Comparative Phenotypic and Genomic Features of Staphylococci from Sonication Fluid of Orthopedic Implant-Associated Infections with Poor Outcome
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population and Sample Collection
2.2. Sonication and Microbiological Methods
2.3. Species Identification by MALDI-TOF MS
2.4. Antibiotic Susceptibility Tests
2.4.1. Inoculum Preparation
2.4.2. Diffusion Disk Test
2.4.3. Broth Microdilution Test
2.4.4. Episillometric Test (E-Test)
2.5. Quantitative Assay of Biofilm Formation on Abiotic Surfaces
2.6. Whole-Genome Sequencing and Assembly
3. Results
3.1. Clinical Data and Bacterial Identification
3.1.1. Clinical Data and MALDI-TOF MS
3.1.2. Multi Locus Sequence Typing (MLST) Analysis
3.2. Antibiotic Susceptibility
3.2.1. Phenotypic Results
3.2.2. SCCmec Analysis and Detection of Resistance Genes by WGS
3.3. Biofilm Analysis
3.3.1. Biofilm Assay
3.3.2. Detection of Biofilm-Forming Genes and Adhesins (MSCRAMMs)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez, A.; Benito, N.; Rivera, A.; García, L.; Miró, E.; Mur, I.; González, Y.; Gutiérrez, C.; Horcajada, J.P.; Espinal, P.; et al. Pathogenesis of Staphylococcus epidermidis in prosthetic joint infections: Can identification of virulence genes differentiate between infecting and commensal strains? J. Hosp. Infect. 2020, 105, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Triffault-Fillit, C.; Ferry, T.; Laurent, F.; Pradat, P.; Dupieux, C.; Conrad, A.; Becker, A.; Lustig, S.; Fessy, M.H.; Chidiac, C.; et al. Microbiologic epidemiology depending on time to occurrence of prosthetic joint infection: A prospective cohort study. Clin. Microbiol. Infect. 2019, 25, 353–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alder, K.; Lee, I.; Munger, A.M.; Kwon, H.-K.; Morris, M.T.; Cahill, S.V.; Back, J.; Yu, K.E.; Lee, F.Y. Intracellular Staphylococcus aureus in bone and joint infections: A mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone 2020, 141, 115568. [Google Scholar] [CrossRef] [PubMed]
- Gristina, A.G.; Naylor, P.; Myrvik, Q. Infections from biomaterials and implants: A race for the surface. Med. Prog. Technol. 1988, 14, 205–224. [Google Scholar] [PubMed]
- Subbiahdoss, G.; Kuijer, R.; Grijpma, D.W.; van der Mei, H.C.; Busscher, H.J. Microbial biofilm growth vs. tissue integration: “the race for the surface” experimentally studied. Acta Biomater. 2009, 5, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Montanaro, L.; Speziale, P.; Campoccia, D.; Ravaioli, S.; Cangini, I.; Pietrocola, G.; Giannini, S.; Arciola, C.R. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 2021, 6, 1329–1349. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; Yang, Y.; Yang, S.; Fan, Q.; Yu, Z.; Hu, X.-L.; James, T.D.; He, X.-P.; Tang, T. Preferential colonization of osteoblasts over co-cultured bacteria on a bifunctional biomaterial surface. Front. Microbiol. 2018, 9, 2219. [Google Scholar] [CrossRef]
- Wildeman, P.; Tevell, S.; Eriksson, C.; Lagos, A.C.; Söderquist, B.; Stenmark, B. Genomic characterization and outcome of prosthetic joint infections caused by Staphylococcus aureus. Sci. Rep. 2020, 10, 5938. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, R.; Pesce, M.; Franchelli, S.; Baldelli, I.; de Maria, A.; Marchese, A. Phenotypic and genotypic characterization of Staphylococci causing breast peri-implant infections in oncologic patients. BMC Microbiol. 2015, 15, 26. [Google Scholar] [CrossRef] [Green Version]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Jabbouri, S.; Sadovskaya, I. Characteristics of the biofilm matrix and its role as a possible target for the detection and eradication of Staphylococcus epidermidis associated with medical implant infections. FEMS Immunol. Med. Microbiol. 