The Rhizosphere Microbiome of Ginseng
Abstract
:1. Introduction
2. Ginseng Rhizosphere Environment
3. Ginseng Rhizobiome Diversity and Abundance
4. Impact of Cultivation of the Rhizosphere Microbiome
5. Impacts of Ginseng on Rhizosphere Microbiome
6. Impacts of Rhizosphere Microbiome on Ginseng
7. Conclusions
Funding
Conflicts of Interest
References
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Solaiman, Z.M.; Anawar, H.M. Rhizosphere microbes interactions in medicinal plants. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Egamberdieva, D., Shrivastava, S., Varma, A., Eds.; Springer: New York, NY, USA, 2015; Volume 42, pp. 19–41. [Google Scholar]
- Smalla, K.; Sessitsch, A.; Hartmann, A. The rhizosphere: Soil compartment influenced by the root. FEMS Microbiol. Ecol. 2006, 56, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Awadhi, H.; Dashti, N.; Khanafer, M.; Al-Mailem, D.; Ali, N.; Radwan, S. Bias problems in culture-independent analysis of environmental bacterial communities: A representative study on hydrocarbonoclastic bacteria. SpringerPlus 2013, 2, 369. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Lei, L.; Duan, Y.; Zhang, K.Q.; Yang, J. Culture-independent methods for studying environmental microorganisms: Methods, application, and perspective. Appl. Microbiol. Biotechnol. 2012, 93, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Rincon-Florez, V.A.; Carvalhais, L.C.; Schenk, P.M. Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 2013, 5, 581–612. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, X.; Xia, H.; Shi, D.; Fan, J.; Wang, P.; Yan, Z.; Hong, Y. Archaeal community variation in the Qinhuangdao coastal aquaculture zone revealed by high-throughput sequencing. PLoS ONE 2019, 14, e0218611. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Anslan, S.; Bahram, M.; Wurzbacher, C.; Baldrian, P.; Tedersoo, L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019, 17, 95–109. [Google Scholar] [CrossRef]
- Pereira, P.; Ibáñez, F.; Rosenblueth, M.; Etcheverry, M.; Martínez-Romero, E. Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. ISRN Ecol. 2011, 2011, 938546. [Google Scholar] [CrossRef] [Green Version]
- Schreiter, S.; Ding, G.C.; Heuer, H.; Neumann, G.; Sandmann, M.; Grosch, R.; Kropf, S.; Smalla, K. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front. Microbiol. 2014, 5, 144. [Google Scholar] [CrossRef]
- Ling, N.; Deng, K.; Song, Y.; Wu, Y.; Zhao, J.; Raza, W.; Huang, Q.; Shen, Q. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiol. Res. 2014, 169, 570–578. [Google Scholar] [CrossRef]
- Schlaeppi, K.; Dombrowski, N.; Oter, R.G.; Themaat, E.V.L.; Schulze-Lefert, P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc. Natl. Acad. Sci. USA 2014, 111, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forster, S.M. The role of microorganisms in aggregate formation and soil stabilization: Types of aggregation. Arid Soil Res. Rehabil. 1990, 4, 85–88. [Google Scholar] [CrossRef]
- Morgan, J.A.W.; Bending, G.D.; White, P.J. Biological costs and benefits to plant–microbe interactions in the rhizosphere. J. Exp. Bot. 2005, 56, 1729–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van, D.E.S.; Hulten, M.V.; Pozo, M.J.; Czechowski, T.; Udvardi, M.K.; Pieterse, C.M.J.; Ton, J. Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: Differences and similarities in regulation. New Phytol. 2009, 183, 419–431. [Google Scholar]
- Glick, B.R.; Cheng, Z.; Czarny, J.; Duan, J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 2007, 119, 329–339. [Google Scholar] [CrossRef]
- Persons, W.S. American Ginseng: Green Gold; Bright Mountain Books: Asheville, NC, USA, 1994. [Google Scholar]
- Wang, T.; Guo, R.; Zhou, G.; Zhou, X.; Kou, Z.; Sui, F.; Li, C.; Tang, L.; Wang, Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. J. Ethnopharmacol. 2016, 188, 234–258. [Google Scholar] [CrossRef]
