Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury
Abstract
:1. Introduction
2. Organization of the PNS
2.1. The Autonomic Nervous System (ANS)
2.2. Role of Myelin in Nerve Conduction
2.3. Sequelae Following Traumatic Injury to Peripheral Nerves
3. Attributes of BoNT/A That Make a Promising Therapeutic Agent for Treatment of PNI
3.1. BoNT/A Enhances Recovery from PNI in Chronic Constriction Injury and Nerve Crush Models in Mice and Rats
3.2. BoNT/A Enhances Recovery from PNI in Rat Femoral Nerve Transection-Repair Model
3.3. Efficacy of Intramuscular BoNT/A Injected in the Contralateral Hindlimb
3.4. BoNT/B Improves Neuropathic Pain but Does Not Accelerate Functional Recovery
3.5. Effect of BoNT/A Preconditioning on Reinnervation
3.6. Potential Mechanisms of BoNT/A-Induced Acceleration of Nerve Regeneration
3.6.1. BoNT/A Action Mediated via Interaction with Schwann Cells
3.6.2. BoNT/A Action Mediated via Improved Blood Flow and Increased Angiogenesis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Caillaud, M.; Richard, L.; Vallat, J.-M.; Desmoulière, A.; Billet, F. Peripheral nerve regeneration and intraneural revascularization. Neural. Regen. Res. 2019, 14, 24–33. [Google Scholar] [CrossRef]
- Campbell, W.W. Evaluation and management of peripheral nerve injury. Clin. Neurophysiol. 2008, 119, 1951–1965. [Google Scholar] [CrossRef] [Green Version]
- Wagstaff, L.J.; Gomez-Sanchez, J.A.; Fazal, S.V.; Otto, G.W.; Kilpatrick, A.M.; Michael, K.; Wong, L.Y.N.; Ma, K.H.; Turmaine, M.; Svaren, J.; et al. Failures of nerve regeneration caused by aging or chronic denervation are rescued by restoring Schwann cell c-Jun. eLife 2021, 10, e62232. [Google Scholar] [CrossRef] [PubMed]
- Simon, N.G.; Spinner, R.J.; Kline, D.G.; Kliot, M. Advances in the neurological and neurosurgical management of peripheral nerve trauma. J. Neurol. Neurosurg. Psychiatry 2016, 87, 198–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korus, L.; Ross, D.C.; Doherty, C.D.; Miller, T.A. Nerve transfers and neurotization in peripheral nerve injury, from surgery to rehabilitation. J. Neurol. Neurosurg. Psychiatry 2016, 87, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.; Munro, C.A.; Prasad, V.S.; Midha, R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J. Trauma 1998, 45, 116–122. [Google Scholar] [CrossRef]
- Robinson, L.R. Traumatic injury to peripheral nerves. Muscle Nerve 2000, 23, 863–873. [Google Scholar] [CrossRef]
- Daly, W.; Yao, L.; Zeugolis, D.; Windebank, A.; Pandit, A. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery. J. R. Soc. Interface 2012, 9, 202–221. [Google Scholar] [CrossRef] [Green Version]
- Huckhagel, T.; Nüchtern, J.; Regelsberger, J.; Lefering, R. Nerve injury in severe trauma with upper extremity involvement: Evaluation of 49,382 patients from the TraumaRegister DGU® between 2002 and 2015. Scand. J. Trauma Resusc. Emerg. Med. 2018, 26, 1–8. [Google Scholar] [CrossRef]
- Karsy, M.; Watkins, R.; Jensen, M.R.; Guan, J.; Brock, A.A.; Mahan, M.A. Trends and cost analysis of upper extremity nerve injury using the National (Nationwide) Inpatient Sample. World Neurosurg. 2019, 123, e488–e500. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.H.; Karsy, M.; Jensen, M.R.; Guan, J.; Eli, I.; Mahan, M.A. Trends and cost-analysis of lower extremity nerve injury using the National Inpatient Sample. Neurosurgery 2019, 85, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Bergmeister, K.D.; Große-Hartlage, L.; Daeschler, S.C.; Rhodius, P.; Böcker, A.; Beyersdorff, M.; Kern, A.O.; Kneser, U.; Harhaus, L. Acute and long-term costs of 268 peripheral nerve injuries in the upper extremity. PLoS ONE 2020, 15, e0229530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birch, R.; Misra, P.; Stewart, M.P.; Eardley, W.G.; Ramasamy, A.; Brown, K.; Shenoy, R.; Anand, P.; Clasper, J.; Dunn, R.; et al. Nerve injuries sustained during warfare: Part I—Epidemiology. J. Bone Jt. Surg. Br. 2012, 94-B, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Maričević, A.; Erceg, W. War injuries to the extremities. Mil. Med. 1997, 162, 808–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.L.; Ju, J.T.; Liu, W.B.; Zhang, J. Military trauma and surgical procedures in conflict area: A review for the utilization of forward surgical team. Mil. Med. 2018, 183, e97–e106. [Google Scholar] [CrossRef] [Green Version]
