
Supplementary materials 
 

This supplementary material section contains two tables: S1 (p.1) and S2 (p.2) 

 

Table S1. Recapitulation of the pros and cons of the techniques used to detect Cryptosporidium spp. and Giardia spp. from 

water samples  

 

Technique Pros Cons 

US.EPA Method 1623.1 

• Possibility of concentrating large volumes 

of water (up to 100 L), 

• Detection limit of one oocyst per 100 L, 

• No PCR amplification biases, 

• Simultaneous use of several fluorescent for 

more confidence in the identification, 

• Quantification (enumeration) possible. 

• Time consuming and high costs 

associated with this analysis, 

• Low recovery and possibility of 

cross-reaction, 

• Requirement of intact parasitic 

cells for identification, 

• Capable of giving few information 

about these parasites (ex.: no 

species identification, no viability 

assessment), 

• Identification biased by the skills 

of the microscopist. 

Biomolecular methods 

• No growth of microorganisms required, 

• No intact cells of the parasites required, 

• Identification not biased by the skills of the 

manipulator (less subjective), 

• Capable of giving complementary 

information about these parasites according 

to the technique chosen (ex.: species 

identification, viability assessment). 

• Susceptible to contamination by 

external sources of DNA, 

• Not distinguishing DNA from live 

or dead cells, 

• Depending on primers, susceptible 

to DNA from other eukaryotes, 

• Susceptible to the efficiency of the 

cell lysis method chosen, 

• Susceptible to PCR inhibitory 

substances, 

• No standardized protocol and not 

accessible to all laboratories. 



 

 

Table S2. Complete description of biomolecular studies targeting Cryptosporidium spp. and Giardia spp. in water samples 

Organism(s) of 

interest 
Technique used Gene targeted Type of sample Detection limit Reference 

Giardia spp. 
Hybridization with a cDNA probe on 

DNA extract and autoradiography 
16S rRNA gene (?) 

Purified cells, treated 

sewage and river water 

samples 

1-5 cysts/mL [1] 

Giardia spp. 

PCR, Multiplex PCR, gel 

electrophoresis, Southern Blot and 

oligonucleotide hybridization 

Giardin gene 

Purified cysts, spiked 

environmental water 

samples 

1 cyst/reaction [2] 

Cryptosporidium 

spp. 
DNA hybridization assay and PCR 18S rRNA gene 

Environmental water 

samples 
20-100 oocysts/reaction [3] 

Cryptosporidium 

spp. 

PCR, Dot blot and gel 

electrophoresis 
18S rRNA gene 

Cow fecal preparations, 

spiked environmental water 

samples, wastewater 

samples 

1-200 oocysts/reaction 

(depending on the level of 

purity of the sample)  

[4] 

Cryptosporidium 

parvum  

PCR on DNA extract and gel 

electrophoresis or DNA 

hybridization 

Gene fragment CpR1 (an 

oocyst protein gene) 

Spiked raw milk samples, 

spiked water samples, 

purified oocysts 

10 oocysts per 20 mL of raw 

milk  
[5] 

Cryptosporidium 

sp. and Giardia 

sp.. 

PCR, nested-PCR on DNA extract, 

gel electrophoresis and Southern Blot 

Cryptosporidium: Oocyst 

cell wall protein (Nested 

PCR) 

Giardia: Giardin gene 

(PCR) 

Sewage samples, purified 

(oo)cysts 
102 oocysts/L [6] 

Cryptosporidium 

parvum 

Extraction of HSP70 mRNA, RT-

PCR, PCR, gel electrophoresis and 

Southern Blot 

Heat-shock protein 70 

(HSP70) 

Oocysts purified from feces, 

environmental water 

samples,  

1 oocyst/reaction [7] 



Giardia sp. and 

Cryptosporidium 

sp. 

PFGE, PCR, recombinant probe 

hybridization and DNA hybridization 
16S rRNA gene (?) 

Raw water samples, treated 

drinking water samples and 

raw sewage samples 

10 (oo)cysts/100 L [8] 

Cryptosporidium 

parvum and 

Giardia lamblia 

UDP-inactivation, PCR, Multiplex-

PCR, gel electrophoresis, DNA 

hybridization and enzymatic 

digestion  

Cryptosporidium: 18S 

rRNA gene and two 

uncharacterized genomic 

DNA targets  

Giardia: An HSP gene, 

giardin gene, 18S rRNA 

gene 

Purified (oo)cysts, 

environmental water 

samples 

1-100 (oo)cysts/reaction 

(depending on the sample 

quality) 

(Rochelle et 

al., 1997a) 

Cryptosporidium 

parvum 

PCR, Multiplex PCR, RT-PCR, 

oligonucleotide hybridization and 

Southern Blot  

Heat-shock protein 70 

(HSP70) 

Cultured Cryptosporidium 

cells, environmental water 

samples  

1-10 oocysts (environmental 

samples) per reaction 

1 oocyst (purified cells) per 

reaction 

(Rochelle et 

al., 1997b) 

Cryptosporidium 

parvum 
PCR on DNA extract 

An oocyst wall protein 

gene, two 

uncharacterized genomic 

DNA target and 18S 

rRNA gene 

Purified oocysts, 

environmental water 

samples 

< 10 oocysts (purified 

oocysts) per reaction 

100 oocysts (spiked 

environmental water 

samples) per reaction 

[10] 

Cryptosporidium 

parvum  

PCR, ELISA-based PCR assay 

(Digene SHARP Signal System 

assay), Nested-PCR and gel 

electrophoresis 

CpR1 gene 

Purified oocysts, spiked 

municipal water samples, 

environmental water 

samples 

1-10 oocysts/reaction [11] 

Cryptosporidium 

parvum 

Immunomagnetic separation, RAPD-

PCR and gel electrophoresis 
Not applicable 

Purified oocysts, 

environmental water 

samples 

3x103-1x104 

oocysts/reaction 
[12] 

Cryptosporidium 

spp.  

