Novel Salmonella Phage, vB_Sen_STGO-35-1, Characterization and Evaluation in Chicken Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Characterization of Phage vB_Sen-STGO-35-1
2.1.1. Propagation Conditions
2.1.2. One-Step Growth
2.1.3. Transduction Efficiencies
2.1.4. Microscopic Characterization of Phage vB_Sen-STGO-35-1
2.1.5. Genomic and Phylogenetic Analyses of Phage vB_Sen-STGO-35-1
2.1.6. Structural Proteome Analysis of Phage vB_Sen-STGO-35-1
2.2. Reductions of S. Enteritidis in Chicken Meat Using STGO-35-1 Phage
2.2.1. Ideal Multiplicity of Infections (MOIs) to Obtain Maximum Adsorption Rate
2.2.2. Assay in Chicken Meat
2.2.3. Genome Stability Testing
2.2.4. Data Availability
3. Results and Discussion
3.1. Phenotypic Characterization of STGO-35-1 Phage
3.2. Comparative Genomics of Phage STGO-35-1
3.3. Structural Proteome Analysis of Phage vB_Sen-STGO-35-1
3.4. Application of STGO-35-1 Phage for Control of S. Enteritidis
3.5. Genome Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority (EFSA). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, 5500. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention (CDC). National Enteric Disease Surveillance: Salmonella Annual Summary. 2019. Available online: https://www.cdc.gov/nationalsurveillance/salmonella-surveillance.html (accessed on 10 December 2020).
- Mezal, E.H.; Sabol, A.; Khan, M.A.; Ali, N.; Stefanova, R.; Khan, A.A. Isolation and molecular characterization of Salmonella enterica serovar Enteritidis from poultry house and clinical samples during 2010. Food Microbiol. 2014, 38, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [Green Version]
- Issenhuth-Jeanjean, S.; Roggentin, P.; Mikoleit, M.; Guibourdenche, M.; de Pinna, E.; Nair, S.; Weill, F.X. Supplement 2008–2010 (48) to the White–Kauffmann–Le minor scheme. Res. Microbiol. 2014, 165, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 4504–4521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herikstad, H.; Motarjemi, Y.; Tauxe, R. Salmonella surveillance: A global survey of public health serotyping. Epidemiol. Infec. 2002, 129, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Goodridge, L.D.; Bisha, B. Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage 2011, 1, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, G.G. Bacteriophage Control of Foodborne Bacteria. J. Food Prot. 2005, 68, 1102–1111. [Google Scholar] [CrossRef]
- Kazi, M.; Annapure, U.S. Bacteriophage biocontrol of foodborne pathogens. J. Food Sci. Technol. 2016, 53, 1355–1362. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.A.; Billington, C.; Carey-Smith, G.; Greening, G. Bacteriophages as biocontrol agents in food. J. Food Prot. 2005, 68, 426–437. [Google Scholar] [CrossRef]
- Callaway, T.R.; Edrington, T.S.; Brabban, A.; Kutter, B.; Karriker, L.; Stahl, C.; Nisbet, D.J. Evaluation of phage treatment as a strategy to reduce Salmonella populations in growing swine. Foodborne Pathog. Dis. 2011, 8, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duc, H.M.; Son, H.M.; Honjoh, K.I.; Miyamoto, T. Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT 2018, 91, 353–360. [Google Scholar] [CrossRef]