- Westerveld, S. Ginseng Production in Ontario; Queen’s Printer for Ontario: Toronto, ON, Canada, 2010. [Google Scholar]
- Guyonnet, J.P.; Cantarelm, A.A.M.; Simon, L.; Haichar, F.Z. Root exudation rate as functional trait involved in plant nutrient-use strategy classification. Ecol. Evol. 2018, 8, 8573–8581. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Abuarab, M.E.; El-Mogy, M.M.; Hassan, A.M.; Abdeldaym, E.A.; Abdelkader, N.H.; El-Sawy, M.B.I. The effects of root aeration and different soil conditioners on the nutritional values, yield, and water productivity of potato in clay loam soil. Agronomy 2019, 9, 418. [Google Scholar] [CrossRef] [Green Version]
- Veen, G.F.C.; Fry, E.L.; Hooven, T.F.; Kardol, P.; Morrien, E.; De Long, J.R. The role of plant litter in driving plant-soil feedbacks. Front. Environ. Sci. 2019, 7, 168. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Q.-X.; Liu, N.; Li, L.; Zhang, C.; Liu, Z.; Zhang, Y. Effects of different leaf litters on the physicochemical properties and bacterial communities in Panax ginseng-growing soil. Appl. Soil Ecol. 2017, 111, 17–24. [Google Scholar] [CrossRef]
- Ibekwe, A.M.; Papiernik, S.K.; Gan, J.; Yates, S.R.; Yang, C.H.; Crowley, D.E. Impact of soil fumigants on soil microbial communities. Appl. Environ. Microbiol. 2001, 67, 3245–3257. [Google Scholar] [CrossRef] [Green Version]
- Xia, P.; Guo, H.; Zhao, H.; Jiao, J.; Deyholos, M.K.; Yan, X.; Liu, Y.; Liang, Z. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents. J. Ginseng Res. 2016, 40, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Nicol, R.W.; Yousef, L.; Traquair, J.A.; Bernards, M.A. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry 2003, 64, 257–264. [Google Scholar] [CrossRef]
- Luo, L.F.; Yang, L.; Yan, Z.X.; Jiang, B.B.; Li, S.; Huang, H.C.; Liu, Y.X.; Zhu, S.S.; Yang, M. Ginsenosides in root exudates of Panax notoginseng drive the change of soil microbiota through carbon source different utilization. Plant Soil 2020, 455, 139–153. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.F.; Ding, W.L. Autotoxicity of Panax ginseng rhizosphere and non-rhizosphere soil extracts on early seedlings growth and identification of chemicals. Allelopathy J. 2011, 28, 145–154. [Google Scholar]
- Li, Z.B.; Zhou, R.J.; Xie, Y.J.; Fu, J.F. Allelopathic effects of phenolic compounds of ginseng root rhizosphere on Cylindrocarpon destructans. J. Appl. Ecol. 2016, 27, 3616–3622. [Google Scholar]
- Zhang, A.H.; Peng, H.L.; Lei, F.J.; Zhang, L.X. Extraction and identification of ginseng root exudates. J. Northwest Univ. 2014, 42, 191–196. [Google Scholar]
- Li, Y.; Huang, X.F.; Ding, W.L. Effects of nutrient deficiency on principal components of ginseng root exudates. J. Appl. Ecol. 2008, 19, 1688–1693. [Google Scholar]
- Wu, Z.; Hao, Z.; Zeng, Y.; Guo, L.; Huang, L.; Chen, B. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng. Antonie. Leeuw. Int. J. 2015, 108, 1059–1074. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.Y.; Miao, C.P.; Qiao, X.G.; Zheng, Y.K.; Chen, H.H.; Chen, Y.W.; Xu, L.H.; Zhao, L.X.; Guan, H.L. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. J. Ginseng Res. 2016, 40, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.; Cui, Y.; Li, H.; Kuang, A.; Li, X.; Wei, Y.; Ji, X. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. J. Basic Microbiol. 2017, 57, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Cui, Y.; Li, H.; Kuang, A.; Li, X.; Wei, Y.; Ji, X. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiol. Res. 2017, 194, 10–19. [Google Scholar] [CrossRef]
- Miao, C.P.; Mi, Q.L.; Qiao, X.G.; Xin, G.; Zheng, Y.K.; Chen, Y.W.; Xu, L.H.; Guan, H.L.; Zhao, L. Rhizospheric fungi of Panax notoginseng: Diversity and antagonism to host phytopathogens. J. Ginseng Res. 2016, 40, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Chernov, T.I.; Tkhakakhova, A.K.; Ivanova, E.A.; Kutovaya, O.V.; Turusov, V.I. Seasonal dynamics of the microbiome of chernozems of the long-term agrochemical experiment in Kamennaya steppe. Eurasian Soil Sci. 2015, 48, 1349–1353. [Google Scholar] [CrossRef]