PCR, Nested-PCR, AP-PCR on DNA 

extract and gel electrophoresis  

18S rRNA gene (PCR 

and Nested-PCR) 

Purified oocysts, spiked 

backwash water sample 

0,13-4,22 ng of DNA  per 

mL (AP-PCR) 
[13] 



Non applicable (AP-

PCR) 

0,00405-0,13 ng of DNA 

per mL (Nested-PCR) 

Cryptosporidium 

sp. and Giardia 

sp. 

Reverse transcription RT-PCR, 

Multiplex-PCR and gel 

electrophoresis 

Cryptosporidium: HSP70 

gene 

Giardia: Giardin gene, 

Giardia heat shock gene 

Purified oocysts, 

environmental water 

samples (spiked or not) 

1 (oo)cyst/reaction [14] 

Cryptosporidium 

parvum 

Competitive quantitative-PCR, PCR 

and hybridization 

An oocyst wall protein 

gene 

Purified oocysts, spiked 

environmental water 

samples 

103 oocysts/100 L of 

environmental water 
[15] 

Cryptosporidium 

parvum 

Immunomagnetic separation, CC-

PCR, gel electrophoresis, cloning and 

sequencing 

HSP70 gene 

Purified oocysts, raw water 

and filter backwash water 

samples spiked or not 

Data not available [16] 

Cryptosporidium 

parvum 

Immunomagnetic separation, PCR, 

Nested-PCR, gel electrophoresis and 

dot blot hybridization 

Uncharacterized genomic 

DNA target 

Purified oocysts, spiked tap 

water 

10 fg of DNA (approx.. 1 

genome) 
[17] 

Cryptosporidium 

parvum 

Immunomagnetic separation, Nested-

PCR and gel electrophoresis 

An oocyst wall protein 

gene 

Purified oocysts, human 

fecal samples, animal fecal 

samples and water samples 

1000 oocysts/g of feces and                               

100 oocysts/mL of water 
[18] 

Cryptosporidium 

parvum 

Immunomagnetic separation, PCR, 

gel electrophoresis and dotblot 

hybridization,  

Uncharacterized genomic 

DNA target 

Purified oocysts, river water 

samples spiked or not, tap 

and raw water samples 

1-5 oocysts/20 L of water 

sample 
[19] 

Cryptosporidium 

sp. 

Immunomagnetic separation, RFLP-

PCR and gel electrophoresis  
18S rRNA gene 

Purified oocysts and 

environmental water 

samples  

10 oocysts/10 mL of 

purified water sample 
[20] 

Giardia 

duodenalis 

RFLP-PCR and pulse-field gel 

electrophoresis (PFGE) 

Triose phosphate 

isomerase gene (tpi) 

Human, animal and 

environmental water 

samples, purified cells 

Data not available 
[21] 



Cryptosporidium 

parvum 
PCR, qPCR and gel electrophoresis 18S rRNA gene 

Raw water samples (spiked 

or not) and sludge samples 
Data not available [22] 

Cryptosporidium 

spp. 

Immunomagnetic separation, RFLP-

Nested-PCR and sequencing 
18S rRNA gene Surface water samples Data not available [23] 

Cryptosporidium 

parvum 

Immunomagnetic separation, PCR, 

gel electrophoresis and sequencing 

18S rRNA gene and 

TRAP-C2 gene 
Surface water samples 0,09 oocysts/10 L [24] 

Cryptosporidium 

spp.  

Immunomagnetic separation, RFLP-

PCR, gel electrophoresis and 

sequencing 

18S rRNA gene and 

TRAP-C2 gene 

Environmental water 

samples and mussel samples 

10 oocysts/10 mL of 

environmental water sample 
[25] 

Cryptosporidium 

parvum 

Immunomagnetic separation, RFLP-

PCR and gel electrophoresis 
Poly-threonine locus River water samples Data not available [26] 

Giardia spp. 
Immunomagnetic separation, RFLP-

PCR, gel electrophoresis 

Glutamate 

dehydrogenase gene 

Purified oocysts and sewage 

sludge samples 
625 cysts/mL 

[27] 

Cryptosporidium 

spp.  

Immunomagnetic separation, RFLP-

Nested PCR, gel electrophoresis and 

sequencing 

18S rRNA gene 
Surface water and 

wastewater samples 
Data not available [28]  

Giardia sp. and 

Cryptosporidium 

sp. 

RFLP-Nested-PCR and gel 

electrophoresis 
18S rRNA gene 

Animal fecal samples and 

sewage water samples 
Data not available 

[29] 

Cryptosporidium 

sp. 

Immunomagnetic separation, RFLP-

Nested-PCR, cloning in a plasmidic 

vector and sequencing 

18S rRNA gene 

Purified oocysts, surface 

water samples in 

Massachusetts, fecal 

samples  

1 oocyst per reaction [30] 

Cryptosporidium 

sp. and Giardia 

sp. 

Immunomagnetic separation, PCR, 

gel electrophoresis and Southern 

hybridization 

Cryptosporidium: COWP 

gene and non-

characterized target locus 

Giardia: Glutamate 

dehydrogenase gene 

Surface water samples 

(spiked or not) 
50-100 oocysts and 50 cysts [31] 



Cryptosporidium 

parvum 

Immunomagnetic separation, RFLP-

Nested-PCR and gel electrophoresis 
18S rRNA gene 

Purified oocysts, 

environmental water 

samples from Colorado 

5 oocysts/reaction [32] 

Giardia sp.  

RFLP-PCR, gel electrophoresis, 

cloning in a plasmidic vector and 

sequencing  

16S rRNA gene 
Environmental water 

samples and sewage samples 
Data not available [33] 

Cryptosporidium 

sp. 

PCR, Nested-PCR, gel 

electrophoresis and sequencing 
18S rRNA gene 

Purified oocysts, 

environmental water 

samples from Europe 

1 oocyst/reaction [34] 

Cryptosporidium 

sp. and Giardia 

sp. 