- Yuan, Y.; Peng, Q.; Zhang, S.; Liu, T.; Yang, S.; Yu, Q.; Wu, Y.; Gao, M. Phage Reduce Stability for Regaining Infectivity during Antagonistic Coevolution with Host Bacterium. Viruses 2019, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Rivera, H.; Hamilton-West, D.; Moreno-Switt, P. Two Phages of the Genera Felixounavirus Subjected to 12 Hour Challenge on Salmonella Infantis Showed. Distinct Genotypic and Phenotypic Changes. Viruses 2019, 11, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurczak-Kurek, A.; Gąsior, T.; Nejman-Faleńczyk, B.; Bloch, S.; Dydecka, A.; Topka, G.; Węgrzyn, A. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Sci. Rep. 2016, 6, 34338. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.L.; Song, Y.; Bryan, D.W.; Hudson, L.K.; Denes, T.G. Mutant and recombinant phages selected from in vitro coevolution conditions overcome phage-resistant Listeria monocytogenes. App. Environ. Microbiol. 2020, 86, e02138-20. [Google Scholar] [CrossRef]
- Song, Y.; Peters, T.L.; Bryan, D.W.; Hudson, L.K.; Denes, T.G. Homburgvirus LP-018 Has a Unique Ability to Infect Phage-Resistant Listeria monocytogenes. Viruses 2019, 11, 1166. [Google Scholar] [CrossRef] [Green Version]
- Batinovic, S.; Wassef, F.; Knowler, S.A.; Rice, D.; Stanton, C.R.; Rose, J.; Tucci, J.; Nittami, T.; Vinh, A.; Drummond, G.R.; et al. Bacteriophages in Natural and Artificial Environments. Pathogens 2019, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Breitbart, M.; Hewson, I.; Felts, B.; Mahaffy, J.M.; Nulton, J.; Salamon, P.; Rohwer, F. Metagenomic analyses of an uncultured viral community from human feces. J. Bacterial. 2003, 185, 6220–6223. [Google Scholar] [CrossRef] [Green Version]
- Adriaenssens, E.; Sullivan, M.; Knezevic, P.; Zyl, L.; Sarkar, B. Krupovic, Mart., Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 2020, 165, 1253–1260. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A roadmap for genome-based phage taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Linares, R.; Arnaud, C.; Degroux, S.; Schoehn, G.; Breyton, C. Structure, function and assembly of the long, flexible tail of siphophages. Curr. Opin. Virol. 2020, 45, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Hockenberry, A.J.; Wilke, C.O. BACPHLIP: Predicting bacteriophage lifestyle from conserved protein domains. PeerJ 2021, 9, e11396. [Google Scholar] [CrossRef] [PubMed]
- Garneau, J.R.; Depardieu, F.; Fortier, L.C.; Bikard, D.; Monot, M. PhageTerm: A tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci. Rep. 2017, 7, 8292. [Google Scholar] [CrossRef]
- Merrill, B.D.; Ward, A.T.; Grose, J.H.; Hope, S. Software-based analysis of bacteriophage genomes, physical ends, and packaging strategies. BMC Genom. 2016, 17, 679. [Google Scholar] [CrossRef] [Green Version]
- Moura de Sousa, J.A.; Pfeifer, E.; Touchon, M.; Rocha, E.P. Causes and consequences of bacteriophage diversification via genetic exchanges across lifestyles and bacterial taxa. Mol. Biol. Evol. 2021, 38, 2497–2512. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 2004, 1, 32. [Google Scholar] [CrossRef]
- Oliveira, L.; Tavares, P.; Alonso, J.C. Headful DNA packaging: Bacteriophage SPP1 as a model system. Virus Res. 2013, 173, 247–259. [Google Scholar] [CrossRef]
- Cohen, G. Electron microscopy study of early lytic replication forms of bacteriophage P1 DNA. Virology 1983, 131, 159–170. [Google Scholar] [CrossRef]
- Bornhoeft, J.W.; Stodolsky, M. Lytic cycle replicative forms of bacteriophages P1 and P1dl: Concatemer forms. Virology 1981, 112, 518–528. [Google Scholar] [CrossRef]
