Influence of Metal Concentration and Plumbing Materials on Legionella Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Water for Analysis
2.2. Chemical and Microbiological Analysis
2.3. Additional Information on the Water Supply Network
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauté, J.; Zucs, P.; de Jong, B.; on behalf of the European Legionnaires’ Disease Surveillance Network, C. Legionnaires’ disease in Europe, 2009–2010. Eurosurveillance 2013, 18, 20417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buse, H.Y.; Schoen, M.E.; Ashbolt, N.J. Legionellae in engineered systems and use of quantitative microbial risk assessment to predict exposure. Water Res. 2012, 46, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, Z.; Yu, J.; Cao, N.; Liu, R.; Yang, M. Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water. Appl. Environ. Microbiol. 2010, 76, 7171–7180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakić, A.; Ljoljo, D.; Ljubas, D.T. Hrvatske vode: Časopis za vodno gospodarstvo. Technical measures to prevent the propagation of bacteria Legionella spp. in hot water supply systems. Hrvat. Vode 2016, 24, 109–118. [Google Scholar]
- Momba, M.N.B.; Kfir, R.; Venter, S.N.; Cloete, T.E. Overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. Water SA 2000, 26, 1. [Google Scholar]
- Murga, R.; Forster, T.S.; Brown, E.; Pruckler, J.M.; Fields, B.S.; Donlan, R.M. Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 2001, 147, 3121–3126. [Google Scholar] [CrossRef] [Green Version]
- Farhat, M.; Trouilhé, M.C.; Forêt, C.; Hater, W.; Moletta-Denat, M.; Robine, E.; Frère, J. Chemical disinfection of Legionella in hot water systems biofilm: A pilot-scale 1 study. Water Sci. Technol. 2011, 64, 708–714. [Google Scholar] [CrossRef]
- Cohn, P.D.; Gleason, J.A.; Rudowski, E.; Tsai, S.M.; Genese, C.A.; Fagliano, J.A. Community outbreak of legionellosis and an environmental investigation into a community water system. Epidemiol. Infect. 2015, 143, 1322–1331. [Google Scholar] [CrossRef] [Green Version]
- Gryta, M. The influence of magnetic water treatment on CaCO3 scale formation in membrane distillation process. Sep. Purif. Technol. 2011, 80, 293–299. [Google Scholar] [CrossRef]
- Springston, J.P.; Yocavitch, L. Existence and control of Legionella bacteria in building water systems: A review. J. Occup. Environ. Hyg. 2017, 14, 124–134. [Google Scholar] [CrossRef]
- Flemming, H.C. Biofilm Highlights; Springer: Berlin, Germany, 2011. [Google Scholar]
- van Heijnsbergen, E.; Schalk, J.A.; Euser, S.M.; Brandsema, P.S.; den Boer, J.W.; de Roda Husman, A.M. Confirmed and Potential Sources of Legionella Reviewed. Environ. Sci. Technol. 2015, 49, 4797–4815. [Google Scholar] [CrossRef]
- Bargellini, A.; Marchesi, I.; Righi, E.; Ferrari, A.; Cencetti, S.; Borella, P.; Rovesti, S. Parameters predictive of Legionella contamination in hot water systems: Association with trace elements and heterotrophic plate counts. Water Res. 2011, 45, 2315–2321. [Google Scholar] [CrossRef]
- EN ISO 19458:2006; Water Quality—Sampling for Microbiological Analysis. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 11731-2:2004; Water Quality—Detection and Enumeration of Legionella—Part 2: Direct Membrane Filtration Method for Waters with Low Bacterial Counts. International Organization for Standardization (ISO): Geneva, Switzerland, 2004.