RFLP-PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: 18S 

rRNA gene 

Giardia: β-giardin gene 

Wastewater samples Data not available [35] 

Cryptosporidium 

parvum 

Immunomagnetic separation, PCR, 

RT-PCR and gel electrophoresis 
HSP70 gene 

Purified oocysts and spiked 

tap water 
10 oocysts/100 L of water [36] 

Cryptosporidium 

parvum 

Immunomagnetic separation, PCR, 

Nested-PCR,   

Cp41 gene, TRAP-C1 

gene 

Purified oocysts, spiked 

water samples 
Data not available [37] 

Cryptosporidium 

spp. 

Immunomagnetic separation, Cell-

culture-PCR, gel electrophoresis, cell 

culture quantitative sequence 

detection and sequencing 

HSP70 gene 
Environmental water 

samples 
Data not available [38] 

Cryptosporidium 

sp. 

Immunomagnetic separation, RFLP-

Nested PCR, gel electrophoresis and 

sequencing  

18S rRNA gene 

Reclaimed water samples 

and spiked tap water 

samples 

5-10 oocysts per reaction [39] 

Cryptosporidium 

parvum 

Nested-PCR and microcapillary 

electrophoresis 
18S rRNA gene 

Purified oocysts, secondary 

effluent samples from 

wastewater treatment plants 

11-4200 oocysts/L of 

sample 
[40] 



Cryptosporidium 

sp. and Giardia 

sp. 

PCR (Cryptosporidium), RAPD-PCR 

(Giardia), AP-PCR (Giardia) and gel 

electrophoresis 

Cryptosporidium: 

Uncharacterized genomic 

sequences, CpR1 gene, 

18S rRNA gene and 

HSP70 gene (PCR) 

Giardia: Non-applicable 

Water and sediment samples Data not available [41] 

Giardia spp. TaqMan qPCR 
Elongation factor 1A 

gene 

Purified cysts and sewage 

samples 
0,45 cysts per reaction 

[42] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation and 

PCR 

Non-specified 

(Cryptosporidium) 

Glutamate 

dehydrogenase gene 

(Giardia) 

Environmental water 

samples 
Data not available [43] 

Giardia 

duodenalis 

Immunomagnetic separation, Nested-

PCR and sequencing 

Triose phosphate 

isomerase gene 
Wastewater samples Data not available 

[44] 

Cryptosporidium 

sp. and Giardia 

sp. 

Immunomagnetic separation, RFLP-

PCR and gel electrophoresis 

Cryptosporidium: 

COWP gene (RFLP-

PCR) 

Giardia: Glutamate 

dehydrogenase gene 

(PCR) 

Wastewater samples, river 

water samples and mussel 

samples 

Data not available [45] 

Cryptosporidium 

sp. 
Nested-PCR and gel electrophoresis 18S rRNA gene 

Stormwater samples and 

wastewater samples (spiked 

or not) 

5-50 oocysts [46] 

Cryptosporidium 

spp.  

Immunomagnetic separation, Nested-

PCR and sequencing 

18S rRNA gene and 

HSP70 

Surface water samples and 

animal fecal samples 
Data not available [47] 

Cryptosporidium 

parvum 

Immunomagnetic separation, most 

probable number-PCR and gel 

electrophoresis 

HSP70 gene 
Purified oocysts, raw water 

samples spiked or not  
103 oocysts per reaction [48] 



Cryptosporidium 

spp.  

Immunomagnetic separation, PCR, 

semi-nested PCR, gel electrophoresis 

and sequencing 

18S rRNA gene 
Purified oocysts and sewage 

samples 
1 oocyst per reaction [49] 

Cryptosporidium 

spp.  

Immunomagnetic separation, semi-

nested PCR, gel electrophoresis and 

sequencing 

18S rRNA gene 

Purified oocysts, sewage 

samples and river water 

samples 

1 oocyst per reaction [50] 

Cryptosporidium 

spp. and Giardia 

spp.  

Semi-nested PCR (Cryptosporidium), 

nested-PCR (Giardia), gel 

electrophoresis and sequencing 

Cryptosporidium: COWP 

gene 

Giardia: 18S rRNA gene 

Wastewater samples Data not available [51] 

Cryptosporidium 

spp. 

Immunomagnetic separation, Q-

probe PCR, Nested-PCR, DGGE 

migration and sequencing 

18S rRNA gene 
Purified oocysts and river 

water samples 
0,83 oocyst per sample [52] 

Cryptosporidium 

sp. and Giardia 

sp. 

Immunomagnetic separation, PCR, 

gel electrophoresis and sequencing 

Cryptosporidium: 

COWP gene 

Giardia: β-giardin gene, 

glutamate dehydrogenase 

gene and 18S rRNA gene 

Sewage samples 100 (oo)cysts/ L [53] 

Giardia sp.  
Immunomagnetic separation, PCR, 

gel electrophoresis and sequencing 

β-giardin gene, glutamate 

dehydrogenase gene and 

triose phosphate 

isomerase gene 

Human fecal samples, 

sewage samples, soil 

samples and water samples 

(treated and raw) 

Data not available 
[54] 

Cryptosporidium 

sp. 

Immunomagnetic separation, RFLP-

Nested-PCR, gel electrophoresis and 

sequencing 

18S rRNA gene Storm water samples Data not available [55] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, Real-

time PCR, Multiplex PCR and gel 

electrophoresis 

Cryptosporidium: COWP 

gene (RT-PCR) and an 

undefined genomic DNA 

sequence (Multiplex-

PCR) 

Purified oocysts, wastewater 

samples (spiked or not) 
50 (oo)cysts per reaction [56] 



Giardia: β-giardin gene 

(RT-PCR) and 18S 

rRNA gene (Multiplex 

PCR) 

Giardia spp. 