- Huang, H.; Masters, M. Bacteriophage P1 pac sites inserted into the chromosome greatly increase packaging and transduction of Escherichia coli genomic DNA. Virology 2014, 468, 274–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, C.; Gilcrease, E.B.; Hendrix, R.W.; Xie, Y.; Jalfon, M.J.; Gill, J.J.; Casjens, S.R. DNA packaging and genomics of the Salmonella 9NA-like phages. J. Virol. 2019, 93, e00848-19. [Google Scholar] [CrossRef] [PubMed]
- Botstein, D.A. theory of modular evolution for bacteriophages. Ann. New York Acad. Sci. 1980, 354, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Leiman, P.G.; Molineux, I.J. Evolution of a new enzyme activity from the same motif fold. Mol. Microbiol. 2008, 69, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Veesler, D.; Cambillau, C. A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. MMBR 2011, 75, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Schuler, B.; Fürst, F.; Osterroth, F.; Steinbacher, S.; Huber, R.; Seckler, R. Plasticity and steric strain in a parallel beta-helix: Rational mutations in the P22 tailspike protein. Proteins 2000, 39, 89–101. [Google Scholar] [CrossRef]
- Rivera, D.; Toledo, V.; Di Pillo, F.; Dueñas, F.; Tardone, R.; Hamilton-west, C.; Moreno Switt, A.I. Backyard Farms Represent a Source of Wide Host Range Salmonella Phages That Lysed the Most Common Salmonella Serovars. J. Food Prot. 2018, 81, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Lee, J.-H.; Shin, H.; Kim, M.M.; Choi, J.; Kang, D.-H.; Heu, S.; Ryu, S. Characterization and Comparative Genomic Analysis of a Novel Bacteriophage, SFP10, Simultaneously Inhibiting both Salmonella enterica and Escherichia coli O157:H7. App. Environ. Microbiol. 2012, 78, 5 8–69. [Google Scholar] [CrossRef] [Green Version]
- Thierauf, A.; Perez, G.; Maloy, S. Generalized Transduction. In Bacteriophages; Methods in Molecular Biology™; Clokie, M.R., Kropinski, A.M., Eds.; Humana Press: Totowa, NJ, USA, 2009; Volume 501. [Google Scholar] [CrossRef]
- Ackermann, H.W. Basic phage electron microscopy. In Bacteriophages; Methods in Molecular Biology; Humana press: Totowa, NJ, USA, 2009; Volume 501, pp. 113–126. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor: New York, NY, USA, 2001. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformation 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S. FastQC. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 11 March 2020).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput.Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bushnell, B.; Rood, J.; Singer, E. BBMerge–accurate paired shotgun read merging via overlap. PLoS ONE 2017, 12, e0185056. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. Genome Project Data Processing S. The sequence alignment/map format and SAMtools. Bioinformation 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformation 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Brettin, T.; Davis, J.J.; Diaz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Xia, F. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [Green Version]
- Laslett, D.; Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004, 32, 11–16. [Google Scholar] [CrossRef]
