Expanding the Universe of Hemoplasmas: Multi-Locus Sequencing Reveals Putative Novel Hemoplasmas in Lowland Tapirs (Tapirus terrestris), the Largest Land Mammals in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Sampling
2.3. DNA Extraction and PCR Protocols for Mammals’ Endogenous Genes
2.4. Conventional Polymerase Chain Reaction (cPCR) Assays for Hemoplasmas Based on the 16S rRNA, 23S rRNA, RNAse P and dnaK Gene Fragments
2.5. Sequencing
2.6. Sequence Analysis and Phylogeny
2.7. Genetic Diversity Assessment
2.8. Statistical Analysis
3. Results
3.1. PCR for Mammals’ Endogenous Genes
3.2. PCR Assays for Hemoplasmas
3.3. Phylogenetic Inference
3.4. Genetic Diversity Assessment
3.5. Distance Analysis by SplitsTree
3.6. Distance Matrix Analysis
3.7. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medici, E.P.; Desbiez, A.L.J. Population Viability Analysis (PVA): Using a modeling tool to assess the viability of tapir populations in fragmented landscapes. Integr. Zool. 2012, 7, 356–372. [Google Scholar] [CrossRef]
- Medici, E.P.; Flesher, K.; Beisiegel, B.M.; Keuroghlian, A.; Desbiez, A.L.J.; Gatti, A.; Pontes, A.R.M.; Campos, C.B.; Tófoli, C.F.; Moraes, E.A., Jr.; et al. Tapirus terrestris (Linnaeus, 1758). In Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, 1st ed.; Ministério do Meio Ambiente: Brasilia, Brazil, 2018; Volume II, pp. 59–68. [Google Scholar]
- Mangini, P.R.; Medici, E.P.; Fernandes-Santos, R.C. Tapir Health and Conservation Medicine. Integr. Zool. 2012, 7, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Acosta, I.C.; da Costa, A.P.; Nunes, P.H.; Gondim, M.F.; Gatti, A.; Rossi, J.L., Jr.; Gennari, S.M.; Marcili, A. Morphological and molecular characterization and phylogenetic relation- ships of a new species of trypanosome in Tapirus terrestris (lowland tapir), Trypanosoma terrestris sp. nov., from Atlantic Rainforest of southeastern Brazil. Parasit. Vectors 2013, 6, 394. [Google Scholar] [CrossRef] [PubMed]
- Pérez, S.D.; Grummer, J.A.; Fernandes-Santos, R.C.; Testa-José, C.; Medici, E.P.; Marcili, A. Phylogenetics, patterns of genetic variation and population dynamics of Trypanosoma terrestris support both coevolution and ecological host-fitting as processes driving trypanosome evolution. Parasit. Vectors 2019, 12, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.W.; Oliveira, G.G.; Santos, L.M.; Azuaga, L.B.S.; Coutinho, C.R.M.; Echeverria, J.T.; Antunes, T.R.; Ramos, C.A.N.; Souza, A.I. Natural infection of the South America Tapir (Tapirus terrestris) by Theileria equi. J. Wildl. Dis. 2017, 53, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, T.; Barros, F.N.L.; Inoue, L.S.; Farias, D.M.; Lima, J.S.; Nobre, A.V.; Aidar, E.S.A.; Diniz, R.R.F.; Gering, A.P.; Scofield, A. Natural Theileria equi infection in captive Tapirus terrestris (Perissodactyla: Tapiridae) in the Brazilian Amazon. Ticks Tick-Borne Dis. 2020, 11, 101452. [Google Scholar] [CrossRef]