(Assemblages A, 

B and E) 

PCR, Real-time PCR, gel 

electrophoresis and sequencing 

Triose phosphate 

isomerase gene 

Purified cysts, animal and 

human fecal samples, 

wastewater samples 

180-250 cysts per L of 

wastewater (depending on 

the assemblage) 

[57] 

Giardia lamblia 
Real-time PCR, gel electrophoresis 

and sequencing 
β-giardin gene 

Roof-harvested rainwater 

samples 

7-10 gene copies per 

reaction 

[58] 

Giardia spp. and 

Cryptosporidium 

spp.  

Immunomagnetic separation, semi-

nested-PCR (Giardia), nested-PCR 

(Cryptosporidium), gel 

electrophoresis and sequencing 

Giardia: β-giardin gene 

Cryptosporidium: 18S 

rRNA gene 

Environmental water 

samples and treated water 

samples 

Data not available 
[59] 

Cryptosporidium 

sp. 

Immunomagnetic separation, RFLP-

Nested PCR, gel electrophoresis and 

sequencing 

18S rRNA gene Lake water samples 5-10 oocysts/suspension [60] 

Cryptosporidium 

spp. 

Immunomagnetic separation, semi-

nested PCR, nested-PCR, gel 

electrophoresis and sequencing  

Cryptosporidium: 18S 

rRNA gene (nested PCR) 

Giardia: glutamate 

dehydrogenase gene 

(semi-nested PCR) and 

18S rRNA gene (nested-

PCR) 

Surface water samples and 

sewage samples 
Data not available [61] 

Cryptosporidium 

spp.  

Immunomagnetic separation, RFLP-

Nested PCR, gel electrophoresis and 

sequencing 

18S rRNA gene River water samples Data not available [62] 

Cryptosporidium 

spp and Giardia 

spp. 

Immunomagnetic separation, RFLP-

Nested PCR, semi-nested PCR, gel 

electrophoresis and sequencing 

Cryptosporidium: 18S 

rRNA gene (RFLP-

nested PCR) 

Bovine fecal samples and 

environmental water 

samples 

Data not available [63] 



Giardia: β-giardin gene 

(semi-nested PCR) 

Cryptosporidium 

spp 

Nested-PCR, RFLP-Nested PCR and 

sequencing 

Gp60 gene (Nested-

PCR) and18S rRNA 

gene (RFLP-Nested 

PCR) 

Wastewater samples 
1-5 copies of the target 

DNA per reaction 
[64] 

Cryptosporidium 

parvum 

Immunomagnetic separation, 

Reverse transcription-Loop-mediated 

isothermal amplification and gel 

electrophoresis 

18S rRNA gene 
Purified oocysts, Surface 

and ground water samples 
6x10-3 oocysts per reaction [65] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, RFLP-

PCR, Nested-PCR, gel 

electrophoresis and sequencing 

Cryptosporidium: 18S 

rRNA gene and gp60 

gene (RFLP-PCR) 

Giardia: β-giardin gene 

Environmental water 

samples 
Data not available [66] 

Giardia 

duodenalis 

Immunomagnetic separation, Real-

time PCR TaqMan, RFLP-PCR, gel 

electrophoresis and sequencing 

β-giardin gene Wastewater samples 1 cyst per reaction 
[67] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Immunomagnetic separation, Nested-

PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: 18S 

rRNA gene (nested PCR) 

Giardia: β-giardin gene 

(semi-nested PCR) 

River water samples 100 (oo)cysts per reaction [68] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Immunomagnetic separation, semi-

nested PCR, nested-PCR and gel 

electrophoresis 

Cryptosporidium: 18S 

rRNA gene (nested PCR) 

Giardia: β-giardin gene 

(semi-nested PCR) 

Environmental water 

samples 
50 (oo)cysts per reaction [69] 

Giardia spp. Nested-PCR and sequencing 
Triose phosphate 

isomerase gene 
Urban stream water samples Data not available 

[70] 



Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, RFLP-

Nested PCR, RFLP-PCR and gel 

electrophoresis 

Cryptosporidium: 18S 

rRNA gene (RFLP-

Nested PCR) 

Giardia: β-giardin gene 

(RFLP-PCR) 

Wastewater samples and 

treated water samples 
Data not available 

[71] 

Cryptosporidium 

spp. 

Immunomagnetic separation, RFLP-

PCR, gel electrophoresis and 

sequencing 

18S rRNA gene Swine lagoon samples Data not available [72] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, RFLP-

Nested PCR, nested PCR, gel 

electrophoresis and sequencing 

Cryptosporidium: 18S 

rRNA gene and GP60 

gene (RFLP-Nested 

PCR) 

Giardia: Triose 

phosphate isomerase 

gene (nested PCR) 

Wastewater samples and 

treated water samples 
Data not available [73] 

Cryptosporidium 

sp. and Giardia 

sp. 

PCR, Real-time PCR TaqMan and 

DNA microarray hybridization  

18S rRNA gene (both), 

COWP gene 

(Cryptosporidium) and 

β-giardin gene (Giardia) 

Purified DNA, wastewater 

samples 

1x103 copies of target DNA 

per reaction (DNA 

hybridization) 

1-10 oocysts per reaction 

(PCR) 

100 copies of target DNA 

per reaction (qPCR) 

[74] 

Cryptosporidium 

spp.  

RFLP-Nested PCR and gel 

electrophoresis 
18S rRNA gene 

Environmental water 

samples 
Data not available [75] 

Cryptosporidium 

spp. 

Immunomagnetic separation, RFLP-

Nested-PCR, gel electrophoresis and 

sequencing 

18S rRNA gene 
Raw water samples and 

drinking water samples 
Data not available [76] 



Cryptosporidium 

spp.  
Nested-PCR and gel electrophoresis 

18S rRNA gene and an  

uncharacterized genomic 

locus 

Environmental water 

samples 
Data not available [77] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, Real-

time qPCR TaqMan 

Cryptosporidium: COWP 

gene 

Giardia: β-giardin gene 

Purified oocysts and sewage 

samples 

1,65 oocysts per reaction 

and 0,32 cysts per reaction 
[78] 

Cryptosporidium 

spp. 