- Wade, S.M.; Nesti, L.J.; Cook, G.A.; Bresner, J.S.; Happel, J.P.; Villahermosa, A.J.; Melendez-Munoz, A.M.; Gomez, Y.D.; Reece, D.E.; Miller, M.E.; et al. Managing complex peripheral nerve injuries within the military health system: A multidisciplinary approach to treatment, education, and research at Walter Reed National Military Medical Center. Mil. Med. 2020, 185, e825–e830. [Google Scholar] [CrossRef] [Green Version]
- Chandler, H.; MacLeod, K.; Penn-Barwell, J.G. Extremity injuries sustained by the UK military in the Iraq and Afghanistan conflicts: 2003–2014. Injury 2017, 48, 1439–1443. [Google Scholar] [CrossRef]
- Brown, K.V.; Guthrie, H.C.; Ramasamy, A.; Kendrew, J.M.; Clasper, J. Modern military surgery: Lessons from Iraq and Afghanistan. J. Bone Jt. Surg. Br. 2012, 94-B, 536–543. [Google Scholar] [CrossRef]
- Seddon, H.J. The use of autogenous grafts for the repair of large gaps in peripheral nerves. Br. J. Surg. 1947, 35, 151–167. [Google Scholar] [CrossRef]
- Seddon, H.J. Three types of nerve injury. Brain 1943, 66, 237–288. [Google Scholar] [CrossRef]
- Sunderland, S. A classification of peripheral nerve injuries producing loss of function. Brain 1951, 74, 491–516. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.; Tyreman, N.; Raji, M.A. The basis for diminished functional recovery after delayed peripheral nerve repair. J. Neurosci. 2011, 31, 5325–5334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, J.; Quan, A.; Budihardjo, J.; Xiang, S.; Wang, H.; Koshy, K.; Cashman, C.; Lee, W.P.A.; Hoke, A.; Tuffaha, S.; et al. Growth hormone improves nerve regeneration, muscle re-innervation, and functional outcomes after chronic denervation injury. Sci. Rep. 2019, 9, 3117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.; Sulaiman, O.A.R. Transforming growth factor beta 1 regulates fibroblast growth factor 7 expression in Schwann cells. Ochsner J. 2019, 19, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Yuan, W. Dexamethasone enhanced functional recovery after sciatic nerve crush injury in rats. BioMed Res. Int. 2015, 2015, 627923. [Google Scholar] [CrossRef]
- Udina, E.; Rodríguez, F.J.; Verdú, E.; Espejo, M.; Gold, B.G.; Navarro, X. FK506 enhances regeneration of axons across long peripheral nerve gaps repaired with collagen guides seeded with allogeneic Schwann cells. Glia 2004, 47, 120–129. [Google Scholar] [CrossRef]
- Bayrak, A.F.; Olgun, Y.; Ozbakan, A.; Aktas, S.; Kulan, C.A.; Kamaci, G.; Demir, E.; Yilmaz, O.; Olgun, L. The effect of insulin like growth factor-1 on recovery of facial nerve crush injury. Clin. Exp. Otorhinolaryngol. 2017, 10, 296–302. [Google Scholar] [CrossRef]
- Mohammadi, R.; Ahsan, S.; Masoumi, M.; Amini, K. Vascular endothelial growth factor promotes peripheral nerve regeneration after sciatic nerve transection in rat. Chin. J. Traumatol. 2013, 16, 323–329. [Google Scholar] [CrossRef]
- Sulaiman, W.; Nguyen, D.H. Transforming growth factor beta 1, a cytokine with regenerative functions. Neural Regen. Res. 2016, 11, 1549–1552. [Google Scholar] [CrossRef]
- Irintchev, M.; Guntinas-Lichius, O.; Irintchev, A. Botulinum neurotoxin application to the severed femoral nerve modulates spinal synaptic responses to axotomy and enhances motor recovery in rats. Neural Plast. 2018, 2018, 7975013. [Google Scholar] [CrossRef]
- Yue, L.; Talukder, M.A.; Gurjar, A.; Lee, J.I.; Noble, M.; Dirksen, R.T.; Chakkalakal, J.; Elfar, J.C. 4-Aminopyridine attenuates muscle atrophy after sciatic nerve crush injury in mice. Muscle Nerve 2019, 60, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Cobianchi, S.; Jaramillo, J.; Luvisetto, S.; Pavone, F.; Navarro, X. Botulinum neurotoxin A promotes functional recovery after peripheral nerve injury by increasing regeneration of myelinated fibers. Neuroscience 2017, 359, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Bota, O.; Fodor, L. The influence of drugs on peripheral nerve regeneration. Drug Metab. Rev. 2019, 51, 266–292. [Google Scholar] [CrossRef]