2010, 59, 280–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Götz, F. Staphylococcus and biofilms. Mol. Microbiol. 2002, 43, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Otto, M. Molecular basis of Staphylococcus epidermidis infections. Semin. Immunol. 2012, 34, 201–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trampuz, A.; Zimmerli, W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 2006, 37, S59–S66. [Google Scholar] [CrossRef] [PubMed]
- Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [Green Version]
- Yano, M.H.; Klautau, G.B.; da Silva, C.B.; Nigro, S.; Avanzi, O.; Mercadante, M.T.; Salles, M.J. Improved diagnosis of infection associated with osteosynthesis by use of sonication of fracture fixation implants. J. Clin. Microbiol. 2014, 52, 4176–4182. [Google Scholar] [CrossRef] [Green Version]
- Metsemakers, W.; Morgenstern, M.; McNally, M.; Moriarty, F.; McFadyen, I.; Scarborough, M.; Athanasou, N.; Ochsner, P.; Kuehl, R.; Raschke, M.; et al. Fracture-related infection: A consensus on definition from an international expert group. Injury 2018, 49, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Parvizi, J.; Tan, T.L.; Goswami, K.; Higuera, C.; Della Valle, C.; Chen, A.F.; Shohat, N. The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J. Arthroplast. 2018, 33, 1309–1314.e2. [Google Scholar] [CrossRef]
- Trampuz, A.; Piper, K.E.; Jacobson, M.J.; Hanssen, A.D.; Unni, K.K.; Osmon, D.R.; Patel, R. Sonication of removed hip and knee prostheses for diagnosis of infection. N. Engl. J. Med. 2007, 357, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomsen, M.C.F.; Ahrenfeldt, J.; Cisneros, J.L.B.; Jurtz, V.I.; Larsen, M.V.; Hasman, H.; Aarestrup, F.; Lund, O. A bacterial analysis platform: An integrated system for analysing bacterial whole genome sequencing data for clinical diagnostics and surveillance. PLoS ONE 2016, 11, e0157718. [Google Scholar] [CrossRef] [Green Version]
- Argemi, X.; Hansmann, Y.; Prola, K.; Prévost, G. Coagulase-Negative Staphylococci Pathogenomics. Int. J. Mol. Sci. 2019, 20, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, V.; Wahl, P.; Uçkay, I.; Ochsner, P.; Zimmerli, W.; Corvec, S.; Loiez, C.; Richards, R.G.; Moriarty, T.F. Phenotypic and genotypic characterisation of Staphylococcus aureus causing musculoskeletal infections. Int. J. Med. Microbiol. 2014, 304, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Chon, J.W.; Lee, U.J.; Bensen, R.; West, S.; Paredes, A.; Lim, J.; Khan, S.; Hart, M.E.; Phillips, K.S.; Sung, K. Virulence characteristics of meca-positive multidrug-resistant clinical coagulase-negative staphylococci. Microorganisms 2020, 8, 659. [Google Scholar] [CrossRef] [PubMed]
- França, A.; Gaio, V.; Lopes, N.; Melo, L. Virulence Factors in Coagulase-Negative Staphylococci. J. Pathog. 2021, 10, 170. [Google Scholar] [CrossRef]
- Michels, R.; Last, K.; Becker, S.L.; Papan, C. Update on coagulase-negative staphylococci—What the clinician should know. Microorganisms 2021, 9, 830. [Google Scholar] [CrossRef]
- Lourtet-Hascoët, J.; Félicé, M.P.; Bicart-See, A.; Bouige, A.; Giordano, G.; Bonnet, E. Species and antibiotic susceptibility testing of coagulase-negative staphylococci in periprosthetic joint infections. Epidemiol. Infect. 2018, 146, 1771–1776. [Google Scholar] [CrossRef]
- Salgado, C.D.; Dash, S.; Cantey, J.R.; Marculescu, C.E. Higher risk of failure of methicillin-resistant Staphylococcus aureus prosthetic joint infections. Clin. Orthop. Relat. Res. 2007, 461, 48–53. [Google Scholar] [CrossRef]