- Xiao, C.; Yang, L.; Zhang, L.; Liu, C.; Han, M. Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng. J. Ginseng Res. 2016, 40, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.L.; Kim, Y.J.; Hoang, V.A.; Subramaniyam, S.; Kang, J.P.; Kang, C.H.; Yang, D.C. Bacterial diversity and community structure in Korean ginseng field soil are shifted by cultivation time. PLoS ONE 2016, 11, e0155055. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ying, Y.; Ding, W. Dynamics of Panax ginseng rhizospheric soil microbial community and their metabolic function. Evid. Based Complement. Altern. Med. 2014, 2014, 160373. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Wang, H.; Zhao, L.; Wang, M.; Sun, M. Diversity and structure of the rhizosphere microbial communities of wild and cultivated ginseng. BMC Microbiol. 2022, 22, 2. [Google Scholar] [CrossRef]
- Tong, A.Z.; Liu, W.; Liu, Q.; Xia, G.Q.; Zhu, J.Y. Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modes and ages. BMC Microbiol. 2021, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Yu, M.; Hou, R.; Li, L.; Ren, X.; Jiao, C.; Yang, L.; Xu, H. Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases. Plant Soil. 2019, 438, 143–156. [Google Scholar] [CrossRef]
- Liu, N.; Shao, C.; Sun, H.; Liu, Z.; Guan, Y.; Wu, L.; Zhang, L.; Pan, X.; Zhang, Z.; Zhang, Y.; et al. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma 2020, 363, 114155. [Google Scholar] [CrossRef]
- Dong, L.; Xu, J.; Zhang, L.; Yang, J.; Liao, B.; Li, X.; Chen, S. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chin. Med. 2017, 12, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samur, I.D. Effects of Biostimulants on Creeping Bentgrass (Agrostis stolonifera) and Post-Harvest Debris of American Ginseng (Panax quinquefolius) on Soil Microbiology and Chemistry. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2020. [Google Scholar]
- Reeleder, R.D.; Capell, B.B.; Roy, R.C.; Grohs, R.; Zilkey, B. Suppressive effect of bark mulch on weeds and fungal diseases in ginseng (Panax quinquefolius L.). Allelopathy J. 2004, 13, 211–231. [Google Scholar]
- Park, Y.H.; Kim, Y.C.; Park, S.U.; Lim, H.S.; Kim, J.B.; Cho, B.K.; Bae, H. Age-dependent distribution of fungal endophytes in Panax ginseng roots cultivated in Korea. J. Ginseng Res. 2012, 36, 327–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Zhu, S.; Vivanco, J.M.; Manter, D.K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl. Soil Ecol. 2016, 107, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.L.; Bi, Y.M.; Jiao, X.L.; Zhang, X.M.; Li, J.F.; Niu, F.B.; Gao, W.W. Application of vermicompost and biochar suppresses Fusarium root rot of replanted American ginseng. Appl. Microbiol. Biotechnol. 2021, 105, 6977–6991. [Google Scholar] [CrossRef]
- Stathers, R.J.; Bailey, W.G. Energy receipt and partitioning in a ginseng shade canopy and mulch environment. Agric. For. Meteorol. 1986, 37, 1–14. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.; Hou, L.; Zhang, J.; Hu, J.; Zhang, F.; Mao, J.; Wang, Z.; Zhang, C.; Han, J.; et al. A comparative study of bacterial diversity based on effects of three different shade shed types in the rhizosphere of Panax quiquefolium L. Peer J. 2022, 10, e12807. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wang, R.; Ding, W.; Li, Y. Effects of cultivation soils and ages on microbiome in the rhizosphere soil of Panax ginseng. Appl. Soil Ecol. 2022, 174, 104397. [Google Scholar] [CrossRef]