- Carver, T.; Thomson, N.; Bleasby, A.; Berriman, M.; Parkhill, J. DNAPlotter: Circular and linear interactive genome visualization. Bioinformation 2009, 25, 119–120. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformation 2016, 32, 929–931. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformation 2011, 27, 1009–1010. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Papadopoulos, J.S.; Agarwala, R. COBALT: Constraint-based alignment tool for multiple protein sequences. Bioinformation 2017, 23, 1073–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grishin, N.V. Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites. J. Mol. Evol. 1995, 41, 675–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagemans, J.; Tsonos, J.; Holtappels, D.; Fortuna, K.; Hernalsteens, J.P.; Greve, H.; Estrozi, L.F.; Bacia-Verloop, M.; Moriscot, C.; Noben, J.P.; et al. Structural Analysis of Jumbo Coliphage phAPEC6. Int. J. Mol. Sci. 2020, 21, 3119. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, A.; Tomas, H.; Havli, J.; Olsen, J.V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006, 1, 2856–2860. [Google Scholar] [CrossRef]
- Ceyssens, P.J.; Minakhin, L.; Van den Bossche, A.; Yakunina, M.; Klimuk, E.; Blasdel, B.; De Smet, J.; Noben, J.P.; Bläsi, U.; Severinov, K.; et al. Development of giant bacteriophage ϕKZ is independent of the host transcription apparatus. J. Virol. 2014, 88, 10501–10510. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, A.; Remmert, M.; Biegert, A.; Söding, J. Fast and accurate automatic structure prediction with HHpred. Proteins 2009, 77, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Marchler-Bauer, A.; Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2017, 45, D200–D203. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Lee, G.G.; Park, J.S.; Jung, Y.H.; Kwak, H.S.; Kim, S.B.; Nam, Y.S.; Kwon, S.T. A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: Escherichia coli O157:H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus. J. Food Prot. 2007, 70, 1656–1662. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol. 2014, 1079, 105–116. [Google Scholar]
- Webb, B.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5.6.1–5.6.37. [Google Scholar] [CrossRef] [Green Version]
- Turner, I.; Garimella, K.V.; Iqbal, Z.; McVean, G. Integrating long-range connectivity information into de Bruijn graphs. Bioinformation 2018, 34, 2556–2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; Hunter, S. InterProScan 5: Genome-scale protein function classification. Bioinformation 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn Robert, D.; Jody, C.; William, A.; Miller Benjamin, L.; Wheeler Travis, J. Schreiber 753 HMMER web server: 2015. update. Nucleic Acids Res. 2015, 754, W30–W38. [Google Scholar] [CrossRef] [PubMed]
- Hanada, K.; Shiu, S.-H.; Li, W.-H. The Nonsynonymous/Synonymous Substitution Rate Ratio versus the Radical/Conservative Replacement Rate Ratio in the Evolution of Mammalian genes. Mol. Biol. 2007, 24, 2235–2241. [Google Scholar] [CrossRef]
- Santos, S.B.; Carvalho, C.; Azeredo, J.; Ferreira, E.C. Population Dynamics of a Salmonella Lytic 759 Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling. PLoS ONE 2014, 9, e0136007. [Google Scholar] [CrossRef] [Green Version]
- Casjens, S.; Winn-Stapley, D.A.; Gilcrease, E.B.; Morona, R.; Kühlewein, C.; Chua, J.E.H.; Manning, P.A.; Inwood, W.; Clark, A.J. The chromosome of Shigella flexneri bacteriophage Sf6: Complete nucleotide sequence, genetic mosaicism, and DNA packaging. J. Mol. Biol. 2004, 339, 379–394. [Google Scholar] [CrossRef]
- Casjens, S.R.; Gilcrease, E.B.; Winn-Stapley, D.A.; Schicklmaier, P.; Schmieger, H.; Pedulla, M.L.; Ford, M.E.; Houtz, J.M.; Hatfull, G.F.; Hendrix, R.W. The generalized transducing Salmonella bacteriophage ES18: Complete genome sequence and DNA packaging strategy. J. Bacteriol. 2005, 187, 1091–1104. [Google Scholar] [CrossRef] [Green Version]