- Lora-Tamayo, J.; Murillo, O.; Iribarren, J.A.; Soriano, A.; Sánchez-Somolinos, M.; Baraia-Etxaburu, J.M.; Rico, A.; Palomino, J.; Rodríguez-Pardo, D.; Horcajada, J.P. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin. Infect. Dis. 2013, 56, 182–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, V.; Harris, L.G.; Morgenstern, M.; Mageiros, L.; Hitchings, M.D.; Méric, G.; Pascoe, B.; Sheppard, S.K.; Richards, R.G.; Moriarty, T.F. Comparative genomics study of Staphylococcus epidermidis isolates from orthopedic-device-related infections correlated with patient outcome. J. Clin. Microbiol. 2017, 55, 3089–3103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Gallego, I.; Viedma, E.; Esteban, J.; Mancheño-Losa, M.; García-Cañete, J.; Blanco-García, A.; Rico, A.; García-Perea, A.; Garbajosa, P.R.; Escudero-Sánchez, R.; et al. Genotypic and Phenotypic Characteristics of Staphylococcus aureus Prosthetic Joint Infections: Insight on the Pathogenesis and Prognosis of a Multicenter Prospective Cohort. Open Forum Infect. Dis. 2020, 7, ofaa344. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Li, T.; Zhao, L.; Zhao, N.; Liu, Y.; Lv, H.; Wang, Y.N.; Liu, Q.; Li, M. Regulation of bla system in ST59-related oxacillin-susceptible mecA-positive Staphylococcus aureus. J. Antimicrob. Chemother. 2021, 77, 604–614. [Google Scholar] [CrossRef]
- Leme, R.C.P.; Bispo, P.J.M.; Salles, M.J. Community-genotype methicillin-resistant Staphylococcus aureus skin and soft tissue infections in Latin America: A systematic review. Braz. J. Infect Dis. 2021, 25, 101539. [Google Scholar] [CrossRef] [PubMed]
- Argemi, X.; Hansmann, Y.; Riegel, P.; Prévost, G. Is Staphylococcus lugdunensis significant in clinical samples? J. Clin. Microbiol. 2017, 55, 3167–3174. [Google Scholar] [CrossRef] [Green Version]
- Månsson, E.; Johannesen, T.B.; Nilsdotter-Augustinsson, Å.; Söderquist, B.; Stegger, M. Comparative genomics of Staphylococcus epidermidis from prosthetic-joint infections and nares highlights genetic traits associated with antibiotic resistance, not virulence. Microb. Genom. 2021, 7, 000504. [Google Scholar]
- Hellmark, B.; Söderquist, B.; Unemo, M.; Nilsdotter-Augustinsson, Å. Comparison of Staphylococcus epidermidis isolated from prosthetic joint infections and commensal isolates in regard to antibiotic susceptibility, agr type, biofilm production, and epidemiology. Int. J. Med. Microbiol. 2013, 303, 32–39. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Kontopidis, I.; Gkegkes, I.D.; Rafailidis, P.I.; Falagas, M.E. Incidence, characteristics, and outcomes of patients with bone and joint infections due to community-associated methicillin-resistant Staphylococcus aureus: A systematic review. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2013, 32, 711–721. [Google Scholar] [CrossRef]
- Conlan, S.; Mijares, L.A.; Becker, J.; Blakesley, R.W.; Bouffard, G.G.; Brooks, S.; Coleman, H.; Gupta, J.; Gurson, N.; Park, M.; et al. Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol. 2012, 13, R64. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Meléndez, A.; Morfín-Otero, R.; Villarreal-Treviño, L.; Camacho-Ortíz, A.; González-González, G.; Llaca-Díaz, J.; Rodríguez-Noriega, E.; Garza-González, E. Molecular epidemiology of coagulase-negative bloodstream isolates: Detection of Staphylococcus epidermidis ST2, ST7 and linezolid-resistant ST23. Braz. J. Infect Dis. 2016, 20, 419–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Malhotra-Kumar, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, C.; Ziebuhr, W.; Becker, K. Are coagulase-negative staphylococci virulent? Clin. Microbiol. Infect. 2019, 25, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Tevell, S.; Baig, S.; Hellmark, B.; Simoes, P.M.; Wirth, T.; Butin, M.; Nilsdotter-Augustinsson, Å.; Söderquist, B.; Stegger, M. Presence of the neonatal Staphylococcus capitis outbreak clone (NRCS-A) in prosthetic joint infections. Sci. Rep. 2020, 10, 22389. [Google Scholar] [CrossRef] [PubMed]