- Li, Z.; Fu, J.; Zhou, R.; Wang, D. Effects of phenolic acids from ginseng rhizosphere on soil fungi structure, richness and diversity in consecutive monoculturing of ginseng. Saudi J. Biol. Sci. 2018, 25, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Qi, B.; Huang, W.; Liu, B.; Li, Y. The fungal community in non-rhizosphere soil of Panax ginseng are driven by different cultivation modes and increased cultivation periods. Peer J. 2020, 8, e9930. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, S.; Qin, J.; Dai, J.; Zhao, F.; Gao, L.; Lian, X.; Shang, W.; Xu, X.; Hu, X. Changes in the microbiome in the soil of an American ginseng continuous plantation. Front. Plant Sci. 2020, 11, 572199. [Google Scholar] [CrossRef]
- Wang, H.; Fang, X.; Wu, H.; Cai, X.; Xiao, H. Effects of plant cultivars on the structure of bacterial and fungal communities associated with ginseng. Plant Soil. 2021, 465, 143–156. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [Green Version]
- Lei, F.; Fu, J.; Zhou, R.; Wang, D.; Zhang, A.; Ma, W.; Zhang, L. Chemotactic response of ginseng bacterial soft-rot to ginseng root exudates. Saudi J. Biol Sci. 2017, 24, 1620–1625. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, D.; Liu, Y.; Li, S.; Shen, Q.; Zhang, R. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil. 2014, 374, 689–700. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, M.; Yin, R.; Wang, L.; Luo, L.; Zi, B.; Liu, H.; Huang, H.; Liu, Y.; He, X.; et al. Autotoxin Rg1 induces degradation of root cell walls and aggravates root rot by modifying the rhizospheric microbiome. Microbiol. Spectr. 2021, 9, e01679-21. [Google Scholar] [CrossRef]
- Avato, P.; Bucci, R.; Tava, A.; Vitali, C.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phytother. Res. 2006, 20, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dai, S.; Wang, B.; Jiang, Y.; Ma, Y.; Pan, L.; Wu, K.; Huang, X.; Zhang, J.; Cai, Z.; et al. Autotoxic ginsenoside disrupts soil fungal microbiomes by stimulating potentially pathogenic microbes. Appl. Environ Microbiol. 2020, 86, e00130-20. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, D.A.; Georgakopoulos, J.R.C.; Bernards, M.A. The chemoattractant potential of ginsenosides in the ginseng—Pythium irregulare pathosystem. Phytochemistry 2016, 122, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, D.A.; Bernards, M.A. Ginsenosidases and the pathogenicity of Pythium irregulare. Phytochemistry 2012, 78, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Farh, M.E.A.; Kim, Y.J.; Sukweenadhi, J.; Singh, P.; Yang, D.C. Aluminium resistant, plant growth promoting bacteria induce overexpression of aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against aluminium stress. Microbiol. Res. 2017, 200, 45–52. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, J.; Song, C.; Fang, Q.; Wang, N.; Zhao, T.; Liu, D.; Zhou, Y. Fungal sensitivity to and enzymatic deglycosylation of ginsenosides. Phytochemistry 2012, 78, 65–71. [Google Scholar] [CrossRef]
- Ko, S.R.; Suzuki, Y.; Suzuki, K.; Choi, K.J.; Cho, B.G. Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method. Chem. Pharm. Bull. 2007, 55, 1522–1527. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.M.; Kim, J.; Seo, J.H.; Park, J.S.; Kim, D.H.; Kim, B.G. Identification and characterization of the Rhizobium sp. strain GIN611 glycoside oxidoreductase resulting in the deglycosylation of ginsenosides. Appl. Environ. Microbiol. 2012, 78, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Zhou, X.; Li, F.; Xu, C.; Zheng, F.; Li, J.; Zhao, H.; Dai, Y.; Liu, S.; Feng, Y. Microbial transformation of ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng. Sci. Rep. 2017, 7, 138. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, M.Z.; Huq, M.A.; Im, W.T. Isolation, characterisation and genome analysis of a novel ginsenosides hydrolysing bacterium Ginsengibacter hankyongi gen. nov., sp. nov. isolated from soil. Antonie Leeuwenhoek Int. J. 2021, 114, 11–22. [Google Scholar] [CrossRef]
- Park, C.S.; Yoo, M.H.; Noh, K.H.; Oh, D.K. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 2010, 87, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Behdarvandi, B. The Relationship of Ilyonectria to Replant Disease of American Ginseng (Panax quinquefolius). Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2020. [Google Scholar]
