Lactic Acid Bacteria and Bioactive Amines Identified during Manipueira Fermentation for Tucupi Production
Abstract
:1. Introduction
1.1. Raw Material
1.2. Manipueira’s Fermentation
1.3. Isolation of Lactic Acid Bacteria (LAB)
1.4. Molecular Identification
1.4.1. DNA Extraction
1.4.2. Polymerase Chain Reaction (PCR)
1.5. Bioactive Amine Determination
1.6. Statistical Analysis
2. Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | cadaverine |
HIM | histamine |
HPLC | High Performance Liquid Chromatography |
LAB | Lactic Acid Bacteria |
log CFU/mL | log Colony Forming Units per milliliter of sample |
MRS | De Man, Rogosa & Sharpe |
MAOI | Monoaminoxidase Inhibitor |
NOAEL | No Adverse Effect Levels |
PCR | Polymerase Chain Reaction |
PUT | putrescine |
SPD | spermidine |
TE | Tris-EDTA |
TYM | tyramine |
References
- Avancini, S.R.P.; Faccin, G.L.; Vieira, M.A.; Rovaris, A.A.; Podestá, R.; Tramonte, R.; de Souza, N.M.A.; Amante, E.R. Cassava starch fermentation wastewater: Characterization and preliminary toxicological studies. Food Chem. Toxicol. 2007, 45, 2273–2278. [Google Scholar] [CrossRef]
- Elijah, A.I.; Atanda, O.O.; Popoola, A.R.; Uzochukwu, S.V.A. Molecular characterization and potential of bacterial species associated with cassava waste. Niger. Food J. 2014, 32, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Campos, A.P.R.; Mattietto, R.d.A.; Carvalho, A.V. Optimization of parameters technological to process tucupi and study of product stability. Food Sci. Technol. 2019, 39, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Chisté, R.C.; Cohen, K.D.O. Teor de cianeto total e livre nas etapas de processamento do tucupi. Rev. Inst. Adolfo Lutz 2011, 70, 41–46. [Google Scholar]
- Costa, T.d.S.; do Carmo, J.R.; Pena, R.d.S. Powdered tucupi condiment: Sensory and hygroscopic evaluation. Food Sci. Technol. 2018, 38, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Brito, B.d.N.d.C.; Chisté, R.C.; Lopes, A.S.; Glória, M.B.A.; Pena, R.d.S. Influence of spontaneous fermentation of manipueira on bioactive amine and carotenoid profiles during tucupi production. Food Res. Int. 2019, 120, 209–216. [Google Scholar] [CrossRef]
- Abriba., C.; Henshaw, E.E.; Lenox, J.; Eja, M.; Agbor, B.E. Microbial succession and odour reduction during the controlled fermentation of cassava tubers for the production of ‘fofo’, a staple food consumed popularly in Nigeria. J. Microbiol. Biotecnol. 2012, 2, 500–506. [Google Scholar]
- Tetchi, F.A.; Solomen, O.W.; Célah, K.A.; Georges, A.N. Effect of Cassava variety and fermentation time on biochemical and microbiological characteristics of raw artisanal starter for Attiéké production. Innov. Rom. Food Biotechnol. 2012, 10, 40–47. [Google Scholar]
- Elsanhoty, R.M.; Ramadan, M.F. Genetic screening of biogenic amines production capacity from some lactic acid bacteria strains. Food Control. 2016, 68, 220–228. [Google Scholar] [CrossRef]
- Camu, N.; González, Á.; De Winter, T.; Van Schoor, A.; De Bruyne, K.; Vandamme, P.; Takrama, J.S.; Addo, S.K.; De Vuyst, L. Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Appl. Environ. Microbiol. 2008, 74, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Papalexandratou, Z.; Falony, G.; Romanens, E.; Jimenez, J.C.; Amores, F.; Daniel, H.M.; De Vuyst, L. Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional ecuadorian spontaneous cocoa bean fermentations. Appl. Environ. Microbiol. 2011, 77, 7698–7714. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Russell, D.W. Molecular Cloning—A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Pr: Long Island, NY, USA, 2001. [Google Scholar]
- Morales, S.E.; Holben, W.E. Empirical testing of 16S rRNA gene PCR primer pairs reveals variance in target specificity and efficacy not suggested by in silico analysis. Appl. Environ. Microbiol. 2009, 75, 2677–2683. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, J.; Gonzalez, J.M.; Saiz-Jimenez, C.; Ludwig, W. Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira Cave using 23S rRNA sequence analyses. Geomicrobiol. J. 2005, 22, 379–388. [Google Scholar] [CrossRef]
- Brito, B.d.N.d.C.; Chisté, R.C.; Pena, R.d.S.; Gloria, M.B.A.; Lopes, A.S. Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chem. 2017, 228, 484–490. [Google Scholar] [CrossRef]
- Coulin, P.; Farah, Z.; Assanvo, J.; Spillmann, H.; Puhan, Z. Characterisation of the microflora of attiéké, a fermented cassava product, during traditional small-scale preparation. Int. J. Food Microbiol. 2006, 106, 131–136. [Google Scholar] [CrossRef]
- Henríquez-Aedo, K.; Durán, D.; Garcia, A.; Hengst, M.B.; Aranda, M. Identification of biogenic amines-producing lactic acid bacteria isolated from spontaneous malolactic fermentation of chilean red wines. LWT Food Sci. Technol. 2016, 68, 183–189. [Google Scholar] [CrossRef]