- Cattin, A.-L.; Burden, J.J.; Van Emmenis, L.V.; Mackenzie, F.E.; Hoving, J.J.A.; Calavia, N.G.; Guo, Y.; McLaughlin, M.; Rosenberg, L.H.; Quereda, V.; et al. Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell 2015, 162, 1127–1139. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.K.; Oh, E.J.; Chung, J.Y.; Park, J.W.; Cho, B.C.; Chung, H.Y. The effects of botulinum toxin A on the survival of a random cutaneous flap. J. Plast. Reconstr. Aesthet. Surg. 2009, 62, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Park, T.H.; Lee, S.H.; Park, Y.J.; Lee, Y.S.; Rah, D.K.; Kim, S.Y. Presurgical botulinum toxin A treatment increases angiogenesis by hypoxia-inducible factor-1α/vascular endothelial growth factor and subsequent superiorly based transverse rectus abdominis myocutaneous flap survival in a rat model. Ann. Plast. Surg. 2016, 76, 723–728. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Z.; Wang, J.; Zhang, X.; Lei, L.; Zhang, Y.; Su, Y.; Ma, X. Effects of botulinum toxin A on the blood flow in expanded rat skin. J. Investig. Surg. 2022, 10, 1–8. [Google Scholar] [CrossRef]
- Norheim, A.J.; Mercer, J.; Musial, F.; de Weerd, L. A new treatment for frostbite sequelae; botulinum toxin. Int. J. Circumpolar Health 2017, 76, 1273677. [Google Scholar] [CrossRef]
- Neumeister, M.W. The role of botulinum toxin in vasospastic disorders of the hand. Hand Clin. 2015, 31, 23–37. [Google Scholar] [CrossRef]
- Laarakker, A.S.; Borah, G. Botulinum toxin a salvage of ischemic hand trauma. Plast. Reconstr. Surg. 2020, 145, 161–164. [Google Scholar] [CrossRef]
- Fonfria, E.; Maignel, J.; Lezmi, S.; Martin, V.; Splevins, A.; Shubber, S. The expanding therapeutic utility of botulinum neurotoxins. Toxins 2018, 10, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Chand, S.; Majumdar, R.; Sud, A. Effect of botulinum toxin type-A in spasticity and functional outcome of upper limbs in cerebral palsy. J. Clin. Orthop. Trauma 2020, 11, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Agostini, E.C.; Barbanti, P.; Calabresi, P.; Colombo, B.; Cortelli, P.; Frediani, F.; Geppetti, P.; Grazzi, L.; Leone, M.; Martelletti, P.; et al. Current and emerging evidence-based treatment options in chronic migraine: A narrative review. J. Headache Pain 2019, 20, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellett, S.; Yaksh, T.L.; Ramachandran, R. Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins 2015, 7, 4519–4563. [Google Scholar] [CrossRef] [PubMed]
- Safarpour, Y.; Jabbari, B. Botulinum toxin treatment of pain syndromes—An evidence based review. Toxicon 2018, 147, 120–128. [Google Scholar] [CrossRef]
- Nestor, M.; Ablon, G.; Pickett, A. Key parameters for the use of abobotulinumtoxinA in aesthetics: Onset and duration. Aesthet. Surg. J. 2017, 37, S20–S31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Park, H.J. Botulinum toxin for the treatment of neuropathic pain. Toxins 2017, 9, 260. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.O.; Jabbari, B. Botulinum neurotoxins and cancer—A review of the literature. Toxins 2020, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Luvisetto, S. Botulinum toxin and neuronal regeneration after traumatic injury of central and peripheral nervous system. Toxins 2020, 12, 434. [Google Scholar] [CrossRef]
- Chellapandi, P.; Prisilla, A. Structure, function and evolution of Clostridium botulinum C2 and C3 toxins: Insight to poultry and veterinary vaccines. Curr. Protein Pept. Sci. 2017, 18, 412–424. [Google Scholar] [CrossRef]
- Guth, L. Regeneration in the mammalian peripheral nervous system. Physiol. Rev. 1956, 36, 441–478. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.D. Peripheral nerve fascicles: Anatomy and clinical relevance. Muscle Nerve 2003, 28, 525–541. [Google Scholar] [CrossRef] [PubMed]
- Dubový, P. Schwann cells and endoneurial extracellular matrix molecules as potential cues for sorting of regenerated axons: A review. Anat. Sci. Int. 2004, 79, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Poduslo, J.F.; Low, P.A.; Nickander, K.K.; Dyck, P.J. Mammalian endoneurial fluid: Collection and protein analysis from normal and crushed nerves. Brain Res. 1985, 332, 91–102. [Google Scholar] [CrossRef]
- Richner, M.; Ferreira, N.; Dudele, A.; Jensen, T.S.; Vaegter, C.B.; Gonçalves, N.P. Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy. Front. Neurosci. 2019, 12, 1038. [Google Scholar] [CrossRef] [Green Version]
- Giannini, C.; Dyck, P.J. Basement membrane reduplication and pericyte degeneration precede development of diabetic polyneuropathy and are associated with its severity. Ann. Neurol. 1995, 37, 498–504. [Google Scholar] [CrossRef]
- Ubogu, E.E. Inflammatory neuropathies: Pathology, molecular markers and targets for specific therapeutic intervention. Acta Neuropathol. 2015, 130, 445–468. [Google Scholar] [CrossRef] [Green Version]