Nested-PCR, gel electrophoresis, 

cloning and sequencing 
18S rRNA gene 

Recreational and surface 

water samples 
Data not available [79] 

Cryptosporidium 

spp. 

Immunomagnetic separation, RFLP-

Nested PCR and sequencing 
18S rRNA gene 

Environmental and tap water 

samples 
Data not available [80] 

Giardia sp. 
Nested-PCR, gel electrophoresis, 

cloning and sequencing 

Glutamate 

dehydrogenase gene 

Surface, raw wastewater and 

treatment water samples 
Data not available 

[81] 

Giardia lamblia 

and 

Cryptosporidium 

parvum 

Immunomagnetic separation and 

qPCR 

HSP70 gene 

(Cryptosporidium) and 

β-giardin gene (Giardia) 

Environmental and treated 

water samples 

1-10 (oo)cysts per 100 µL 

of extract 

[82] 

Cryptosporidium 

spp. 

Nested-PCR, Loop-mediated 

isothermal amplification and gel 

electrophoresis 

18S rRNA gene (Nested-

PCR) and SAM-1 gene 

(LAMP) 

River and tap water samples 

(spiked or not) 

Nested-PCR: 100 fg of 

DNA per reaction  

LAMP: 1,8 fg of DNA per 

reaction 

[83] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Nested-PCR and sequencing 

Cryptosporidium: 18S 

rRNA gene 

Giardia: Triose 

phosphate isomerase 

gene 

Wastewater samples Data not available [84] 



Cryptosporidium 

spp. and Giardia 

spp. 

Semi-nested PCR, nested-PCR and 

gel electrophoresis 

Cryptosporidium: 18S 

rRNA gene (nested PCR) 

Giardia: Glutamate 

dehydrogenase gene 

(Semi-nested PCR) 

Human and animal fecal 

samples, environmental 

water samples 

50 oocysts per reaction [85] 

Cryptosporidium 

sp. 

PCR, gel electrophoresis and 

sequencing 
18S rRNA gene 

Raw and treated wastewater 

samples 
Data not available [86] 

Giardia 

duodenalis and 

Cryptosporidium 

spp. 

Nested PCR, gel electrophoresis and 

sequencing 

18S rRNA gene and 

gp60 gene 

(Cryptosporidium) 

Triose phosphate 

isomerase gene (Giardia 

duodenalis) 

Wastewater, treated 

wastewater and sludge 

samples 

Data not available 
[87] 

Cryptosporidium 

sp. and Giardia 

sp.  

Immunomagnetic separation, nested-

PCR, gel electrophoresis and 

sequencing 

Giardia: 18S rRNA gene 

and β-giardin gene 

Cryptosporidium: HSP70 

gene and 18S rRNA gene 

Surface and ground water 

samples, bovine fecal 

samples 

Data not available [88] 

Cryptosporidium 

sp. and Giardia 

sp. 

qPCR 

Cryptosporidium: COWP 

gene  

Giardia: β-giardin 

Wastewater samples 
156 cysts and 1,587 

oocysts/ml 
[89] 

Cryptosporidium 

spp.  

Immunomagnetic separation, nested-

PCR, gel electrophoresis and 

sequencing 

18S rRNA gene Drinking water samples 8 oocysts per reaction [90] 

Giardia 

intestinalis 

Immunomagnetic separation, semi-

nested-PCR, Reverse transcription 

PCR, gel electrophoresis and 

sequencing 

Glutamate 

dehydrogenase gene 

Wastewater, river and tap 

water samples 
Data not available 

[91] 



Giardia sp. and 

Cryptosporidium 

sp. 

Immunomagnetic separation and 

qPCR 

β-giardin gene (Giardia) 

and COWP gene 

(Cryptosporidium) 

Environmental water 

samples and vegetable rinse 

water samples 

40 (oo)cysts per reaction 
[92] 

Cryptosporidium 

sp.  

Immunomagnetic separation, 

alternately binding probe competitive 

reverse transcription PCR (ABC-RT-

PCR) and reverse-transcription real-

time PCR 

18S rRNA gene River water samples Data not available [93] 

Giardia 

duodenalis and 

Cryptosporidium 

spp.  

RFLP-Nested PCR, nested PCR, gel 

electrophoresis and sequencing 

Cryptosporidium: 18S 

rRNA gene (RFLP-

Nested PCR), gp60 gene 

(Nested PCR) 

Giardia: Triose 

phosphate isomerase 

gene (Nested PCR) 

Wastewater samples Data not available 
[94] 

Cryptosporidium 

sp. 

qPCR TaqMan, reverse transcription 

qPCR TaqMan and gel 

electrophoresis 

HSP70 gene 

Purified oocysts, surface 

water samples (spiked or 

not) 

Data not available [95] 

Cryptosporidium 

spp.  
qPCR and sequencing 18S rRNA gene 

Recreational and 

environmental water 

samples 

Data not available [96] 

Cryptosporidium 

parvum 
qPCR COWP gene 

Supply water and 

wastewater samples 
Data not available [97] 

Cryptosporidium 

sp.  

RFLP-Nested PCR, gel 

electrophoresis and sequencing 
18S rRNA gene 

Environmental water 

samples 
Data not available [98] 

Cryptosporidium 

sp. 

Immunomagnetic separation, nested-

PCR and sequencing 
18S rRNA gene 

Environmental water 

samples 
Data not available [99] 

Cryptosporidium 

spp. 

Nested-PCR, gel electrophoresis and 

sequencing  
18S rRNA gene 

Wastewater and river water 

samples 
Data not available [100] 



Cryptosporidium 

spp. 

Immunomagnetic separation, RFLP-

nested-PCR, gel electrophoresis and 

sequencing 

18S rRNA gene 
Environmental and treated 

water samples 
Data not available [101] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, 

replicate RFLP-nested PCR 

(Cryptosporidium), semi-nested PCR 

(Giardia) and sequencing 

Cryptosporidium: 18S 

rRNA gene  

Giardia: 18S rRNA gene  

Raw water samples and 

wastewater samples 
Data not available [102] 

Cryptosporidium 

spp. 