- Jackson, E.N.; Jackson, D.A.; Deans, R.J. EcoRI analysis of bacteriophage P22 DNA packaging. J. Mol. Biol. 1978, 118, 365–388. [Google Scholar] [CrossRef] [Green Version]
- Morelli, G.; Fisseau, C.; Behrens, B.; Trautner, T.A.; Luh, J.; Ratcliff, S.W.; Allison, D.P.; Ganesan, A.T. The genome of B. subtilis phage SPP1: The topology of DNA molecules. Mol. Gen. Genet. 1979, 168, 153–161. [Google Scholar] [CrossRef]
- Tye, B.K.; Huberman, J.A.; Botstein, D. Non-random circular permutation of phage P22 DNA. J. Mol. Biol. 1974, 85, 501–528. [Google Scholar] [CrossRef]
- Bachi, B.; Arber, W. Physical mapping of BglII, BamHI, EcoRI, HindIII and PstI restriction fragments of bacteriophage P1 DNA. Mol. Gen. Genet. 1977, 153, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Morgado, S.; Vicente, A.C. Global in-silico scenario of tRNA genes and their organization in 762 virus genomes. Viruses 2019, 11, 180. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.-W.; Kim, J.-W.; Jung, T.-S.; Woo, G.-J. Wksl3, a New Biocontrol Agent for Salmonella enterica Serovars Enteritidis and Typhimurium in Foods: Characterization, Application, Sequence Analysis, and Oral Acute Toxicity Study. Appl. Environ. Microbiol. 2013, 79, 1956–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guenther, S.; Herzig, O.; Fieseler, L.; Klumpp, J.; Loessner, M.J. Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int. J. Food Microbiol. 2012, 154, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, H.J.; Jung, S.J.; Mizan, M.F.R.; Park, S.H.; Ha, S.D. Characterization of Salmonella spp.-specific bacteriophages and their biocontrol application in chicken breast meat. J. Food Sci. 2020, 85, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Fister, S.; Robben, C.; Witte, A.K.; Schoder, D.; Wagner, M.; Rossmanith, P. Influence of Environmental Factors on Phage-Bacteria Interaction and on the Efficacy and Infectivity of Phage P100. Front. Microbiol. 2016, 28, 1152. [Google Scholar] [CrossRef]
- Hungaro, H.M.; Mendonça, R.C.S.; Gouvêa, D.M.; Vanetti, M.C.D.; de Oliveira Pinto, C.L. Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Res. Int. 2013, 52, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Sampedro, F.; Wells, S.J.; Bender, J.B.; Hedberg, C.W. Developing a risk management framework to improve public health outcomes by enumerating Salmonella in ground turkey. Epidemiol. Infect. 2019, 147, e69. [Google Scholar] [CrossRef] [Green Version]
- Marti, R.; Zurfluh, K.; Hagens, S.; Pianezzi, J.; Klumpp, J.; Loessner, M.J. Long tail fibres of the novel broad host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC. Mol. Microb. 2013, 87, 818–834. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, L.; Abdelgader, S.A.; Yu, L.; Xu, J.; Yao, H.; Lu, C.; Zhang, W. Alterations in gp37 Expand the Host Range of a T4-Like Phage. Appl. Environ. Microbiol. 2017, 83, e01576-17. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, U.; Svenson, S.B.; Lönngren, J.; Lindberg, A.A. Salmonella phage glycanases: Substrate specificity of the phage P22 endo-rhamnosidase. J. Gen. Virol. 1979, 43, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Casjens, S.R.; Jacobs-Sera, D.; Hatfull, G.F.; Hendrix, R.W. Genome sequence of Salmonella enterica phage Det7. Genome Announc. 