- Palladino, S.P.; Helton, E.S.; Jain, P.; Dong, C.; Crowley, M.R.; Crossman, D.K.; Ubogu, E.E. The human blood-nerve barrier transcriptome. Sci. Rep. 2017, 7, 17477. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.K.; Jones, D.G. The cellular response to nerve injury. II. Regeneration of the perineurium after nerve section. J. Anat. 1967, 101, 45–55. [Google Scholar]
- Schröder, J.M.; May, R.; Weis, J. Perineurial cells are the first to traverse gaps of peripheral nerves in silicone tubes. Clin. Neurol. Neurosurg. 1993, 95, S78–S83. [Google Scholar] [CrossRef]
- Weis, J.; May, R.; Schröder, J.M. Fine structural and immunohistochemical identification of perineurial cells connecting proximal and distal stumps of transected peripheral nerves at early stages of regeneration in silicone tubes. Acta Neuropathol. 1994, 88, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.M.; Kucenas, S. Perineurial glia are essential for motor axon regrowth following nerve injury. J. Neurosci. 2014, 34, 12762–12777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinsell, D.; Keating, C.P. Peripheral nerve reconstruction after injury: A review of clinical and experimental therapies. Biomed. Res. Int. 2014, 2014, 698256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langley, J.N. On the union of cranial autonomic (visceral) fibres with nerve cells of the superior cervical ganglion. J. Physiol. 1898, 23, 240–270. [Google Scholar] [CrossRef]
- Saper, C.B. The central autonomic nervous system: Conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 2002, 25, 433–469. [Google Scholar] [CrossRef]
- McDougall, S.J.; Münzberg, H.; Derbenev, A.V.; Zsombok, A. Central control of autonomic functions in health and disease. Front. Neurosci. 2015, 8, 440. [Google Scholar] [CrossRef] [Green Version]
- Horn, J.P. The sacral autonomic outflow is parasympathetic: Langley got it right. Clin. Auton. Res. 2018, 28, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.L.; Jobling, P.; Gibbins, I.L. Botulinum neurotoxin A attenuates release of norepinephrine but not NPY from vasoconstrictor neurons. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H2627–H2635. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.M.; Rogart, R.B. Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelinated sheath. Proc. Natl. Acad. Sci. USA 1977, 74, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Tricaud, N. Myelinating Schwann cell polarity and mechanically-driven myelin sheath elongation. Front. Cell. Neurosci. 2018, 11, 414. [Google Scholar] [CrossRef] [Green Version]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C.; LaMantia, A.-S.; McNamara, J.O.; Williams, S.M. (Eds.) Increased Conduction Velocity as a Result of Myelination. In Neuroscience, 2nd ed.; Sinauer Associates: Sunderland, UK, 2001; Available online: https://www.ncbi.nlm.nih.gov/books/NBK10921/ (accessed on 19 August 2021).
- Jessen, K.R.; Mirsky, R. The success and failure of the Schwann cell response to nerve injury. Front. Cell. Neurosci. 2019, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Ide, C.; Tohyama, K.; Yokota, R.; Nitatori, T.; Onodera, S. Schwann cell basal lamina and nerve regeneration. Brain Res. 1983, 288, 61–75. [Google Scholar] [CrossRef]
- Sulaiman, W.; Gordon, T. Neurobiology of peripheral nerve injury, regeneration, and functional recovery: From bench top research to bedside application. Ochsner J. 2013, 13, 100–108. [Google Scholar] [PubMed]
- Goldstein, M.E.; Cooper, H.S.; Bruce, J.; Carden, M.J.; Virginia, M.-Y.; Lee, V.-M.Y.; Schlaepfer, W.W. Phosphorylation of neurofilament proteins and chromatolysis following transection of rat sciatic nerve. J. Neurosci. 1987, 7, 1588–1594. [Google Scholar] [CrossRef]
- Moon, L.D.F. Chromatolysis: Do injured axons regenerate poorly when ribonucleases attack rough endoplasmic reticulum, ribosomes and RNA? Dev. Neurobiol. 2018, 78, 1011–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girouard, M.P.; Bueno, M.; Julian, V.; Drake, S.; Byrne, A.B.; Fournier, A.E. The molecular interplay between axon degeneration and regeneration. Dev. Neurobiol. 2018, 78, 978–990. [Google Scholar] [CrossRef] [PubMed]
- Rotshenker, S. Wallerian degeneration: The innate-immune response to traumatic nerve injury. J. Neuroinflamm. 2011, 8, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munger, B.L.; Bennett, G.J.; Kajander, K.C. An experimental painful peripheral neuropathy due to nerve constriction I. Axonal pathology in the sciatic nerve. Exp. Neurol. 1992, 118, 204–214. [Google Scholar] [CrossRef]