Patient | Age | Gender | Comorbidities | Preoperative Diagnosis | Source | Implant | Bacterial Identification (MALDI-TOF MS) | Empirical Antibiotic Therapy |
---|---|---|---|---|---|---|---|---|
215 | 38 | M | DM | Chronic spinal disease | Spine | Plate/screw | S. aureus | Ciprofloxacin |
260 | 89 | M | DM and Tumor | Closed fracture | tibia/fibula | Plate/screw | S. aureus | Ciprofloxacin |
371 | 43 | M | Closed fracture | ankle | Plate/screw | S. aureus | Ciprofloxacin | |
216 | 47 | M | DM and Tumor | Closed fracture | hip | Plate/screw | S. epidermidis | Cefazolin |
403 | 67 | M | _ | Osteoarthrosis | hip | Arthroplasty | S. epidermidis | Vancomycin |
53 | 66 | M | _ | Osteoarthrosis | hip | Arthroplasty | S. haemolyticus | Vancomycin |
95 | 67 | F | DM and Coronariopathy | Osteoarthrosis | knee | Arthroplasty | S. haemolyticus | Vancomycin |
160 | 53 | F | RA | Osteoarthrosis | hip | Arthroplasty | S. capitis | Vancomycin |
226 | 44 | F | _ | Tumor lesion | hip | Arthroplasty | S. sciuri | Vancomycin |
167 | 79 | F | Tumor | Open fracture | ankle | Fixing pin | S. lugdunensis | Cefazolin + Gentamicin |
Isolate ID | Species | Molecular Characterization | |||
---|---|---|---|---|---|
SCCmecType | ST | Clonal Complex | GeneBank Number | ||
215 | S. aureus | I (1B) | 5 | CC5 | JAHMMM000000000 |
260 | S. aureus | V (5C2) | 5 | CC5 | JAHMMN000000000 |
371 | S. aureus | (2A) | 105 | CC5 | JAHMMO000000000 |
216 | S. epidermidis | III (3A) | 2 | CC2 | JAHMMP000000000 |
403 | S. epidermidis | _ | 183 | _ | JAHMMQ000000000 |
53 | S. haemolyticus | _ | 9 | _ | JAHMMR000000000 |
95 | S. haemolyticus | _ | 3 | _ | JAHMMS000000000 |
160 | S. capitis | _ | _ | _ | JAHMMT000000000 |
226 | S. sciuri | III (3A) | _ | _ | JAHMMU000000000 |
167 | S. lugdunensis | _ | 2 | CC2 | JAHMMV000000000 |
ID | Species | MIC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Broth Microdilution | E-Test | ||||||||||
(µg/mL) | |||||||||||
VAN | OXA | CLI | ERY | LEV | LNZ | GEN | TGC | TET | RIF | ||
215 | S. aureus | 1.0 | >2.0 | 2.0 | <0.5 | 1.0 | 2.0 | 2.0 | 0.25 | 0.75 | <0.016 |
260 | S. aureus | 0.5 | >2.0 | 0.25 | <0.5 | 1.0 | 2.0 | 2.0 | 0.25 | 0.19 | <0.016 |
371 | S. aureus | 0.5 | >2.0 | 1.0 | <0.5 | 1.0 | 2.0 | <1.0 | 0.25 | 0.5 | <0.016 |
216 | S. epidermidis | 4.0 | >2.0 | 1 | <0.5 | >4.0 | 2.0 | 2.0 | 0.25 | 0.094 | >256 |
403 | S. epidermidis | 1.0 | <0.25 | <0.25 | <0.5 | <0.5 | 2.0 | >8.0 | 0.25 | 0.125 | 0. 016 |
53 | S. haemolyticus | 0.5 | >2.0 | <0.25 | <0.5 | <0.5 | 2.0 | 2.0 | 2.0 | 24 | <0.016 |
95 | S. haemolyticus | 1.0 | >2.0 | >2.0 | <0.5 | >4.0 | 1.0 | >8.0 | 1.0 | 32 | <0.016 |
160 | S. capitis | 2.0 | >2.0 | >2.0 | >4.0 | >4.0 | 1.0 | >8.0 | 1.0 | 0.75 | <0.016 |
226 | S. Sciuri | 1.0 | >2.0 | 2.0 | <0.5 | 1.0 | 2.0 | <1.0 | 0.25 | 0.5 | <0.016 |
167 | S. lugdunensis | 1.0 | 0.5 | <0.25 | <0.5 | <0.5 | 0.5 | <1.0 | 0.06 | 0.125 | <0.016 |
Antibiotics | Resistance Genes | S. aureus | S. epidermidis | S. haemolyticus | S. capitis | S. sciuri | S. lugdunensis | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
215 | 260 | 371 | 216 | 403 | 53 | 95 | 160 | 226 | 167 | ||
β-lactam | blaZ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