- Lacerda, I.C.A.; Miranda, R.L.; Borelli, B.M.; Nunes, Á.C.; Nardi, R.M.D.; Lachance, M.A.; Rosa, C.A. Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil. Int. J. Food Microbiol. 2005, 105, 213–219. [Google Scholar] [CrossRef]
- Ramos, C.L.; de Sousa, E.S.O.; Ribeiro, J.; Almeida, T.M.M.; Santos, C.C.A.A.; Abegg, M.A.; Schwan, R.F. Microbiological and chemical characteristics of tarubá, na indigenous beverage produced from solid cassava fermentation. Food Microbiol. 2015, 49, 182–188. [Google Scholar] [CrossRef]
- Miguel, M.G.C.P.; Collela, C.F.; de Almeida, E.G.; Dias, D.R.; Schwan, R.F. Physicochemical and microbiological description of Caxiri—A cassava and corn alcoholic beverage. Int. J. Food Sci. 2015, 50, 2537–2544. [Google Scholar] [CrossRef]
- Ampe, F.; Sirvent, A.; Zakhia, N. Dynamics of the microbial community responsible for traditional sour cassava starch fermentation studied by denaturing gradient gel electrophoresis and quantitative rRNA hybridization. Int. J. Food Microbiol. 2001, 65, 45–54. [Google Scholar] [CrossRef]
- Spano, G.; Russo, P.; Lonvaud-Funel, A.; Lucas, P.; Alexandre, H.; Grandvalet, C.; Coton, E.; Coton, M.; Barnavon, L.; Bach, B.; et al. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 2010, 64, S95–S100. [Google Scholar] [CrossRef] [Green Version]
- Kalač, P.; Krausová, P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005, 90, 219–230. [Google Scholar] [CrossRef]
- Kalač, P. Health effects and occurrence of dietary polyamines: A review for the period 2005-mid 2013. Food Chem. 2014, 161, 27–39. [Google Scholar] [CrossRef]
- Gloria, M.B.A. Bioactive Amines. In Handbook of Food Science, Technology, and Engineering; Hui, H., Nollet, L.L., Eds.; Taylor and Francis: New York, NY, USA, 2005; Volume 1, pp. 13–32. [Google Scholar]
- García-Ruiz, A.; González-Rompinelli, E.M.; Bartolomé, B.; Moreno-Arribas, M.V. Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int. J. Food Microbiol. 2011, 148, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Landete, J.M.; de las Rivas, B.; Marcobal, A.; Muñoz, R. Molecular methods for the detection of biogenic amine-producing bacteria on foods. Int. J. Food Microbiol. 2007, 117, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Glória, M.B.A.; Vieria, S.M. Technological and toxicological significance of bioactive amines in grapes and wines. In Food; Benkeblia, N., Rasooli, I., Eds.; Global Science Books: Kagawa ken, Japan, 2007; Volume 1, pp. 258–270. [Google Scholar]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 1–93. [Google Scholar] [CrossRef] [Green Version]
Fermentation
Time | LAB Count 1 (log CFU/mL) | Lactobacilus
Species | GenBank
Access | Similarity
(%) 2 |
---|---|---|---|---|
0 h | 7.2 ± 0.1 b | |||
L. fermentum | MK640639.1 | |||
2 | L. fermentum | MK616469.1 | 100 | |
3 | L. fermentum | MK640639.1 | 99 | |
4 | L. fermentum | MK640639.1 | 100 | |
5 | L. fermentum | MK640639.1 | 93 | |
6 | L. fermentum | MH817767.1 | 98 | |
7 | L. fermentum | MK640639.1 | 99 | |
8 | L. fermentum | MK640639.1 | 99 | |
9 | L. plantarum | MK616469.1 | 98 | |
10 | L. fermentum | MK639007.1 | 99 | |
12 h | 8.2 ± 0.1 a | |||
1 | L. fermentum | MK640639.1 | 100 | |
2 | L. fermentum | MK640639.1 | 100 | |
3 | L. fermentum | MK639007.1 | 99 | |
4 | L. fermentum | MK640639.1 | 99 | |
24 h | 8.8 ± 0.1 a | |||
1 | L. fermentum | CP035055.1 | 96 | |
2 | L. fermentum | MF108112.1 | 96 | |
3 | L. fermentum | MH175491.1 | 94 | |
4 | L. fermentum | MK640639.1 | 99 | |
5 | L. fermentum | MK640639.1 | 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, B.d.N.d.C.; Chisté, R.C.; Lopes, A.S.; Gloria, M.B.A.; Chagas Junior, G.C.A.; Pena, R.d.S. Lactic Acid Bacteria and Bioactive Amines Identified during Manipueira Fermentation for Tucupi Production. Microorganisms 2022, 10, 840. https://doi.org/10.3390/microorganisms10050840
Brito BdNdC, Chisté RC, Lopes AS, Gloria MBA, Chagas Junior GCA, Pena RdS. Lactic Acid Bacteria and Bioactive Amines Identified during Manipueira Fermentation for Tucupi Production. Microorganisms. 2022; 10(5):840. https://doi.org/10.3390/microorganisms10050840
Chicago/Turabian StyleBrito, Brenda de Nazaré do Carmo, Renan Campos Chisté, Alessandra Santos Lopes, Maria Beatriz Abreu Gloria, Gilson Celso Albuquerque Chagas Junior, and Rosinelson da Silva Pena. 2022. "Lactic Acid Bacteria and Bioactive Amines Identified during Manipueira Fermentation for Tucupi Production" Microorganisms 10, no. 5: 840. https://doi.org/10.3390/microorganisms10050840
APA StyleBrito, B. d. N. d. C., Chisté, R. C., Lopes, A. S., Gloria, M. B. A., Chagas Junior, G. C. A., & Pena, R. d. S. (2022). Lactic Acid Bacteria and Bioactive Amines Identified during Manipueira Fermentation for Tucupi Production. Microorganisms, 10(5), 840. https://doi.org/10.3390/microorganisms10050840