- Arrigo, I.; Galia, E.; Fasciana, T.; Diquattro, O.; Tricoli, M.R.; Serra, N.; Palermo, M.; Giammanco, A. Four-Year Environmental Surveillance Program of Legionella spp. in One of Palermo’s Largest Hospitals. Microorganisms 2022, 10, 764. [Google Scholar] [CrossRef]
- Fasciana, T.; Mascarella, C.; Distefano, S.A.; Calà, C.; Capra, G.; Rampulla, A.; Di Carlo, P.; Palermo, M.; Giammanco, A. Cluster of Legionnaires’ Disease in an Italian Prison. Int. J. Environ. Res. Public Health 2019, 16, 2062. [Google Scholar] [CrossRef] [Green Version]
- Edagawa, A.; Kimura, A.; Doi, H.; Tanaka, H.; Tomioka, K.; Sakabe, K.; Nakajima, C.; Suzuki, Y. Detection of culturable and nonculturable Legionella species from hot water systems of public buildings in Japan. J. Appl. Microbiol. 2008, 105, 2104–2114. [Google Scholar] [CrossRef]
- Doménech-Sánchez, A.; Laso, E.; Albertí, S. Determination of Legionella spp. prevalence in Spanish hotels in five years. Are tourists really at risk? Travel Med. Infect. Dis. 2022, 46, 102269. [Google Scholar] [CrossRef]
- Mouchtouri, V.; Velonakis, E.; Hadjichristodoulou, C. Thermal disinfection of hotels, hospitals, and athletic venues hot water distribution systems contaminated by Legionella species. Am. J. Infect. Control 2007, 35, 623–627. [Google Scholar] [CrossRef]
- Assaidi, A.; Soummane, A.; Ellouali, M.; Latrache, H.; Timinouni, M.; Zahir, H.; Mliji, E.M. Environmental surveillance of Legionella pneumophila in hot water systems of hotels in Morocco. J. Water Health 2021, 19, 855–863. [Google Scholar] [CrossRef]
- Borella, P.; Montagna, M.T.; Romano-Spica, V.; Stampi, S.; Stancanelli, G.; Triassi, M.; Neglia, R.; Marchesi, I.; Fantuzzi, G.; Tatò, D.; et al. Legionella infection risk from domestic hot water. Emerg. Infect. Dis. 2004, 10, 457–464. [Google Scholar] [CrossRef]
- Henne, K.; Kahlisch, L.; Höfle, M.G.; Brettar, I. Seasonal dynamics of bacterial community structure and composition in cold and hot drinking water derived from surface water reservoirs. Water Res. 2013, 47, 5614–5630. [Google Scholar] [CrossRef]
- Kao, P.M.; Hsu, B.M.; Chang, T.Y.; Hsu, T.K.; Tzeng, K.J.; Huang, Y.L. Seasonal variation of Legionella in Taiwan’s reservoir and its relationships with environmental factors. Environ. Sci. Pollut. Res. 2014, 22, 6104–6111. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.J.; Xi, C.; Raskin, L. Bacterial community structure in the drinking water microbiome is governed by filtration processes. Environ. Sci. Technol. 2012, 46, 8851–8859. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.S.; Wang, F.; Becker, W.C.; Edwards, M.A. A 21st-Century Perspective on Calcium Carbonate Formation in Potable Water Systems. Environ. Eng. Sci. 2017, 35, 143–158. [Google Scholar] [CrossRef]
- Martin, R.L.; Harrison, K.; Proctor, C.R.; Martin, A.; Williams, K.; Pruden, A.; Edwards, M.A. Chlorine Disinfection of Legionella spp., L. pneumophila, and Acanthamoeba under Warm Water Premise Plumbing Conditions. Microorganisms 2020, 8, 1452. [Google Scholar] [CrossRef]
- Leoni, E.; De Luca, G.; Legnani, P.P.; Sacchetti, R.; Stampi, S.; Zanetti, F. Legionella waterline colonization: Detection of Legionella species in domestic, hotel and hospital hot water systems. J. Appl. Microbiol. 2005, 98, 373–379. [Google Scholar] [CrossRef] [Green Version]
- States, S.J.; Conley, L.F.; Ceraso, M.; Stephenson, T.E.; Wolford, R.S.; Wadowsky, R.M.; McNamara, A.M.; Yee, R.B. Effects of metals on Legionella pneumophila growth in drinking water plumbing systems. Appl. Environ. Microbiol. 1985, 50, 1149–1154. [Google Scholar] [CrossRef] [Green Version]
- Koubar, M.; Rodier, M.H.; Frère, J. Involvement of minerals in adherence of Legionella pneumophila to surfaces. Curr. Microbiol. 2013, 66, 437–442. [Google Scholar] [CrossRef]
- Manske, C.; Hilbi, H. Metabolism of the vacuolar pathogen Legionella and implications for virulence. Front. Cell. Infect. Microbiol. 2014, 4, 125. [Google Scholar] [CrossRef]
- Assaidi, A.; Ellouali, M.; Latrache, H.; Mabrouki, M.; Hamadi, F.; Timinouni, M.; Zahir, H.; El Mdaghri, N.; Barguigua, A.; Mliji, E.M. Effect of temperature and plumbing materials on biofilm formation by Legionella pneumophila serogroup 1 and 2–15. J. Adhes. Sci. Technol. 2018, 32, 1471–1484. [Google Scholar] [CrossRef]