- Waller, A.V. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Phil. Trans. R. Soc. Lond. 1850, 140, 423–429. [Google Scholar] [CrossRef]
- Gerdts, J.; Summers, D.W.; Milbrandt, J.; DiAntonio, A. Axon self-destruction: New links among SARM1, MAPKs and NAD+ metabolism. Neuron 2016, 89, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.H.; Hung, H.A.; Svaren, J. Epigenomic regulation of Schwann cell reprogramming in peripheral nerve injury. J. Neurosci. 2016, 36, 9135–9147. [Google Scholar] [CrossRef]
- Freeman, M.R. Signaling mechanisms regulating Wallerian degeneration. Curr. Opin. Neurobiol. 2014, 27, 224–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Weimer, R.M.; Kallop, D.; Olsen, O.; Wu, Z.; Renier, N.; Uryu, K.; Tessier-Lavigne, M. Regulation of axon degeneration after injury and in development by the endogenous calpain inhibitor calpastatin. Neuron 2013, 80, 1175–1189. [Google Scholar] [CrossRef] [Green Version]
- Lutz, B.A.; Chung, W.-S.; Sloan, S.A.; Carson, G.A.; Zhou, L.; Lovelett, E.; Posada, S.; Zuchero, J.B.; Barres, B.A. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury. Proc. Natl. Acad. Sci. USA 2017, 114, E8072–E8080. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Sanchez, J.A.; Carty, L.; Iruarrizaga-Lejarreta, M.; Palomo-Irigoyen, M.; Varela-Rey, M.; Griffith, M.; Hantke, J.; Macias-Camara, N.; Azkargorta, M.; Aurrekoetxea, I.; et al. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J. Cell. Biol. 2015, 210, 153–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, G.; Doherty, P.; Walsh, F.S.; Crocker, P.R.; Filbin, M.T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 1994, 13, 757–767. [Google Scholar] [CrossRef]
- Shen, Y.J.; DeBellard, M.E.; Salzer, J.L.; Roder, J.; Filbin, M.T. Myelin-associated glycoprotein in myelin and expressed by Schwann cells inhibits axonal regeneration and branching. Mol. Cell. Neurosci. 1998, 12, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, S.; Wiberg, R.; McGrath, A.M.; Novikov, L.N.; Wiberg, M.; Novikova, L.N.; Kingham, P.J. Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery. PLoS ONE 2013, 8, e56484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, O.A.R.; Gordon, T. Role of chronic Schwann cell denervation in poor functional recovery after nerve injuries and experimental strategies to combat it. Neurosurgery 2009, 65 (Suppl. 4), A105–A114. [Google Scholar] [CrossRef]
- Ronchi, G.; Cillino, M.; Gambarotta, G.; Fornasari, B.E.; Raimondo, S.; Pugliese, P.; Tos, P.; Cordova, A.; Moschella, F.; Geuna, S. Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair. J. Neurosurg. 2017, 127, 843–856. [Google Scholar] [CrossRef] [Green Version]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef]
- Rossetto, O.; Pirazzini, M.; Fabris, F.; Montecucco, C. Botulinum neurotoxins: Mechanism of action. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Adler, M.; Keller, J.E.; Sheridan, R.E.; Deshpande, S.S. Persistence of botulinum neurotoxin A demonstrated by sequential administration of serotypes A and E in rat EDL muscle. Toxicon 2001, 39, 233–243. [Google Scholar] [CrossRef]
- Pellett, S.; Bradshaw, M.; Tepp, W.H.; Pier, C.L.; Whitemarsh, R.C.M.; Chen, C.; Barbieri, J.T.; Johnson, E.A. The light chain defines the duration of action of botulinum toxin serotype A subtypes. mBio 2018, 9, e00089-18. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Wang, K.; Xu, T.; Guo, X.-S.; Shan, X.-F.; Cai, Z.-G. Efficacy and safety of botulinum toxin type A for treatment of Frey’s syndrome: Evidence from 22 published articles. Cancer Med. 2015, 4, 1639–1650. [Google Scholar] [CrossRef]
- Scheps, D.; de la López Paz, M.; Jurk, M.; Hofmann, F.; Frevert, J. Design of modified botulinum neurotoxin A1 variants with a shorter persistence of paralysis and duration of action. Toxicon 2017, 139, 101–108. [Google Scholar] [CrossRef]
- Dong, M.; Masuyer, G.; Stenmark, P. Botulinum and tetanus neurotoxins. Annu. Rev. Biochem. 2019, 88, 811–837. [Google Scholar] [CrossRef]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef]
- Mansfield, M.J.; Doxey, A.C. Genomic insights into the evolution and ecology of botulinum neurotoxins. Pathog. Dis. 2018, 76, fty040. [Google Scholar] [CrossRef] [Green Version]