- Marcordes, S.; Lueders, I.; Grund, L.; Sliwa, A.; Maurer, F.P.; Hillemann, D.; Möbius, P.; Barth, S.A. Clinical outcome and diagnostic methods of atypical mycobacteriosis due to Mycobacterium avium ssp. hominissuis in a group of captive lowland tapirs (Tapirus terrestris). Transb. Emerg. Dis. 2021, 68, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Medici, E.P.; Mangini, P.R.; Fernandes-Santos, R.C. Health assessment of wild lowland tapir populations in Brazil. J. Wildl. Dis. 2014, 50, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Santos, R.C.; Fernandes, E.R.; Luiz, F.G.; Chaves, L.B.; Silva, S.R.; Medici, E.P. Rabies virus exposure in wild lowland tapirs (Tapirus terrestris) from three Brazilian biomes. J. Wildl. Dis. 2021, 57, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Labruna, M.B.; Martins, T.F.; Acosta, I.; Serpa, M.; Soares, H.S.; Teixeira, R.; Fernandes-Santos, R.C.; Medici, E.P. Ticks and rickettsial exposure in lowland tapirs (Tapirus terrestris) of three Brazilian biomes. Ticks Tick-Borne Dis. 2021, 12, 101648. [Google Scholar] [CrossRef] [PubMed]
- Razin, S.; Yogev, D.; Naot, Y. Molecular Biology and Pathogenicity of Mycoplasmas. Microbiol. Mol. Biol. Rev. 1998, 62, 1094–1156. [Google Scholar] [CrossRef] [PubMed]
- Tratchenberg, S. Quick Guide: Mollicutes. Curr. Biol. 2005, 15, PR483–PR484. [Google Scholar] [CrossRef] [PubMed]
- Messick, J.B. Hemotrophic mycoplasmas (hemoplasmas): A review and new insights into pathogenic potential. Vet. Clin. Path. 2004, 33, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Citti, C.; Baranowski, E.; Dordet-Frisoni, E.; Faucher, M.; Nouvel, L.X. Genomic Islands in Mycoplasmas. Genes 2020, 11, 836. [Google Scholar] [CrossRef] [PubMed]
- Maggi, R.G.; Chitwood, M.C.; Kennedy-Stoskopf, S.; Deperno, C.S. Novel hemotropic Mycoplasma species in white-tailed deer (Odocoileus virginianus). Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, A.C.; Guerra, R.R.; Mongruel, A.C.B.; Vidotto, O.; Lucena, R.B.; Guerra, M.V.S.F.; Vieira, T.S.W.J.; Vieira, R.F.C. Mycoplasma sp. infection in captive Marcgrave’s capuchin monkeys (Sapajus flavius). Comp. Immunol. Microbiol. Infect. Dis. 2017, 5, 34–36. [Google Scholar] [CrossRef]
- Mongruel, A.C.B.; Spanhol, V.C.; Valente, J.D.M.; Porto, P.P.; Ogawa, L.; Otomura, F.H.; de Souza Marquez, E.; André, M.R.; Vieira, T.S.W.J.; da Costa Vieira, R.F.; et al. Survey of vector-borne and nematode parasites involved in the etiology of anemic syndrome in sheep from Southern Brazil. Rev. Bras. Parasitol. Vet. 2020, 29, e007320. [Google Scholar] [CrossRef] [PubMed]
- Nibblett, B.M.D.; Snead, E.C.; Waldner, C.; Taylor, S.M.; Jackson, M.L.; Knorr, L.M.A. Anemia in cats with hemotropic mycoplasma infection: Retrospective evaluation of 23 cases (1996–2005). Can. Vet. J. 2009, 50, 1181–1185. [Google Scholar] [PubMed]
- Tasker, S.; Peters, I.R.; Papasouliotis, K.; Cue, S.M.; Willi, B.; Hofmann-Lehmann, R.; Gruffydd-Jones, T.J.; Knowles, T.G.; Day, M.J.; Helps, C.R. Description of outcomes of experimental infection with feline haemoplasmas: Copy numbers, haematology, Coombs’ testing and blood glucose concentrations. Vet. Microbiol. 2009, 139, 323–332. [Google Scholar] [CrossRef]
- Neimark, H.; Hoff, B.; Ganter, M. Mycoplasma ovis comb. (formely Eperythrozoon ovis), an epierythrocytic agent of haemolytic anaemia in sheep and goats. Int. J. Syst. Evol. Microbiol. 2004, 54, 365–371. [Google Scholar] [CrossRef]
- Vieira, R.; Santos, N.; Valente, J.; Santos, L.P.; Lange, R.R.; Duque, J.; Ferrari, M.V.; Barros Filho, I.R.; Collere, F.; Ferrari, L.; et al. ‘Candidatus Mycoplasma haematohydrochoerus’, a novel hemoplasma species in capybaras (Hydrochoerus hydrochaeris) from Brazil. Infect. Genet. Evol. 2021, 93, 104988. [Google Scholar] [CrossRef] [PubMed]