2015, 3, e00279-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, M.; Fiedler, C.; Grassl, R.; Biebl, M.; Rachel, R.; Hermo-Parrado, X.L.; van Raaij, M.J. Structure of the receptor-binding protein of bacteriophage det7: A podoviral tail spike in a myovirus. J. Virol. 2008, 82, 2265–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, M.; Denyes, J.M.; Arndt, H.; Loessner, M.J.; Leiman, P.G.; Klumpp, J. Salmonella phage S16 tail fiber adhesin features a rare polyglycine rich domain for host recognition. Structure 2018, 26, 1573–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, I.; Osada, K.; Azam, A.H.; Asakawa, H.; Miyanaga, K.; Tanji, Y. The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal Twort-like phages. Appl. Environ. Microbiol. 2016, 82, 5763–5774. [Google Scholar] [CrossRef] [Green Version]
- Born, Y.; Fieseler, L.; Marazzi, J.; Lurz, R.; Duffy, B.; Loessner, M.J. Novel Virulent and Broad-Host-Range Erwinia amylovora Bacteriophages Reveal a High Degree of Mosaicism and a Relationship to Enterobacteriaceae Phages. Appl. Environ. Microbiol. 2011, 77, 5945–5954. [Google Scholar] [CrossRef] [Green Version]
- Bielke, L.; Higgins, S.; Donoghue, A.; Donoghue, D.; Hargis, B.M. Salmonella host range of bacteriophages that infect multiple genera. Poult Sci. 2007, 86, 2536–2540. [Google Scholar] [CrossRef]
- Andres, D.; Roske, Y.; Doering, C.; Heinemann, U.; Seckler, R.; Barbirz, S. Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system. Mol. Microbiol. 2012, 83, 1244–1253. [Google Scholar] [CrossRef]
Sequence Information | HHpred Best Match | Identification via Mass Spectrometry | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CDS | Start | Stop | Amino Acids Length | Product Name (1) | Pfam UniProtKB/Swiss-Prot ID/ NCBI ID) | Best Match Product Name | Molecular Mass (kDa) | Unique Peptide Count | Sequence Coverage (%) | |
10 | 3690 | 5093 | 467 | Capsid protein | P49859 | Phage portal connector | 52.52 | 14 | 31.5% | |
11 | 5074 | 6030 | 318 | Capsid protein | Q38442 | Accessory head protein gp7 | 35.41 | 5 | 20.8% | |
18 | 8448 | 8912 | 92 | Lysin | Q6XQ98 | SAR endolysin | 16.86 | 1 | 11.7% | |
20 | 9132 | 9620 | 162 | DUF2514 protein | PF10721.10 | Phage lysin | 17.65 | 1 | 5.6% | |
33 | 13,792 | 15,078 | 428 | Capsid protein | PF03420.14/ QTH80297 | Phage coat/ putative prohead core | 47.22 | 1 | 4.9% | |
34 | 15,078 | 15,545 | 155 | Capsid protein | P07532.1 | Capsid fiber protein | 15.86 | 4 | 16.1% | |
35 | 15,448 | 16,618 | 356 | Major capsid | A0A0U5AF03 | Major capsid protein | 39.76 | 14 | 40.7% | |
38 | 17,239 | 18,057 | 272 | Hypothetical | NP_456098.1 | Hypothetical protein | 28.85 | 6 | 24.6% | |
51 | 22,669 | 23,010 | 113 | Minor capsid | PF10665.10/WP_093649519.1 | Putative minor capsid | 12.38 | 1 | 9.7% | |
52 | 23,010 | 23,408 | 132 | Minor capsid | PF11114.9 WP_002318693.1 | Minor capsid protein | 14.81 | 2 | 15.2% | |
53 | 23,405 | 23,779 | 124 | Minor capsid | PF12691.8/ DAY83110.1 | TPA: minor capsid protein | 14.01 | 1 | 9.7% | |
55 | 24,475 | 25,191 | 238 | Tail tube protein | PF06199.13/ WP_234600022 | Phage tail tube | 24.99 | 5 | 20.2% | |
60 | 27,206 | 29,548 | 780 | Tail tape measure | PF10145.10 /WP_234693434.1 | Tail tape measure-2 | 81.26 | 21 | 31.3% | |
61 | 29,548 | 30,021 | 157 | Minor tail | PF06141/ KOX81416.1 | Phage minor tail_U | 18.09 | 6 | 36.3% | |
