T | T | A | T | C |
A. odocoilei | G | A | G | C | A | A | G | T | A | C | C | G | C | C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caudill, M.T.; Brayton, K.A. The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples. Microorganisms 2022, 10, 605. https://doi.org/10.3390/microorganisms10030605
Caudill MT, Brayton KA. The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples. Microorganisms. 2022; 10(3):605. https://doi.org/10.3390/microorganisms10030605
Chicago/Turabian StyleCaudill, Mitchell T., and Kelly A. Brayton. 2022. "The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples" Microorganisms 10, no. 3: 605. https://doi.org/10.3390/microorganisms10030605
APA StyleCaudill, M. T., & Brayton, K. A. (2022). The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples. Microorganisms, 10(3), 605. https://doi.org/10.3390/microorganisms10030605