- Valente, J.; Saldanha, A.; Martini, R.; Lange, R.R.; Baggio, R.A.; Martins, T.F.; Dos Santos, L.P.; de Sousa, R.S.; Vieira, T.; Vieira, R. ‘Candidatus Mycoplasma haemosphiggurus’ a novel haemoplasma species in orange-spined hairy dwarf porcupines (Sphiggurus villosus) from Southern Brazil. Transb. Emerg. Dis. 2021, 68, 1054–1061. [Google Scholar] [CrossRef]
- Pontarolo, G.H.; Kuhl, L.F.; Pedrassini, D.; Campos, M.; Figueiredo, F.B.; Valente, J.D.M.; Gonçalves, L.R.; André, M.R.; Vieira, T.S.W.J.; Vieira, F.R.C.; et al. ‘Candidatus Mycoplasma haemoalbiventris’, a novel hemoplasma species in white-eared opossums (Didelphis albiventris) from Brazil. Transb. Emerg. Dis. 2020, 68, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Collere, F.; Delai, R.M.; Ferrari, L.; da Silva, L.H.; Fogaça, P.; Rodrigues, A.N.; Gonçalves, D.D.; Baggio, R.A.; Moraes, M.; Lux Hoppe, E.G.; et al. ‘Candidatus Mycoplasma haematonasua’ and tick-borne pathogens in ring-tailed coatis (Nasua nasua Linnaeus, 1976) from the Iguaçu National Park, Paraná State, southern Brazil. Transb. Emerg. Dis. 2021, 68, 3222–3229. [Google Scholar] [CrossRef]
- Bonato, L.; Figueiredo, M.A.P.; Gonçalves, L.R.; Machado, R.Z.; André, M.R. Occurrence and molecular characterization of Bartonella sp. and hemoplasmas in neotropical primates from Brazilian Amazon. Comp. Immunol. Microbiol. Infect. Dis. 2015, 42, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.R.; Roque, A.L.; Matos, C.A.; Fernandes, S.J.; Olmos, I.D.; Machado, R.Z.; André, M.R. Diversity and molecular characterization of novel hemoplasmas infecting wild rodents from different Brazilian biomes. Comp. Immunol. Microbiol. Infect. Dis. 2015, 43, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, P.; Seki, M.C.; Carrasco, A.O.T.; Rudiak, L.V.; Miranda, J.M.D.; Gonçalves, S.M.M.; Hoppe, E.G.L.; Albuquerque, A.C.A.; Teixeira, M.M.G.; Passos, C.E.; et al. Evidence and molecular characterization of Bartonella sp. and hemoplasmas in neotropical bats in Brazil. Epidemiol. Infect. 2017, 145, 2038–2052. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, P.; Menezes, T.R.; Torres, J.M.; de Oliveira, C.E.; Lourenço, E.C.; Herrera, H.M.; Machado, R.Z.; André, M.R. First molecular detection of piroplasmids in non-hematophagous bats from Brazil, with evidence of putative novel species. Parasitol. Res. 2021, 120, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Delitti, W.B.C.; Meguro, M.; Pausas, J.G. Biomass and mineralmass estimates in “Cerrado” ecosystem. Braz. J. Bot. 2006, 4, 531–540. [Google Scholar] [CrossRef]
- Tomas, W.M.; de Oliveira Roque, F.; Morato, R.G.; Medici, P.E.; Chiaravalloti, R.M.; Tortato, F.R.; Penha, J.M.F.; Izzo, T.J.; Garcia, L.C.; Lourival, R.F.F.; et al. Sustainability Agenda for the Pantanal Wetland: Perspectives on a Collaborative Interface for Science, Policy, and Decision-Making. Trop. Conserv. Sci. 2019, 12, 1940082919872634. [Google Scholar] [CrossRef]
- Medici, E.P. Family Tapiridae (Tapirs). In Handbook of the Mammals of the World, 1st ed.; Wilson, D.E., Mittermeier, R.A., Eds.; Lynx Edicions: Barcelon, Spain, 2011; Volume 2, p. 886. [Google Scholar]
- LASA/UFRJ-Laboratório de Aplicações de Satélites Ambientais do Departamento de Meteorologia da Universidade Federal do Rio de Janeiro (UFRJ). Área Queimada–Pantanal 2020. Available online: https://lasa.ufrj.br/noticias/area-queimada-pantanal-2020/ (accessed on 29 December 2021).
- PRODES/INPE–Nota Técnica PRODES Cerrado 2021. Available online: https://www.gov.br/inpe/pt-br/assuntos/ultimas-noticias/nota-tecnica-prodes-cerrado-2021 (accessed on 29 December 2021).