62 | 30,021 | 30,491 | 156 | Tail tip protein L | P03738.1 | Tail tip protein L | 17.71 | 2 | 16.0% | |
64 | 30,887 | 33,349 | 820 | Putative tail | NP_569524.1/ WP_011011097.1 | Putative phage tail | 91.35 | 9 | 10.4% | |
65 | 33,389 | 35,416 | 675 | Tail spike | PF09251.11/ P12528.1 | P22 tail spike | 72.77 | 19 | 35.8% | |
88 | 46,936 | 47,355 | 139 | DUF5681 | PF18932.1 | Family of (DUF5681) | 15.62 | 2 | 19.4% |
N° of CDS | GC (%) | HHPred Prediction 1 | ||||
---|---|---|---|---|---|---|
Putative Proteins Best Match | Probability | E-Value | Score | Identities (%) | ||
55 | 52.4 | PF06199.12 (Tail tube protein) | 99.7 | 1.2 × 10 −14 | 114.55 | 17 |
60 | 50.2 | PF10145.10 (Tail tape measure-2) | 100 | 0.0 | 103.18 | 94.74 |
61 | 51.3 | PF06141 (Phage minor tail_U) | 99.24 | 1.1 × 10 −10 | 79.89 | 18 |
62 | 49.5 | P03738 (Tail tip protein L) | 99.69 | 1.2 × 10 −15 | 112.73 | 8 |
64 | 47.2 | NP_569524.1 (Putative phage tail) | 100 | 3.2 × 10 −54 | 549.04 | 16 |
65 | 47.9 | PF09251.11 (P22 tail spike protein) | 100 | 4.8 × 10 −192 | 1447.29 | 93 |
Parameters | Genes (N° of CDS) | ||||
---|---|---|---|---|---|
Product Name | Tape Measure (gp60) | Tail Spike (gp65) | Tail Spike (gp65) | Hypothetical Protein (gp38) | Exodeoxyribonuclease VIII (gp69) |
Position | 28,480 | 34,603 | 34,626 | 1714 | 37,691 |
Codon Change | TCT -> TCC | GAA -> GAC | ACC -> AAC | GAG -> GGG | GGA -> GGC |
Effect 1 | Synonymous Substitution | Conservative Nonsynonymous Substitution | Conservative Nonsynonymous Substitution | Radical Nonsynonymous Substitution | Synonymous Substitution |
Wild-type STGO-35-1 | |||||
Ref 2 | 768 | 477 | 965 | 1118 | 976 |
Alt 3 | 2 | 432 | 42 | 0 | 1 |
Freq 4 | 0.26 | 47.52 | 4.17 | 0.00 | 0.10 |
Plaque 1 (P1) | |||||
Ref 2 | 986 | 0 | 251 | 1401 | 1267 |
Alt 3 | 56 | 1318 | 1174 | 21 | 0 |
Freq 4 | 5.37 | 100.00 | 82.39 | 1.48 | 0.00 |
Plaque 2 (P2) | |||||
Ref 2 | 2073 | 0 | 995 | 2909 | 2681 |
Alt 3 | 98 | 2782 | 2083 | 49 | 1 |
Freq 4 | 4.51 | 100.00 | 67.67 | 1.66 | 0.04 |
Plaque 3 (P3) | |||||
Ref 2 | 2103 | 0 | 882 | 2790 | 2025 |
Alt 3 | 102 | 2762 | 2200 | 26 | 524 |
Freq 4 | 4.63 | 100.00 | 71.38 | 0.92 | 20.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera, D.; Moreno-Switt, A.I.; Denes, T.G.; Hudson, L.K.; Peters, T.L.; Samir, R.; Aziz, R.K.; Noben, J.-P.; Wagemans, J.; Dueñas, F. Novel Salmonella Phage, vB_Sen_STGO-35-1, Characterization and Evaluation in Chicken Meat. Microorganisms 2022, 10, 606. https://doi.org/10.3390/microorganisms10030606
Rivera D, Moreno-Switt AI, Denes TG, Hudson LK, Peters TL, Samir R, Aziz RK, Noben J-P, Wagemans J, Dueñas F. Novel Salmonella Phage, vB_Sen_STGO-35-1, Characterization and Evaluation in Chicken Meat. Microorganisms. 2022; 10(3):606. https://doi.org/10.3390/microorganisms10030606
Chicago/Turabian StyleRivera, Dácil, Andrea I. Moreno-Switt, Thomas G. Denes, Lauren K. Hudson, Tracey L. Peters, Reham Samir, Ramy K. Aziz, Jean-Paul Noben, Jeroen Wagemans, and Fernando Dueñas. 2022. "Novel Salmonella Phage, vB_Sen_STGO-35-1, Characterization and Evaluation in Chicken Meat" Microorganisms 10, no. 3: 606. https://doi.org/10.3390/microorganisms10030606
APA StyleRivera, D., Moreno-Switt, A. I., Denes, T. G., Hudson, L. K., Peters, T. L., Samir, R., Aziz, R. K., Noben, J. -P., Wagemans, J., & Dueñas, F. (2022). Novel Salmonella Phage, vB_Sen_STGO-35-1, Characterization and Evaluation in Chicken Meat. Microorganisms, 10(3), 606. https://doi.org/10.3390/microorganisms10030606