mecA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Aminoglycosides | aph (3′)-III | ✓ | ✓ | ||||||||
aadD | ✓ | ✓ | ✓ | ||||||||
ant (4′)-Ib | ✓ | ✓ | ✓ | ✓ | |||||||
aac (6′)-aph (2″) | ✓ | ✓ | ✓ | ||||||||
ant (9)-Ia | ✓ | ✓ | |||||||||
ant (6)-Ia | ✓ | ||||||||||
MLSb | erm (A) | ✓ | ✓ | ||||||||
erm (B) | ✓ | ||||||||||
erm(C) | ✓ | ✓ | |||||||||
Tetraciclyn | tet (38) | ✓ | ✓ | ||||||||
tet (K) | ✓ | ✓ | |||||||||
Quinolones | gyrA (p.G208L) | ✓ | ✓ | ||||||||
gyrA (p.S84T) | ✓ | ✓ | |||||||||
gyrA (p.S84L) | ✓ | ✓ | |||||||||
gyrA (p.S80L) | ✓ | ||||||||||
gyrA (p.T457A) | ✓ | ||||||||||
gyrA (Xaa172Ala) | ✓ | ✓ | |||||||||
parC (S80Y) | ✓ | ✓ | ✓ | ||||||||
parC (E84G) | ✓ | ✓ | ✓ | ||||||||
Others | sdrM | ✓ | ✓ | ✓ | |||||||
fosB | ✓ | ✓ | ✓ | ||||||||
fusB | ✓ | ||||||||||
dfrC | ✓ | ✓ | ✓ | ||||||||
rpoB (I527M) | ✓ | ||||||||||
rpoB (D471E) | ✓ |
Species ID | Biofilm Formation | PIA | Autolysin | FBP | EBP | FP | AF | ECAP/MHCAP | Sdr-FP |
---|---|---|---|---|---|---|---|---|---|
S. aureus | Strong | icaA, icaB, icaC, icaD, icaR, IS256 | atl, atlA | ebh | ebp, ebpS | fnbA | cflA, cflB | eap/map | sdrC, sdrD, sdrE |
215 | |||||||||
S. aureus | Strong | icaA, icaB, icaC, icaD, icaR, IS256 | atl, atlA | ebh | ebp, ebpS | fnbA, fnbB | cflA, cflB | eap/map | sdrC, sdrD, sdrE |
260 | |||||||||
S.aureus | Strong | icaA, icaB, icaC, icaD, icaR, IS256 | atl, atlA | ebh | ebp, ebpS | fnbA, fnbB | cflA, cflB | eap/map | sdrC, sdrD, sdrE |
371 | |||||||||
S. epidermidis | Strong | icaA, icaB, icaC, icaD, icaR, IS256 | atl, atlE | ebh | ebp | cflA | sdrF, sdrG/fbe, sdrH | ||
216 | |||||||||
S. epidermidis | Strong | icaA, icaB, icaC, icaD, icaR, | atl, atlE | ebh | ebp | sdrF, sdrG/fbe, sdrH | |||
403 | |||||||||
S. haemolyticus | Strong | atl | ebp | ||||||
53 | |||||||||
S. haemolyticus | non- | IS256 | atl | ebp | |||||
95 | adherent | ||||||||
S. capitis | weak | icaA, icaB, icaC, icaD, icaR, IS256 | atl | ebh | ebp | ||||
160 | |||||||||
S. sciuri | Strong | ||||||||
226 | |||||||||
S. lugdunensis | non- | icaA, icaB, icaC, icaD, icaR, | atl | ||||||
167 | adherent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, I.N.M.; Kurihara, M.N.L.; Santos, F.F.; Valiatti, T.B.; Silva, J.T.P.d.; Pignatari, A.C.C.; Salles, M.J. Comparative Phenotypic and Genomic Features of Staphylococci from Sonication Fluid of Orthopedic Implant-Associated Infections with Poor Outcome. Microorganisms 2022, 10, 1149. https://doi.org/10.3390/microorganisms10061149
Santos INM, Kurihara MNL, Santos FF, Valiatti TB, Silva JTPd, Pignatari ACC, Salles MJ. Comparative Phenotypic and Genomic Features of Staphylococci from Sonication Fluid of Orthopedic Implant-Associated Infections with Poor Outcome. Microorganisms. 2022; 10(6):1149. https://doi.org/10.3390/microorganisms10061149
Chicago/Turabian StyleSantos, Ingrid Nayara Marcelino, Mariana Neri Lucas Kurihara, Fernanda Fernandes Santos, Tiago Barcelos Valiatti, Juliana Thalita Paulino da Silva, Antônio Carlos Campos Pignatari, and Mauro José Salles. 2022. "Comparative Phenotypic and Genomic Features of Staphylococci from Sonication Fluid of Orthopedic Implant-Associated Infections with Poor Outcome" Microorganisms 10, no. 6: 1149. https://doi.org/10.3390/microorganisms10061149
APA StyleSantos, I. N. M., Kurihara, M. N. L., Santos, F. F., Valiatti, T. B., Silva, J. T. P. d., Pignatari, A. C. C., & Salles, M. J. (2022). Comparative Phenotypic and Genomic Features of Staphylococci from Sonication Fluid of Orthopedic Implant-Associated Infections with Poor Outcome. Microorganisms, 10(6), 1149. https://doi.org/10.3390/microorganisms10061149