- Berlinck, C.N.; Lima, L.H.A.; Pereira, A.M.M.; Carvalho, E.A.R., Jr.; Paula, R.C.; Thomas, W.M.; Morato, R.G. The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Braz. J. Biol. 2022, 82, e244200. [Google Scholar] [CrossRef]
- Birkenheuer, A.J.; Levy, M.G.; Breitschewerdt, E.B. Development and evaluation of a seminested PCR for detection and differentiation of Babesia gibsoni (Asian genotype) and B. canis DNA in canine blood samples. J. Clin. Microbiol. 2003, 41, 4172–4177. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.C.; Contijo, C.M.; Cruz, I.; Melo, M.N.; Silva, A.M. Alternative PCR protocol using a single primer set for assessing DNA quality in several tissues from a large variety of mammalian species living in areas endemic for leishmaniasis. Mem. Inst. Oswaldo Cruz 2010, 105, 895–898. [Google Scholar] [CrossRef] [PubMed]
- Harasawa, R.; Orusa, R.; Giangaspero, M. Molecular evidence for hemotropic Mycoplasma infection in a Japanese badger (Meles meles anakuma) and a raccoon dog (Nyctereutes procyonoides viverrinus). J. Wildl. Dis. 2014, 50, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Di Cataldo, S.; Kamani, J.; Cevidanes, A.; Msheliza, E.G.; Millán, J. Hemotropic mycoplasmas in bats captured near human settlements in Nigeria. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101448. [Google Scholar] [CrossRef]
- Descloux, E.; Mediannikov, O.; Gourinat, A.C.; Colot, J.; Chauvet, M.; Mermoud, I.; Desoutter, D.; Cazorla, C.; Klement-Frutos, E.; Antonini, L.; et al. Flying Fox Hemolytic Fever, Description of a New Zoonosis Caused by Candidatus Mycoplasma haemohominis. Infect. Dis. Soc. Am. 2021, 73, e1445–e1453. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucl. Acid. Symp. Ser. 1999, 41, 95–98. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1999, 215, 403–410. [Google Scholar] [CrossRef]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Ostell, J.; Pruitt, K.D.; Sayers, E.W. GenBank. Nucleic Acids Res. 2018, 46, D41–D47. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Sela, I.; Ashkenazy, H.; Katoh, K.; Pupko, T. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucl. Acids Res. 2015, 43, W7–W14. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef]
- Martinez-Porchas, M.; Villalpando-Canchola, E.; Ortiz Suarez, L.E.; Vargas-Albores, F. How conserved are the conserved 16S-rRNA regions? PeerJ 2017, 5, e3036. [Google Scholar] [CrossRef] [PubMed]
- Drancourt, M.; Raoult, D. Sequence-based identification of new bacteria: A proposition for creation of an orphan bacterium repository. J. Clin. Microbiol. 2005, 43, 4311–4315. [Google Scholar] [CrossRef] [PubMed]
- Grazziotin, A.L.; Santos, A.P.; Guimaraes, A.M.; Mohamed, A.; Cubas, Z.S.; de Oliveira, M.J.; dos Santos, L.C.; de Moraes, W.; Vieira, R.F.; Donatti, L.; et al. Mycoplasma ovis in captive cervids: Prevalence, molecular characterization and phylogeny. Vet. Microbiol. 2011, 152, 415–4191. [Google Scholar] [CrossRef]
- Ikeda, P.; Torres, J.M.; Lourenço, E.C.; Albery, G.F.; Herrera, H.M.; de Oliveira, C.E.; Machado, R.Z.; André, M.R. Molecular detection and genotype diversity of hemoplasmas in non-hematophagous bats and associated ectoparasites sampled in peri-urban areas from Brazil. Acta Trop. 2022, 225, 106203. [Google Scholar] [CrossRef]
- Ludwig, W.; Kirchhof, G.; Klugbauer, N.; Weizenegger, M.; Betzel, D.; Ehrmann, M.; Hertel, C.; Jilg, S.; Tatzel, R.; Zitzelsberger, H.; et al. Complete 23S Ribosomal RNA Sequences of Gram-positive Bacteria with a Low DNA G+C Content. Syst. Appl. Microbiol. 1992, 15, 487–501. [Google Scholar] [CrossRef]
- Peters, I.R.; Helps, C.R.; McAuliffe, L.; Neimark, H.; Lappin, M.R.; Gruffydd-Jones, T.J.; Day, M.J.; Hoelzle, L.E.; Willi, B.; Meli, M.; et al. RNase P RNA gene (rnpB) phylogeny of Hemoplasmas and other Mycoplasma species. J. Clin. Microbiol. 2008, 46, 1873–1877. [Google Scholar] [CrossRef] [PubMed]