- Sobel, J. Botulism. Clin. Infect. Dis. 2005, 41, 1167–1173. [Google Scholar] [CrossRef]
- Erbguth, F.J. From poison to remedy: The chequered history of botulinum toxin. J. Neural Transm. 2008, 115, 559–565. [Google Scholar] [CrossRef]
- Chen, S. Clinical uses of botulinum neurotoxins: Current indications, limitations and future developments. Toxins 2012, 4, 913–939. [Google Scholar] [CrossRef] [Green Version]
- Lanoue, J.; Dong, J.; Do, T.; Goldenberg, G. An update on neurotoxin products and administration methods. Cutis 2016, 98, 163–166. [Google Scholar]
- Aoki, R.K. Botulinum neurotoxin serotypes A and B preparations have different safety margins in preclinical models of muscle weakening efficacy and systemic safety. Toxicon 2002, 40, 923–928. [Google Scholar] [CrossRef]
- Ferrari, A.; Manca, M.; Tugnoli, V.; Alberto, L. Pharmacological differences and clinical implications of various botulinum toxin preparations: A critical appraisal. Funct. Neurol. 2018, 33, 7–18. [Google Scholar] [CrossRef]
- Poulain, B.; Lemichez, E.; Popoff, M. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020, 178, 20–32. [Google Scholar] [CrossRef]
- Oh, H.-M.; Chung, M.E. Botulinum toxin for neuropathic pain: A review of the literature. Toxins 2015, 7, 3127–3154. [Google Scholar] [CrossRef] [Green Version]
- Highlights of Prescribing Information. Available online: http://www.allergan.com/assets/pdf/botox_pi.pdf (accessed on 18 March 2022).
- Pellett, S.; Tepp, W.H.; Johnson, E.A. Botulinum neurotoxins A, B, C, E, and F preferentially enter cultured human motor neurons compared to other cultured human neuronal populations. FEBS Lett. 2019, 593, 2675–2685. [Google Scholar] [CrossRef]
- Schenke, M.; Schjeide, B.-M.; Püschel, G.P.; Seeger, B. Analysis of motor neurons differentiated from human induced pluripotent stem cells for the use in cell-based botulinum neurotoxin activity assays. Toxins 2020, 12, 276. [Google Scholar] [CrossRef]
- Welch, M.J.; Purkiss, J.R.; Foster, K.A. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 2000, 38, 245–258. [Google Scholar] [CrossRef]
- Durham, P.L.; Cady, R.; Cady, R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: Implications for migraine therapy. Headache 2004, 44, 35–43. [Google Scholar] [CrossRef]
- Mazzocchio, R.; Caleo, M. More than at the neuromuscular synapse: Actions of botulinum neurotoxin A in the central nervous system. Neuroscientist 2015, 21, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Restani, L.; Novelli, E.; Bottari, D.; Leone, P.; Barone, I.; Galli-Resta, L.; Strettoi, E.; Caleo, M. Botulinum neurotoxin A impairs neurotransmission following retrograde transynaptic transport. Traffic 2012, 13, 1083–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacković, Z. New analgesic: Focus on botulinum toxin. Toxicon 2020, 179, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.B.; Francis, J.; Brin, M.F.; Broide, R.S. Botulinum neurotoxin type A-cleaved SNAP25 is confined to primary motor neurons and localized on the plasma membrane following intramuscular toxin injection. Neuroscience 2017, 352, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Göbel, H.; Heinze, A.; Heinze-Kuhn, K.; Austermann, K. Botulinum toxin A in the treatment of headache syndromes and pericranial pain syndromes. Pain 2001, 91, 195–199. [Google Scholar] [CrossRef]
- Montecucco, C.; Schiavo, G.; Tugnoli, V.; de Grandis, D. Botulinum neurotoxins: Mechanism of action and therapeutic applications. Mol. Med. Today 1996, 2, 418–424. [Google Scholar] [CrossRef]
- Marinelli, S.; Luvisetto, S.; Cobianchi, S.; Makuch, W.; Obara, I.; Mezzaroma, E.; Caruso, M.; Straface, E.; Przewlocka, B.; Pavone, F. Botulinum neurotoxin type A counteracts neuropathic pain and facilitates functional recovery after peripheral nerve injury in animal models. Neuroscience 2010, 171, 316–328. [Google Scholar] [CrossRef]
- Bennett, G.J.; Xie, Y.-K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33, 87–107. [Google Scholar] [CrossRef]
- Bach-Rojecky, L.; Relja, M.; Lacković, Z. Botulinum toxin type A in experimental neuropathic pain. J. Neural Transm. 2005, 112, 215–219. [Google Scholar] [CrossRef]
- Luvisetto, S.; Marinelli, S.; Cobianchi, S.; Pavone, F. Anti-allodynic efficacy of botulinum neurotoxin A in a model of neuropathic pain. Neuroscience 2007, 145, 1–4. [Google Scholar] [CrossRef]