- Yousef, L.F.; Bernards, M.A. In vitro metabolism of ginsenosides by the ginseng root pathogen Pythium irregulare. Phytochemistry 2006, 67, 1740–1749. [Google Scholar] [CrossRef] [PubMed]
- Badri, D.V.; Chaparro, J.M.; Zhang, R.; Shen, Q.; Vivanco, J.M. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 2013, 288, 4502–4512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.M.; Cheng, Y.X.; Ma, Y.N.; Chen, C.J.; Xu, F.R.; Dong, X. Role of phenolic acids from the rhizosphere soils of Panax notoginseng as a double-edge sword in the occurrence of root-rot disease. Molecules 2018, 23, 819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.A.; Kim, W.J.; Kim, H.J.; Kim, K.T.; Paik, H.D. Antibacterial activity of ginseng (Panax ginseng C. A. Meyer) stems-leaves extract produced by subcritical water extraction. Int. J. Food Sci. Technol. 2013, 48, 947–953. [Google Scholar] [CrossRef]
- Dong, L.; Xu, J.; Li, Y.; Fang, H.; Niu, W.; Li, X.; Zang, Y.; Ding, W.; Chen, S. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil Biol. Biochem. 2018, 125, 64–74. [Google Scholar] [CrossRef]
- Kramer, J.; Özkaya, Ö.; Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 2020, 18, 152–163. [Google Scholar] [CrossRef]
- Hussein, K.A.; Joo, J.H. Isolation and characterization of rhizomicrobial isolates for phosphate solubilization and indole acetic acid production. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 847–855. [Google Scholar] [CrossRef]
- Huo, Y.; Kang, J.P.; Ahn, J.C.; Kim, Y.; Piao, C.H.; Yang, D.U.; Yang, D.C. Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer. J. Ginseng Res. 2020, 45, 218–227. [Google Scholar] [CrossRef]
- Ponmurugan, P.; Gopi, C. In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr. J. Biotechnol. 2006, 5, 348–350. [Google Scholar]
- Park, K.H.; Lee, O.M.; Jung, H.I.; Jeong, J.H.; Jeong, Y.D.; Hwarg, D.Y.; Lee, C.Y.; Son, H.J. Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Appl. Microbiol. Biotechnol. 2010, 86, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Lee, C.Y.; Son, H.J. Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett. Appl. Microbiol. 2009, 49, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Whipps, J.M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 2001, 52, 487–511. [Google Scholar] [CrossRef]
- Conrath, U.; Beckers, G.J.M.; Langenbach, C.J.G.; Jaskiewicz, M.R. Priming for enhanced defense. Annu. Rev. Phytopathol. 2015, 53, 97–119. [Google Scholar] [CrossRef]
- Ryu, H.; Park, H.; Suh, D.S.; Jung, G.H.; Park, K.; Lee, B.D. Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1. J. Ginseng Res. 2014, 38, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Liu, X.; Li, S.; Miao, Z. In vitro inhibition of fungal root-rot pathogens of Panax notoginseng by rhizobacteria. Plant Pathol. J. 2009, 25, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Yang, L.; Han, M.; Han, Z.; Yang, L.; Cheng, L.; Yang, X.; Lv, Z. Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer. Biocontrol 2019, 138, 104048. [Google Scholar] [CrossRef]
- Lee, B.D.; Dutta, S.; Ryu, H.; Yoo, S.J.; Suh, D.S.; Park, K. Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. J. Ginseng Res. 2015, 39, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, D.K.; Prakash, A.; Johri, B.N. Induced systemic resistance (ISR) in plants: Mechanism of action. Indian J. Microbiol. 2007, 47, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Hasnain, S. Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria. Pol. J. Microbiol. 2014, 63, 261–266. [Google Scholar] [CrossRef]