- Hicks, C.A.; Barker, E.N.; Brady, C.; Stokes, C.R.; Helps, C.R.; Tasker, S. Non-ribosomal phylogenetic exploration of Mollicutes species: New insights into haemoplasma taxonomy. Infect. Genet. Evol. 2014, 23, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Harasawa, R.; Fujita, H.; Kadosaka, T.; Ando, S.; Rikihisa, Y. Proposal for ‘Candidatus Mycoplasma haemomuris subsp. Musculi’ in mice, and ‘Candidatus Mycoplasma haemomuris subsp. Ratti’ in rats. Intern. J. Syst. Evol. Microbiol. 2015, 65, 734–737. [Google Scholar] [CrossRef]
- Hoelzle, L.E. Haemotrophic mycoplasmas: Recent advances in Mycoplasma suis. Vet. Microbiol. 2008, 130, 215–226. [Google Scholar] [CrossRef]
- Tagawa, M.; Yamakawa, K.; Aoki, T.; Matsumoto, K.; Ishii, M.; Inokuma, H. Effect of chronic hemoplasma infection on cattle productivity. J. Vet. Med. Sci. 2013, 75, 1271–1275. [Google Scholar] [CrossRef]
- Novacco, M.; Boretti, F.S.; Wolf-Jäckel, G.A.; Riond, B.; Meli, M.L.; Willi, B.; Lutz, H.; Hofmann-Lehmann, R. Chronic “Candidatus Mycoplasma turicensis” infection. Vet. Res. 2011, 42, 59. [Google Scholar] [CrossRef]
- Barker, E.N. Update on Feline Hemoplasmosis. Veterinary Clinics of North America. Small Anim. Pract. 2019, 49, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Santos, R.C.; Medici, E.P.; José, C.T.; Micheletti, T. Health assessment of wild lowland tapirs (Tapirus terrestris) in the highly threatened Cerrado biome, Brazil. J. Wildl. Dis. 2020, 56, 34–46. [Google Scholar] [CrossRef]
- Bergmann, M.; Englert, T.; Stuetzer, B.; Hawley, J.R.; Lappin, M.R.; Hartmann, K. Risk factors of different hemoplasma species infections in cats. BMC Vet. Res. 2017, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Trolle, M.; Noss, A.J.; Cordeiro, J.L.P.; Oliveira, J.F.B. Brazilian Tapir Density in the Pantanal: A Comparison of Systematic Camera-Trapping and Line-Transect Surveys. Biotropica 2008, 40, 211–217. [Google Scholar] [CrossRef]
- Shi, H.; Duan, L.; Liu, F.; Hu, Y.; Shi, Z.; Chen, X.; Yang, H.; Yan, B.; Yao, L. Rhipicephalus (Boophilus) microplus ticks as reservoir and vector of ‘Candidatus Mycoplasma haemobos’ in China. Vet. Parasitol. 2019, 274, 108929. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.S.; Helps, C.R.; Gruffydd Jones, T.J.; Tasker, S. Use of real-time PCR to detect Mycoplasma haemofelis and ‘Candidatus Mycoplasma haemominutum’ in the saliva and salivary glands of haemoplasma-infected cats. J. Feline Med. Surg. 2008, 10, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Pinho, G.M.; Gonçalves da Silva, A.; Hrbek, T.; Venticinque, E.M.; Farias, I.P. Kinship and social behavior of lowland tapirs (Tapirus terrestris) in a central Amazon landscape. PLoS ONE 2014, 9, e92507. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.P.; Conrado, F.; Messick, J.B.; Biondo, A.W.; Oliveira, S.T.; Guimaraes, A.M.; Nascimento, N.C.; Pedralli, V.; Lasta, C.S.; González, F.H. Hemoplasma prevalence and hematological abnormalities associated with infection in three different cat populations from Southern Brazil. Braz. J. Vet. Parasitol. 2014, 23, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Firmino, F.P.; Aquino, L.C.; Marçola, T.G.; Bittencourt, M.V.; McManus, C.M.; Paludo, G.R. Frequency and hematological alterations of different hemoplasma infections with retrovirusis co-infections in domestic cats from Brazil. Small Anim. Dis. 2016, 36, 731–736. [Google Scholar] [CrossRef]
- Genova, S.G.; Streeter, R.N.; Velguth, K.E.; Snider, T.A.; Kocan, K.M.; Simpson, K.M. Severe anemia associated with Mycoplasma wenyonii infection in a mature cow. Can. Vet. J. 2011, 52, 1018–1021. [Google Scholar]
- Tagawa, M.; Takeuchi, T.; Fujisawa, T.; Konno, Y.; Yamamoto, S.; Matsumoto, K.; Yokoyama, N.; Inokuma, H. A clinical case of severe anemia in a sheep coinfected with Mycoplasma ovis and ‘Candidatus Mycoplasma haemovis’ in Hokkaido, Japan. J. Vet. Med. Sci. 2012, 74, 99–102. [Google Scholar] [CrossRef]