- Baptista, A.F.; Gomes, J.R.; Oliveira, J.T.; Santos, S.M.; Vannier-Santos, M.A.; Martinez, A.M. A new approach to assess function after sciatic nerve lesion in the mouse—Adaptation of the sciatic static index. J. Neurosci. Methods 2007, 161, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Ruscheweyh, R.; Forsthuber, L.; Schoffnegger, D.; Sandkühler, J. Modification of classical neurochemical markers in identified primary afferent neurons with Aβ-, Aδ-, and C-fibers after chronic constriction injury in mice. J. Comp. Neurol. 2007, 502, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Benson, C.A.; Olson, K.L.; Patwa, S.; Reimer, M.L.; Bangalore, L.; Hill, M.; Waxman, S.G.; Tan, A.M. Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Sci. Rep. 2021, 11, 7838. [Google Scholar] [CrossRef]
- Triolo, D.; Dina, G.; Lorenzetti, I.; Malaguti, M.; Morana, P.; Del Carro, U.; Comi, G.; Messing, A.; Quattrini, A.; Previtali, S.C. Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage. J. Cell Sci. 2006, 119, 3981–3993. [Google Scholar] [CrossRef] [Green Version]
- Kruspe, M.; Thieme, H.; Guntinas-Lichius, O.; Irintchev, A. Motoneuron regeneration accuracy and recovery of gait after femoral nerve injuries in rats. Neuroscience 2014, 280, 73–87. [Google Scholar] [CrossRef]
- Nascimento, F.; Spindler, L.R.B.; Miles, G.B. Balanced cholinergic modulation of spinal locomotor circuits via M2 and M3 muscarinic receptors. Sci. Rep. 2019, 9, 14051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, W.; Salles, A.G.; Marques, J.C.; Faria, J.C.M.; Nepomuceno, A.C.; Salomone, R.; Krunn, P.; Gemperli, R. Contralateral botulinum toxin improved functional recovery after tibial nerve repair in rats. Plast. Reconstr. Surg. 2018, 142, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Taub, E.; Uswatte, G. Constraint-induced movement therapy: Answers and questions after two decades of research. NeuroRehabilitation 2006, 21, 93–95. [Google Scholar] [CrossRef] [Green Version]
- Finocchiaro, A.; Marinelli, S.; De Angelis, F.; Vacca, V.; Luvisetto, S.; Pavone, F. Botulinum toxin B affects neuropathic pain but not functional recovery after peripheral nerve injury in a mouse model. Toxins 2018, 10, 128. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Piao, X.; Bonaldo, P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015, 130, 605–618. [Google Scholar] [CrossRef]
- Dailey, A.T.; Avellino, A.M.; Benthem, L.; Silver, J.; Kliot, M. Complement depletion reduces macrophage infiltration and activation during Wallerian degeneration and axonal regeneration. J. Neurosci. 1998, 18, 6713–6722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeftinija, S.D.; Jeftinija, K.V.; Stefanovic, G. Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res. 1997, 750, 41–47. [Google Scholar] [CrossRef]
- Gutmann, E. Factors affecting recovery of motor function after nerve lesions. J. Neurol. Psychiatry 1942, 5, 81–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQuarrie, I.G.; Grafstein, B. Axon outgrowth enhanced by a previous nerve injury. Arch. Neurol. 1973, 29, 53–55. [Google Scholar] [CrossRef] [PubMed]
- McQuarrie, I.G.; Grafstein, B.; Gershon, M.D. Axonal regeneration in the rat sciatic nerve: Effect of a conditioning lesion and of dbcAMP. Brain Res. 1977, 132, 443–453. [Google Scholar] [CrossRef]
- Franz, C.K.; Puritz, A.; Jordan, L.A.; Chow, J.; Ortega, J.A.; Kiskinis, E.; Heckman, C. Botulinum toxin conditioning enhances motor axon regeneration in mouse and human preclinical models. Neurorehab. Neural Repair 2018, 32, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.C.; Hopkins, W.G. Role of degenerating axon pathways in regeneration of mouse soleus motor axons. J. Physiol. 1981, 318, 365–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odorico, S.K.; Shulzhenko, N.O.; Zeng, W.; Dingle, A.M.; Francis, D.O.; Poore, S.O. Effect of nimodipine and botulinum toxin A on peripheral nerve regeneration in rats: A pilot study. J. Surg. Res. 2021, 264, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, S.; Vacca, V.; Ricordy, R.; Uggenti, C.; Tata, A.M.; Luvisetto, S.; Pavone, F. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes. PLoS ONE 2012, 7, e47977. [Google Scholar] [CrossRef] [Green Version]
- Loreti, S.; Ricordy, R.; De Stefano, M.E.; Augusto-Tocco, G.; Tata, A.M. Acetylcholine inhibits cell cycle progression in rat Schwann cells by activation of the M2 receptor subtype. Neuron Glia Biol. 2007, 3, 269–279. [Google Scholar] [CrossRef]