Nested-PCR, loop-mediated 

isothermal amplification, gel 

electrophoresis and sequencing 

18S rRNA gene (nested 

PCR) and SAM-1 gene 

(LAMP) 

Sea and tap water samples 

100 fg of DNA per reaction 

(Nested PCR) and 1,8 fg of 

DNA per reaction (LAMP) 

[83] 

Giardia sp. and 

Cryptosporidium 

sp. 

Semi-nested PCR (Giardia), nested-

PCR (Cryptosporidium), loop-

mediated isothermal amplification 

and gel electrophoresis 

Cryptosporidium: 18S 

rRNA gene (nested-

PCR) and SAM-1 gene 

(LAMP) 

Giardia: glutamate 

dehydrogenase gene 

(semi-nested PCR) and 

EF-α gene (LAMP) 

Surface water samples Data not available 
[103] 

Cryptosporidium 

spp.  

PCR, nested-PCR and gel 

electrophoresis 
18S rRNA gene 

Purified oocysts, raw water 

samples (spiked or not) and 

sludge samples 

2-5 oocysts per reaction [104] 

Cryptosporidium 

spp. 

Immunomagnetic separation, 

repetitive RFLP-nested PCR, gel 

electrophoresis and sequencing 

18S rRNA gene 
Environmental water 

samples 
4 oocysts per sample [105] 

Cryptosporidium 

spp. and Giardia 

lamblia 

Immunomagnetic separation, semi-

nested PCR (Giardia), nested-PCR 

(Cryptosporidium), gel 

electrophoresis and real-time PCR 

Cryptosporidium: 18S 

rRNA gene and COWP 

gene 

Giardia: β-giardin gene 

Wastewater samples Data not available [106] 



Cryptosporidium 

spp. 

Immunomagnetic separation, qPCR 

TaqMan and sequencing 

DNA-J like protein gene 

and NTF2 gene 

Purified oocysts and river 

water samples 

1-10 oocysts per reaction 

(depending on the primer 

pair) 

[107] 

Cryptosporidium 

spp. 

Immunomagnetic separation, 

replicate RFLP-Nested PCR and 

sequencing 

18S rRNA gene Surface water samples Data not available [108] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, nested-

PCR, gel electrophoresis and 

sequencing 

18S rRNA gene 
Surface water and 

wastewater samples 
Data not available [109] 

Giardia spp. and 

Cryptosporidium 

spp.  

Immunomagnetic separation, PMA-

qPCR 

Giardia: β-giardin gene, 

triose phosphate 

isomerase gene and 

glutamate dehydrogenase 

gene 

Cryptosporidium: COWP 

gene 

Wastewater samples (spiked 

or not) 
103 (oo)cysts/L 

[110] 

Cryptosporidium 

sp. and Giardia 

sp. 

Nested PCR and sequencing 

Cryptosporidium: 18S 

rRNA gene  

Giardia: Triose 

phosphate isomerase 

gene 

Environmental water 

samples 
Data not available [111] 

Cryptosporidium 

sp. and Giardia 

sp.  

PCR, semi-nested PCR, nested-PCR, 

gel electrophoresis and sequencing 
18S rRNA gene Rainwater samples Data not available [112] 

Cryptosporidium 

spp.  

Immunomagnetic separation, RFLP-

nested-PCR, gel electrophoresis and 

sequencing 

18S rRNA gene 
Surface water samples and 

groundwater samples 
Data not available [113] 

Giardia spp.  

Immunomagnetic separation, PCR, 

nested-PCR, gel electrophoresis and 

sequencing 

β-giardin gene (PCR), 

triose phosphate 

isomerase gene (nested-

Environmental water 

samples, wastewater 
Data not available 

[114] 



PCR) and glutamate 

dehydrogenase gene 

(nested-PCR) 

samples and fecal samples 

(humans and animals) 

Cryptosporidium 

spp.  

Immunomagnetic separation, RFLP-

nested PCR, gel electrophoresis and 

sequencing 

18S rRNA gene and 

gp60 gene 

Drinking water, wastewater 

and recreational water 

samples 

Data not available [115] 

Cryptosporidium 

spp.  

Nested-PCR, gel electrophoresis and 

sequencing  

18S rRNA gene and 

gp60 gene 
River water samples Data not available [116] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, nested-

PCR, semi-nested PCR, gel 

electrophoresis and sequencing 

Cryptosporidium: 18S 

rRNA gene (nested-

PCR) 

Giardia: glutamate 

dehydrogenase gene 

(semi-nested PCR) 

Wastewater samples Data not available [117] 

Cryptosporidium 

sp. and Giardia 

sp. 

Nested PCR, semi-nested PCR and 

gel electrophoresis 

Cryptosporidium: 18S 

rRNA gene (nested PCR) 

Giardia: glutamate 

dehydrogenase gene 

(semi-nested PCR) 

Environmental water 

samples and animal fecal 

samples 

Data not available [118] 

Cryptosporidium 

sp. and Giardia 

sp. 

qPCR, gel electrophoresis and 

sequencing 

Cryptosporidium: COWP 

gene  

Giardia: β-giardin gene 

River water samples and 

wastewater samples (both 

spiked or not) 

5 (oo)cysts/L [119] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, nested-

PCR and sequencing 
18S rRNA gene 

Raw and treated water 

samples 

0.12-0.2 cysts and 0.04-0.1 

oocysts per reaction 
[120] 

Giardia 

duodenalis  
RFLP-PCR and gel electrophoresis 

Triose phosphate 

isomerase gene 
Wastewater samples Data not available 

[121] 



Cryptosporidium 

spp.  

Immunomagnetic separation, PCR 

and sequencing 

18S rRNA gene and 

gp60 gene 

Environmental water 

samples 
Data not available [122] 

Cryptosporidium 

spp.  