- Martínez-Hernández, J.M.; Ballados-González, G.G.; Fernández-Bandala, D.; Martínez-Soto, S.; Velázquez-Osorio, V.; Martínez-Rodríguez, P.B.; Cruz-Romero, A.; Grostieta, E.; Lozano-Sardaneta, Y.; Colunga Salas, P.; et al. Molecular detection of Mycoplasma ovis in an outbreak of hemolytic anemia in sheep from Veracruz, Mexico. Trop. Anim. Health Prod. 2019, 51, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Kemming, G.; Messick, J.B.; Mueller, W.; Enders, G.; Meisner, F.; Muenzing, S.; Kisch-Wedel, H.; Schropp, A.; Wojtczyk, C.; Packert, K.; et al. Can we continue research in splenectomized dogs? Mycoplasma haemocanis: Old problem-new insight. Eur. Surg. Res. 2004, 36, 198–205. [Google Scholar] [CrossRef]
- Stoffregen, W.C.; Alt, D.P.; Palmer, M.V.; Olsen, S.C.; Waters, W.R.; Stasko, J.A. Identification of a haemomycoplasma species in anemic reindeer (Rangifer tarandus). J. Wildl. Dis. 2006, 42, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Sacristán, I.; Acuña, F.; Aguilar, E.; García, S.; López, M.J.; Cevinades, A.; Cabello, J.; Hidalgo-Hermoso, E.; Johnson, W.E.; Poulin, E.; et al. Assessing cross-species transmission of hemoplasmas at the wild-domestic felid interface in Chile using genetic and landscape variables analysis. Sci. Rep. 2019, 9, 16819. [Google Scholar] [CrossRef]
Target Gene | Primer Sequences | Thermal Conditions | Reagent Volumes and Concentrations | Fragment Size | Primers Reference |
---|---|---|---|---|---|
16S rRNA | 1st round: 5′-AGAGTTTGATCCTGGCTCAG-3’ 5′-TACCTTGTTACGACTTAACT-3′ 2nd round: 5′-ATATTCCTACGGGAAGCAGC-3′ 5′-TACCTTGTTACGACTTAACT-3′ | 95 °C for 5 min, followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 57 °C for 30 s, extension at 72 °C for 1 min, and final extension at 72 °C for 10 min for both rounds. | 1st reaction: 2.5 μL from 10X Buffer, 0.75 μL from 50 mM MgCl2, 2 μL from 10 mM dNTP mix, 1 μL from each primer at 10 mM, 0.25 μL from 5 U/μL Taq polymerase, 12.5 μL from ultrapurified water and 5 μL from template DNA. 2nd reaction: Ultrapurified water (16.5 μL) and template DNA (1 μL) quantity changes. | ~1107 bp | Harasawa et al., 2014; Di Cataldo et al., 2020 |
23S rRNA | 5′-TGAGGGAAAGAGCCCAGAC-3′ 5′-GGACAGAATTTACCTGACAAGG-3′ | 94 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 54 °C for 30 s, extension at 72 °C for 1 min, and final extension at 72 °C for 10 min. | 2.5 μL from 10X Buffer, 0.75 μL from 50 mM MgCl2, 2 μL from 10 mM dNTP mix, 1 μL from each primer at 10 mM, 0.25 μL from 5 U/μL Taq polymerase, 12.5 μL from ultrapurified water and 5 μL from template DNA. | ~800 bp | Mongruel et al., 2020 |
RNAseP | 5′-GATKGTGYGAGYATATAA AAAATAAARCTCRAC-3′ 5′-GMGGRGTTTACCGCGTTTCAC-3′ | 95 °C for 2 min, followed by 50 cycles of denaturation at 94 °C for 30 s, annealing at 59 °C for 30 s, extension at 72 °C for 30 s and final extension at 72 °C for 1 min. | 2.5 μL from 10X Buffer, 1.0 μL from 50 mM MgCl2, 2 μL from 10 mM dNTP mix, 1 μL from each primer at 10 mM, 0.25 μL from 5 U/μL Taq polymerase, 12.25 μL from ultrapurified water and 5 μL from template DNA. | ~164 bp | Maggi et al., 2013 |
dnaK | 5′-GGGTGGAGATGATTGAGACCA-3’ 5′-AGCCACCCCTCCTAGAGTTT-3' | 95 °C for 5 min, followed by 45 cycles of denaturation at 95 °C for 20 s, annealing at 55.5 °C for 30 s, extension at 72 °C for 45 s and final extension at 72 °C for 7 min. | 2.25 μL from 10X Buffer, 1.0 μL from 50 mM MgCl2, 2 μL from 10 mM dNTP mix, 1 μL from each primer at 10 mM, 0.15 μL from 5 U/μL Taq polymerase, 12.6 μL from ultrapurified water and 5 μL from template DNA. | ~544 bp | Descloux et al., 2020 |
Animal ID | SamplingDate | Biome | Gender/Age | 16S rRNA GenBank Accession Number | 23S rRNA GenBank Accession Number | RNAse P GenBank Accession Number | dnaK GenBank Accession Number |
---|---|---|---|---|---|---|---|