- Piovesana, R.; Pisano, A.; Loreti, S.; Ricordy, R.; Talora, C.; Tata, A.M. Notch signal mediates the cross-interaction between M2 muscarinic acetylcholine receptor and neuregulin/ErbB pathway: Effects on Schwann cell proliferation. Biomolecules 2022, 12, 239. [Google Scholar] [CrossRef] [PubMed]
- Podhajsky, R.J.; Myers, R.R. The vascular response to nerve crush: Relationship to Wallerian degeneration and regeneration. Brain Res. 1993, 623, 117–123. [Google Scholar] [CrossRef]
- Gao, Y.; Weng, C.; Wang, X. Changes in nerve microcirculation following peripheral nerve compression. Neural Regen Res. 2013, 8, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Feng, Y.; Liu, W.; Jin, L.; Nie, Z. Botulinum toxin type A suppresses arterial vasoconstriction by regulating calcium sensitization and the endothelium-dependent endothelial nitric oxide synthase/soluble guanylyl cyclase/cyclic guanosine monophosphate pathway: An in vitro study. Exp. Biol. Med. 2019, 244, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Rechthand, E.; Hervonen, A.; Sato, S.; Rapoport, S.I. Distribution of adrenergic innervation of blood vessels in peripheral nerve. Brain Res. 1986, 374, 185–189. [Google Scholar] [CrossRef]
- Fornasari, B.E.; Zen, F.; Nato, G.; Fogli, M.; Luzzati, F.; Ronchi, G.; Raimondo, S.; Gambarotta, G. Blood vessels: The pathway used by Schwann cells to colonize nerve conduits. Int. J. Mol. Sci. 2022, 23, 2254. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Schreiber, J.A.; Adamczyk, N.S.; Wu, J.Y.; Ton, S.T. Improved functional outcome after peripheral nerve stimulation of the impaired forelimb post-stroke. Front. Neurol. 2021, 12, 610434. [Google Scholar] [CrossRef]
- Seo, M.; Lim, D.; Kim, S.; Kim, T.; Kwon, B.S.; Nam, K. Effect of botulinum toxin injection and extracorporeal shock wave therapy on nerve regeneration in rats with experimentally induced sciatic nerve injury. Toxins 2021, 13, 879. [Google Scholar] [CrossRef]
Ref. | Nerve Injury | Species | Formulation & Dose | Route | Major Assessments | Primary Finding | Proposed Mechanism |
---|---|---|---|---|---|---|---|
[120] | CCI 1 | Mouse | 150 kDa BoNT/A; 15 pg/paw | Intraplantar injection | Weight bearing; walking track analysis | Normalization of weight bearing; accelerated recovery of SSI 2 | Proliferation of repair Schwann cells |
[32] | Nerve crush | Mouse | 150 kDa BoNT/A; 15 pg in 2 µL saline | Intraneural injection at crush site | Pinch test; CMAP 3; CNAP 4; nerve fiber number and density | Increased rate of regeneration of myelinated nerves | Proliferation of repair Schwann cells; reduced inflammation |
CCI 1 | Mouse | 15 pg in 20 µL saline | Intraplantar injection | ||||
[30] | Transection/repair of femoral nerve | Rat | IncobotulinumtoxinA (Xeomin®); 100 U/mL 5 for 30 min | Incubation of proximal nerve stump | Walking track analysis; histochemical staining | Marked acceleration in recovery of 6 FBA × SLR index | Preservation of cholinergic input to femoral motor neurons |
[130] | Transection of tibial nerve with and without repair | Rat | AbobotulinumtoxinA (Dysport®); 16 U/kg | Intramuscular injection in contralateral gastrocnemius muscle | Walking track analysis; EMG; axonal density | Accelerated recovery of walking track performance in rats undergoing nerve transection with immediate repair | Adaptation by CNS in response to muscle weakness in contralateral limb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adler, M.; Pellett, S.; Sharma, S.K.; Lebeda, F.J.; Dembek, Z.F.; Mahan, M.A. Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury. Microorganisms 2022, 10, 886. https://doi.org/10.3390/microorganisms10050886
Adler M, Pellett S, Sharma SK, Lebeda FJ, Dembek ZF, Mahan MA. Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury. Microorganisms. 2022; 10(5):886. https://doi.org/10.3390/microorganisms10050886
Chicago/Turabian StyleAdler, Michael, Sabine Pellett, Shashi K. Sharma, Frank J. Lebeda, Zygmunt F. Dembek, and Mark A. Mahan. 2022. "Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury" Microorganisms 10, no. 5: 886. https://doi.org/10.3390/microorganisms10050886
APA StyleAdler, M., Pellett, S., Sharma, S. K., Lebeda, F. J., Dembek, Z. F., & Mahan, M. A. (2022). Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury. Microorganisms, 10(5), 886. https://doi.org/10.3390/microorganisms10050886