- Ji, P.; Parks, J.; Edwards, M.A.; Pruden, A. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome. PLoS ONE 2015, 10, e0141087. [Google Scholar] [CrossRef] [Green Version]
- Herlemann, D.P.R.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 2007, 104, 11436–11440. [Google Scholar] [CrossRef] [Green Version]
- Cullom, A.C.; Martin, R.L.; Song, Y.; Williams, K.; Williams, A.; Pruden, A.; Edwards, M.A. Critical Review: Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish Growth of Legionella and Other Opportunistic Pathogens. Pathogens 2020, 9, 957. [Google Scholar] [CrossRef]
- Pierre, D.; Baron, J.L.; Ma, X.; Sidari, F.P.; Wagener, M.M.; Stout, J.E. Water Quality as a Predictor of Legionella Positivity of Building Water Systems. Pathogens 2019, 8, 295. [Google Scholar] [CrossRef] [Green Version]
- Stout, J.E.; Yu, V.L.; Yee, Y.C.; Vaccarello, S.; Diven, W.; Lee, T.C. Legionella pneumophila in residential water supplies: Environmental surveillance with clinical assessment for Legionnaires’ disease. Epidemiol. Infect. 1992, 109, 49–57. [Google Scholar]
- Vickers, R.M.; Yu, V.L.; Hanna, S.S.; Muraca, P.; Diven, W.; Carmen, N.; Taylor, F.B. Determinants of Legionella pneumophila contamination of water distribution systems: 15-hospital prospective study. Infect. Control 1987, 8, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.J.; Choi, Y.J.; Ka, J.O. Effects of diverse water pipe materials on bacterial communities and water quality in the annular reactor. J. Microbiol. Biotechnol. 2011, 21, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Ha, S.-D.; Jahid, I.K. Multispecies Interactions in Biofilms and Implications to Safety of Drinking Water Distribution System. Microbiol. Biotechnol. Lett. 2019, 47, 473–486. [Google Scholar] [CrossRef]
- Ditommaso, S.; Giacomuzzi, M.; Gentile, M.; Moiraghi, A.R.; Zotti, C.M. Effective environmental sampling strategies for monitoring Legionella spp. contamination in hot water systems. Am. J. Infect. Control 2010, 38, 344–349. [Google Scholar] [CrossRef]
- Zhang, Z.; Stout, J.E.; Yu, V.L.; Vidic, R. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems. Water Res. 2008, 42, 129–136. [Google Scholar] [CrossRef]
Presence of L. pneumophila | Number of Samples | Types of Pipes | |
---|---|---|---|
Galvanized Iron | Plastic | ||
Negative samples | N | 37 | 46 |
% | 71.2 | 82.2 | |
Positive samples | N | 15 | 10 |
% | 28.8 | 17.8 | |
Total number of samples | 52 | 56 |
Facility | T (°C) * | pH | Cl2 (mg/L) | Ca (mg/L) | Mg (mg/L) | Opening Regime | Maintenance Regime |
---|---|---|---|---|---|---|---|
Hotel 1 | 51.0 ± 8.4 | 8.07 ± 0.30 | 0.16 ± 0.08 | 66.0 ± 10.4 | 3.2 ± 0.9 | year-round | (1) keeping cold water temperature <20 °C and hot water temperature >50 °C; (2) before the start of the new season the system was pasteurized and hyperchlorinated; (3) weekly flushing of outlets for at least 5 min |
Hotel 2 | 53.0 ± 5.0 | 8.24 ± 0.15 | 0.21 ± 0.02 | 67.7 ± 6.6 | 4.3 ± 0.8 | seasonally | |
Hotel 3 | 54.6 ± 4.8 | 8.12 ± 0.12 | 0.22 ± 0.06 | 67.8 ± 8.1 | 2.8 ± 1.0 | year-round | |
Hotel 4 | 53.8 ± 6.0 | 8.04 ± 0.12 | 0.23 ± 0.04 | 69.7 ± 7.2 | 3.7 ± 4.3 | seasonally |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakić, A.; Vukić Lušić, D.; Jurčev Savičević, A. Influence of Metal Concentration and Plumbing Materials on Legionella Contamination. Microorganisms 2022, 10, 1051. https://doi.org/10.3390/microorganisms10051051
Rakić A, Vukić Lušić D, Jurčev Savičević A. Influence of Metal Concentration and Plumbing Materials on Legionella Contamination. Microorganisms. 2022; 10(5):1051. https://doi.org/10.3390/microorganisms10051051
Chicago/Turabian StyleRakić, Anita, Darija Vukić Lušić, and Anamarija Jurčev Savičević. 2022. "Influence of Metal Concentration and Plumbing Materials on Legionella Contamination" Microorganisms 10, no. 5: 1051. https://doi.org/10.3390/microorganisms10051051
APA StyleRakić, A., Vukić Lušić, D., & Jurčev Savičević, A. (2022). Influence of Metal Concentration and Plumbing Materials on Legionella Contamination. Microorganisms, 10(5), 1051. https://doi.org/10.3390/microorganisms10051051