KA-C | 20 December 2016 | Cerrado | Male/adult | OL985895 | NS | Negative | Negative |
MO-P | 08 December 2014 | Pantanal | Male/juvenile | OL985896 | NS | Negative | Negative |
MA-P-1 ** | 28 July 2013 | Pantanal | Female/adult | OL985902 | NS | Negative | Negative |
GO-P | 13 July 2014 | Pantanal | Male/sub-adult | OL985897 | NS | Negative | Negative |
JE-P-1 ** | 06 December 2017 | Pantanal | Male/sub-adult | OL985903 | NS | Negative | Negative |
TD-P-1 * | 16 November 2015 | Pantanal | Male/sub-adult | OL985900 | OM022254 | NS | Negative |
SY-P | 28 October 2017 | Pantanal | Female/adult | OL985904 | NS | Negative | Negative |
RA-P | 04 May 2014 | Pantanal | Female/juvenile | NS | Negative | Negative | Negative |
CO-P | 31 October 218 | Pantanal | Male/sub-adult | NS | Negative | Negative | Negative |
CJO-P | 06 July 2014 | Pantanal | Male/adult | NS | Negative | Negative | Negative |
CIO-P | 23 July 2013 | Pantanal | Male/sub-adult | NS | NS | Negative | Negative |
JA-P | 05 May 2014 | Pantanal | Female/juvenile | OL985905 | NS | Negative | Negative |
LA-P | 29 August 2017 | Pantanal | Female/juvenile | NS | Negative | Negative | Negative |
AA-P | 22 October 2018 | Pantanal | Male/sub-adult | OL985907 | OM022255 | Negative | Negative |
MU-P | 22 October 2013 | Pantanal | Female/adult | NS | Negative | Negative | Negative |
IA-P | 10 December 2017 | Pantanal | Male/adult | OL985908 | Negative | Negative | Negative |
WM-P | 05 December 2014 | Pantanal | Male/juvenile | OL985909 | Negative | NS | Negative |
SA-P | 05 December 2017 | Pantanal | Female/juvenile | OL985899 | OM022256 | NS | Negative |
DA-P | 25 August 2018 | Pantanal | Female/sub-adult | OL985898 | OM022257 | OM317758 | Negative |
RTA-P | 10 May 2015 | Pantanal | Female/adult | NS | Negative | NS | Negative |
WE-P-1 ** | 24 November 2015 | Pantanal | Female/sub-adult | OL985901 | Negative | NS | Negative |
VA-P-1 * | 01 September 2018 | Pantanal | Female/sub-adult | OL985911 | Negative | Negative | Negative |
MIA-P | 25 June 2018 | Pantanal | Female/sub-adult | OL985912 | OM022258 | OM317759 | OM339521 |
GAO-P | 19 June 2018 | Pantanal | Male/adult | OL985913 | Negative | NS | Negative |
AO-P | 08 June 2016 | Pantanal | Male/juvenile | OL985914 | OM022259 | NS | Negative |
FA-P | 18 June 2018 | Pantanal | Female/adult | OL985915 | Negative | NS | Negative |
MA-P-2 ** | 19 May 2015 | Pantanal | Female/adult | NS | Negative | Negative | Negative |
ANO-C-2 * | 28 June 2017 | Cerrado | Male/adult | OL985916 | Negative | NS | Negative |
CNA-C-2 * | 19 September 2018 | Cerrado | Female/adult | OL985917 | Negative | NS | NS |
SO-C-2 * | 09 February 2017 | Cerrado | Male/adult | OL985918 | Negative | Negative | Negative |
FFO-P-2 * | 23 August 2017 | Pantanal | Male/adult | OL985919 | Negative | Negative | Negative |
JO-P-2 * | 20 August 2016 | Pantanal | Male/sub-adult | OL985920 | Negative | Negative | Negative |
DO-P-2 * | 25 June 2018 | Pantanal | Male/sub-adult | OL985921 | OM022260 | Negative | Negative |
JE-P-2 ** | 09 June 2016 | Pantanal | Male/sub-adult | NS | Negative | Negative | Negative |
BS-P | 11 June 2016 | Pantanal | Male/sub-adult | OL985922 | Negative | Negative | Negative |
TD-P-3 * | 18 June 2016 | Pantanal | Male/sub-adult | OL985923 | NS | Negative | Negative |
WE-P-2 ** | 16 June 2016 | Pantanal | Female/sub-adult | OL985924 | NS | Negative | Negative |
WE-P-3 ** | 15 December 2016 | Pantanal | Female/sub-adult | OL985925 | NS | Negative | Negative |
SAO-P-2 * | 20 October 2013 | Pantanal | Male/adult | OL985926 | Negative | Negative | Negative |
NEC09-C | 09 April 2016 | Cerrado | Female/sub-adult | NS | Negative | Negative | Negative |
NEC18-C | 29 July 2016 | Cerrado | Male/adult | NS | Negative | Negative | Negative |
Animal ID | 23S rRNA GenBank Accession Number | BLASTn Best Hit | Host | Country | Query Cover (%) | E-Value | Identity (%) | Best Hit GenBank Accession Number |