- Zhang, J.; Kim, Y.J.; Hoang, V.A.; Nguyen, N.L.; Wang, C.; Kang, J.P.; Wang, D.; Yang, D.C. Duganella ginsengisoli sp. nov., isolated from ginseng soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.G.; Kang, J.P.; Huo, Y.; Chokkalingam, M.; Yeon-Ju, K.; Dong-Hyun, K.; Deok-Chun, Y. Paenibacillus panacihumi sp. nov., a potential plant growth-promoting bacterium isolated from ginseng-cultivated soil. Arch. Microbiol. 2018, 200, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.P.; Huo, Y.; Kim, Y.J.; Ahn, J.C.; Hurh, J.; Yang, D.U.; Yang, D.C. Rhizobium panacihumi sp. nov., an isolate from ginseng-cultivated soil, as a potential plant growth promoting bacterium. Arch. Microbiol. 2019, 201, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Shi, S.; Ji, L.; Nasir, F.; Ma, L.; Tian, C. Effect of the biocontrol bacterium Bacillus amyloliquefaciens on the rhizosphere in ginseng plantings. Int. Microbiol. 2018, 21, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yang, L.; Zhang, L.; Han, M. An investigation of Panax ginseng Meyer growth promotion and the biocontrol potential of antagonistic bacteria against ginseng black spot. J. Ginseng Res. 2018, 42, 304–311. [Google Scholar] [CrossRef] [PubMed]
First | Second | Third | Ref. |
---|---|---|---|
Actinobacteria (Actinoallomurus, Arthrobacter) | Bacteroidetes (Dyadobacter, Pedobacter) | Proteobacteria (Aquicella, Pseudomonas, Methylophilus, Pseudolabrys) | [34] |
Firmicutes (Bacillus, Paenibacillus, Lysinibacillus) | Actinobacteria (Arthrobacter, Streptomyces) | Proteobacteria (Burkholderia, Cupriavidus, Pseudomonas, Dyella) | [35] |
Proteobacteria (Pseudomonas, Rhodoplanes) | Acidobacteria (Candidatus solibacter) | Actinobacteria (Streptomyces) | [36] |
Ascomycota (Fusarium, Dendryphion, Trichoderma) | Basidiomycota (Geminibasidium, Cryptococcus) | Zygomycota (Mortierella) | [34] |
Ascomycota (Emericella, Fusarium, Plectosphaerella, Mycocentrospora) | Zygomycota (Mortierella) | Basidiomycota (Amanita) | [37] |
Zygomycota (Mortierella) | Ascomycota (Fusarium, Phoma) | Basidiomycota (Cryptococcus) | [38] |
First | Second | Third | Ref. |
---|---|---|---|
Proteobacteria (Sphingomonas, Paralcaligenes) | Actinobacteria (Frigoribacterium) | Fusobacteria | [40] |
Proteobacteria (Pseudomonas, Sphingomonas, Pseudolabrys) | Acidobacteria | Actinobacteria | [41] |
Proteobacteria (Pseudomonas, Burkholderia) | Firmicutes (Bacillus) | - | [42] |
Actinobacteria | Chloroflexi | Firmicutes | [43] |
Proteobacteria | Actinobacteria | Acidobacteria/Chloroflexi | [44] |
Ascomycota (Fusarium, Tetrachaetum) | Basidiomycota (Cryptococcus) | Zygomycota (Mortierella) | [40] |
Ascomycota (Fusarium, Alternaria) | Basidiomycota | - | [43] |
Ascomycota | Zygomycota | Basidiomycota | [44] |
First | Second | Third | Ref. |
---|---|---|---|
Proteobacteria (Kaistobacter, Rhodoplanes, Phenylobacterium) | Actinobacteria (Arthrobacter, Blastococcus, Mycobacterium) | Acidobacteria (Candidatus solibacter) | [45] |
Proteobacteria (Bradyrhizobium, Pseudolabrys) | Acidobacteria (Candidatus solibacter, Bryobacter) | Actinobacteria (Streptomyces, Pseudoarthrobacter) | [46] |
Acidobacteria | Proteobacteria | Actinobacteria | [47] |
Proteobacteria (Rhodoplanes, Sphingomonas, Hyphomicrobium) | Actinobacteria (Pseudoclavibacter, Arthrobacter, Demequina) | Acidobacteria | [48] |
Ascomycota (Penicillium, Didymella, Humicola) | Zygomycota (Mortierella) | Basidiomycota (Cystofilobasidium) | [46] |
Ascomycota | Basidiomycota | Chytridiomycota | [47] |
Ascomycota (Trichoderma, Penicillium, Acremonium) | Rozellomycota (Rozella) | Zygomycota (Mortierella) | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goodwin, P.H. The Rhizosphere Microbiome of Ginseng. Microorganisms 2022, 10, 1152. https://doi.org/10.3390/microorganisms10061152
Goodwin PH. The Rhizosphere Microbiome of Ginseng. Microorganisms. 2022; 10(6):1152. https://doi.org/10.3390/microorganisms10061152
Chicago/Turabian StyleGoodwin, Paul H. 2022. "The Rhizosphere Microbiome of Ginseng" Microorganisms 10, no. 6: 1152. https://doi.org/10.3390/microorganisms10061152
APA StyleGoodwin, P. H. (2022). The Rhizosphere Microbiome of Ginseng. Microorganisms, 10(6), 1152. https://doi.org/10.3390/microorganisms10061152