---|---|---|---|---|---|---|---|---|
TD-P-1 | OM022254 | ‘Candidatus Mycoplasma haematominutum’ | Felis catus | England | 100% | 0.0 | 91.50% | HE613254 |
AA-P | OM022255 | Mycoplasma haemofelis | Felis catus | England | 99% | 0.0 | 90.57% | NR103993 |
SA-P | OM022256 | ‘Candidatus Mycoplasma haematominutum’ | Felis catus | England | 99% | 0.0 | 91.13% | HE613254 |
DA-P | OM022257 | Mycoplasma haemofelis | Felis catus | England | 100% | 0.0 | 90.21% | NR103993 |
MIA-P | OM022258 | ‘Candidatus Mycoplasma haematominutum’ | Felis catus | England | 99% | 0.0 | 89.90% | HE613254 |
AO-P | OM022259 | ‘Candidatus Mycoplasma haematominutum’ | Felis catus | England | 100% | 0.0 | 90.36% | HE613254 |
DO-P-2 | OM022260 | ‘Candidatus Mycoplasma haematominutum’ | Felis catus | England | 100% | 0.0 | 89.59% | HE613254 |
Animal ID | RNAse P GenBank Accession Number | BLASTn Best Hit | Host | Query Cover (%) | E-Value | Identity (%) | Best Hit GenBank Accession Number | |
---|---|---|---|---|---|---|---|---|
DA-P | OM317758 | ‘Candidatus Mycoplasma haematoparvum’ | Canis lupus familiaris | Italy | 95% | 1 × 10−34 | 96.88% | MH090015 |
MIA-P | OM317758 | ‘Candidatus Mycoplasma haematoparvum’ | Canis lupus familiaris | Italy | 98% | 4 × 10−29 | 93.62% | MH090015 |
Animal ID | 23S rRNA GenBank Accession Number | BLASTn Best Hit | Host | Country | Query Cover (%) | E-Value | Identity (%) | Best Hit GenBank Accession Number |
---|---|---|---|---|---|---|---|---|
MIA-P | OM339521 | ‘Candidatus Mycoplasma erythrocervae’ | Not informed | England | 87% | 5 × 10−59 | 78.74% | KF‘51050 |
Nucleotide Diversity (π) | Genotype Diversity (dh) | Number of Haplotypes (h) | Average Number of Nucleotide Differences between All Sequences (K) | Average Number of Nucleotide Differences between Ca1 and Ca2 | Number of Fixed Differences between Ca1 and Ca2 |
---|---|---|---|---|---|
0.03112 | 0.966 | 22 | 24.21149 | 121.036 | 112 |
16S rRNA Mycoplasma spp. PCR | ||||||
---|---|---|---|---|---|---|
Variable | +/n | (%) | OR | 95% CI | p-Value | |
Gender | Male Female Total | 21/50 15/49 36/99 | 42 30.61 | 1.641 | 0.71–3.75 | 0.1198 |
Location | Pantanal Cerrado Total | 30/61 6/38 36/99 | 49.18 15.79 | 5.161 | 1.887–14.11 | 0.0003915 |
Age | Sub-adult Adult Total | 20/46 16/53 36/99 | 43.48 30.19 | 1.779 | 0.77–4.06 | 0.08528 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mongruel, A.C.B.; Medici, E.P.; Canena, A.d.C.; Calchi, A.C.; Machado, R.Z.; André, M.R. Expanding the Universe of Hemoplasmas: Multi-Locus Sequencing Reveals Putative Novel Hemoplasmas in Lowland Tapirs (Tapirus terrestris), the Largest Land Mammals in Brazil. Microorganisms 2022, 10, 614. https://doi.org/10.3390/microorganisms10030614
Mongruel ACB, Medici EP, Canena AdC, Calchi AC, Machado RZ, André MR. Expanding the Universe of Hemoplasmas: Multi-Locus Sequencing Reveals Putative Novel Hemoplasmas in Lowland Tapirs (Tapirus terrestris), the Largest Land Mammals in Brazil. Microorganisms. 2022; 10(3):614. https://doi.org/10.3390/microorganisms10030614
Chicago/Turabian StyleMongruel, Anna Claudia Baumel, Emília Patrícia Medici, Ariel da Costa Canena, Ana Cláudia Calchi, Rosangela Zacarias Machado, and Marcos Rogério André. 2022. "Expanding the Universe of Hemoplasmas: Multi-Locus Sequencing Reveals Putative Novel Hemoplasmas in Lowland Tapirs (Tapirus terrestris), the Largest Land Mammals in Brazil" Microorganisms 10, no. 3: 614. https://doi.org/10.3390/microorganisms10030614
APA StyleMongruel, A. C. B., Medici, E. P., Canena, A. d. C., Calchi, A. C., Machado, R. Z., & André, M. R. (2022). Expanding the Universe of Hemoplasmas: Multi-Locus Sequencing Reveals Putative Novel Hemoplasmas in Lowland Tapirs (Tapirus terrestris), the Largest Land Mammals in Brazil. Microorganisms, 10(3), 614. https://doi.org/10.3390/microorganisms10030614