Immunomagnetic separation, RFLP-

PCR, sequencing 

18S rRNA gene and 

gp60 gene 

Human fecal samples, 

drinking water, raw water 

and wastewater samples 

Data not available [123] 

Giardia spp. and 

Cryptosporidium 

spp.  

Semi-nested PCR, nested-PCR, 

nested real-time PCR TaqMan, gel 

electrophoresis and sequencing 

Giardia: β-giardin gene 

(semi-nested PCR) and 

18S rRNA gene (Nested 

real-time PCR) 

Cryptosporidium: 18S 

rRNA gene (Nested PCR 

and nested real-time 

PCR) 

Surface water samples Data not available 
[124] 

Giardia spp. and 

Cryptosporidium 

spp.  

Nested PCR, gel electrophoresis and 

sequencing 
18S rRNA gene  

Raw and treated water 

samples 

10 oocysts/mL and 2 

cysts/mL 

[125] 

Giardia spp. and 

Cryptosporidium 

spp. 

Immunomagnetic separation and 

qPCR 

Giardia: β-giardin gene 

Cryptosporidium: COWP 

gene 

Environmental water 

samples (spiked or not) 
Data not available 

[126] 

Giardia 

duodenalis and 

Cryptosporidium 

spp. 

Immunomagnetic separation, nested 

PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: 18S 

rRNA gene  

Giardia: β-giardin gene 

Raw and treated water 

samples 
Data not available 

[127] 

Giardia 

duodenalis  

RFLP-PCR, semi-nested PCR, gel 

electrophoresis and sequencing 

β-giardin gene and 

glutamate dehydrogenase 

gene 

Human and animal fecal 

samples, water samples, 

vegetable samples 

Data not available 
[128] 

Giardia 

duodenalis and 

Cryptosporidium 

spp. 

Immunomagnetic separation, PCR, 

nested PCR, gel electrophoresis and 

sequencing 

Giardia: β-giardin gene, 

triose phosphate 

isomerase gene and 

Human and animal fecal 

samples, water samples 
Data not available 

[129] 



glutamate dehydrogenase 

gene (PCR for all) 

Cryptosporidium: 18S 

rRNA gene (nested PCR) 

Giardia spp. and 

Cryptosporidium 

spp. 

Immunomagnetic separation, nested 

PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: 18S 

rRNA gene, HSP70 gene 

and gp60 gene 

Giardia: β-giardin gene 

and triose phosphate 

isomerase gene 

Surface water and treated 

water samples 
Data not available 

[130] 

Giardia spp. and 

Cryptosporidium 

spp. 

Immunomagnetic separation, PCR, 

nested PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: 18S 

rRNA gene and HSP70 

gene (PCR) 

Giardia: β-giardin gene 

and triose phosphate 

isomerase gene (nested 

PCR) 

Recreational water samples Data not available 
[131] 

Cryptosporidium 

spp.  

Immunomagnetic separation, 

multiplex PCR, PCR, nested PCR 

and sequencing 

18S rRNA gene and 

gp60 gene 

Human fecal samples, river 

water samples and pool 

water samples 

Data not available [132] 

Cryptosporidium 

parvum and 

Giardia 

duodenalis 

Real-time PCR 18S rRNA gene  

Purified (oo)cysts, raw water 

samples (spiked or not) and 

treated water samples 

(spiked or not) 

Data not available [133] 

Cryptosporidium 

parvum and 

Giardia 

duodenalis 

Assemblage A 

qPCR, multiplex qPCR, gel 

electrophoresis and sequencing 

Cryptosporidium: COWP 

gene  

Giardia: β-giardin gene 

Wastewater samples and 

mussel samples 

10 copies of target DNA per 

reaction 
[134] 



Cryptosporidium 

spp.  
RFLP-Nested PCR and sequencing 

18S rRNA gene and 

gp60 gene (sequencing 

only) 

Human and animal fecal 

samples, environmental 

water samples 

Data not available [135] 

Giardia sp. 
Immunomagnetic separation and 

PCR 

Glutamate 

dehydrogenase gene 
Groundwater samples Data not available 

[136] 

Giardia spp.  PCR and sequencing 18S rRNA gene 
Human and animal fecal 

samples, water samples 
Data not available 

[137] 

Cryptosporidium 

spp. and Giardia 

spp.  

PCR, nested-PCR, gel 

electrophoresis and sequencing 
18S rRNA gene 

Environmental water 

samples 
10 cells per reaction [138] 

Cryptosporidium 

spp. and Giardia 

spp. 

Nested PCR, gel electrophoresis and 

sequencing 
18S rRNA gene 

Untreated and treated 

wastewater samples 
Data not available [139] 

Cryptosporidium 

spp. 

Immunomagnetic separation, nested 

PCR, gel electrophoresis, capillary 

electrophoresis and sequencing 

18S rRNA gene 

MM5, MM18, MM19, 

TP14, MS1 and MS9 loci 

Animal fecal samples and 

environmental water 

samples 

Data not available [140] 

Giardia spp. 
Nested PCR, PCR, LAMP, gel 

electrophoresis and sequencing 

18S rRNA gene (nested 

PCR) and glutamate 

dehydrogenase gene 

(PCR), αEF1 gene 

(LAMP) 

Environmental water 

samples 

100 fg of target DNA per 

mL of water 
[141] 

Cryptosporidium 

parvum and 

Giardia lamblia 

Immunomagnetic separation and 

real-time PCR 

Cryptosporidium: 

uncharacterized genomic 

sequence 

Giardia: 18S rRNA gene 

Environmental and treated 

water samples 
Data not available [142] 

Cryptosporidium 

spp. 

Immunomagnetic separation, 

replicate RFLP-nested PCR-and 

sequencing 

18S rRNA gene 
Environmental water 

samples 
Data not available [143] 



Cryptosporidium 

spp.  
Real-time PCR singleplex and duplex 18S rRNA gene Treated water samples Data not available [144] 

Cryptosporidium 

spp. and Giardia 

spp.  

PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: gp60 

gene 

Giardia: Glutamate 

dehydrogenase gene  

Purified (oo)cysts and water 

samples 

6,5-65 fg of target DNA per 

µL (Giardia) 

50 fg of target DNA per µL 

(Cryptosporidium) 

  

[145] 

Cryptosporidium 

spp. and Giardia 

intestinalis 

PCR, nested PCR and sequencing  

Cryptosporidium: 18S 

rRNA gene 

Giardia: Glutamate 

dehydrogenase gene 

Wastewater samples Data not available [146] 

Cryptosporidium 

spp. and Giardia 

intestinalis 

Multiplex real-time PCR 

Cryptosporidium: DNA-

J-like protein gene  

Giardia: 18S rRNA gene 

Wastewater samples 
10 copies of target DNA per 

reaction 
[147] 

Giardia 

duodenalis 

Nested PCR, gel electrophoresis and 

sequencing 

β-giardin gene, triose 

phosphate isomerase 

gene and glutamate 

dehydrogenase gene 

Wastewater samples Data not available 
[148] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Immunomagnetic separation, RFLP-

nested PCR, nested PCR, gel 

electrophoresis and sequencing 

Cryptosporidium: 18S 

rRNA gene (RFLP-

nested PCR) and gp60 

gene (nested PCR) 

Giardia: glutamate 

dehydrogenase gene 

(RFLP-nested PCR) 

River water samples Data not available [149] 

Cryptosporidium 

spp 

Immunomagnetic separation, RFLP-

nested PCR, nested PCR, gel 

electrophoresis and sequencing 

Cryptosporidium: 18S 

rRNA gene (RFLP-
Raw surface water samples Data not available [150] 



nested PCR) and gp60 

gene (nested PCR) 

Giardia: glutamate 

dehydrogenase gene 

Giardia 

intestinalis  

Nested PCR, real-time PCR TaqMan, 

loop-mediated isothermal 

amplification, gel electrophoresis and 

sequencing 

18S rRNA gene (nested 

PCR), β-giardin gene 

(real-time PCR) and 

EF1-α-gene (LAMP) 

Environmental water 

samples 
Data not available 

[151] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, nested 

PCR, multiplex real-time PCR and 

sequencing 

Cryptosporidium: 18S 

rRNA gene (nested PCR 

and multiplex real-time 

PCR), gp60 gene (nested 

PCR) and Lib13 locus 

(multiplex real-time 

PCR) 

Giardia: β-giardin gene 

and triose phosphate 

isomerase gene (nested 

PCR) 

Wastewater sample Data not available [152] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation and 

nested PCR 

Cryptosporidium: 18S 

rRNA gene  

Giardia: β-giardin gene 

Raw and treated water 

samples 
Data not available [153] 

Cryptosporidium 

spp. and Giardia 

spp.  

Nested PCR, cloning in a plasmidic 

vector and sequencing 
18S rRNA gene 

Swimming pool water 

samples 
Data not available [154] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Nested PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: 18S 

rRNA gene 

Giardia: β-giardin gene 

and triose phosphate 

isomerase gene 

Raw water samples Data not available [155] 



Cryptosporidium 

parvum and 

Giardia lamblia 

qPCR TaqMan 18S rRNA gene Drinking water samples 
1500 copies of target gene 

per litre of water 
[156] 

Cryptosporidium 

spp. and Giardia 

intestinalis  

Immunomagnetic separation, nested 

PCR, real-time PCR TaqMan, 

cloning in a plasmidic vector and 

sequencing 

Cryptosporidium: 18S 

rRNA gene  

Giardia: glutamate 

dehydrogenase gene and 

18S rRNA gene 

Raw surface water samples 
1–2 oocyst/L (Real-time 

PCR) 
[157] 

Cryptosporidium 

spp.  

Nested PCR, gel electrophoresis ands 

sequencing 
Gp60 gene 

Pond and reservoir water 

samples 
Data not available [158] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Nested PCR and gel electrophoresis 

Cryptosporidium: 18S 

rRNA gene  

Giardia: Triose 

phosphate isomerase 

gene 

Water and sludge samples Data not available [159] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Real-time PCR TaqMan, PCR, gel 

electrophoresis and sequencing 

Cryptosporidium: 18S 

rRNA gene and gp60 

gene  

Giardia: 18S rRNA 

gene, glutamate 

dehydrogenase gene and 

triose phosphate 

isomerase gene 

 

Raw and treated water 

samples 
Data not available [160] 

Cryptosporidium 

spp. and Giardia 

spp.  

Nested PCR and sequencing 18S rRNA gene Recreational water samples Data not available 
[161] and 

[162] 

Cryptosporidium 

spp.  

qPCR, droplet digital PCR and 

Illumina MiSeq sequencing 

18S rRNA gene and Clec 

gene 
Wastewater samples 1 oocyst/µL of DNA extract [163] 



Cryptosporidium 

spp.  

Immunomagnetic separation, nested 

PCR and sequencing 
18S rRNA gene Raw water samples Data not available [164] 

Cryptosporidium 

spp. and Giardia 

lamblia 

RFLP-nested PCR, gel 

electrophoresis and sequencing 

Cryptosporidium: COWP 

gene 

Giardia: β-giardin gene 

Treated water samples Data not available [165] 

Cryptosporidium 

spp. and Giardia 

duodenalis  

Nested PCR, semi-nested PCR, gel 

electrophoresis and sequencing 
18S rRNA gene 

Environmental and sewage 

water samples 
Data not available [166] 

Cryptosporidium 

spp. and Giardia 

spp.  

Immunomagnetic separation, nested 

PCR and gel electrophoresis 

Cryptosporidium: 18S 

rRNA gene 

Giardia: Glutamate 

dehydrogenase gene and 

triose phosphate 

isomerase  

Water samples Data not available [167] 

Cryptosporidium 

spp.  

Immunomagnetic separation, reverse 

transcriptase PCR, nested PCR, gel 

electrophoresis and sequencing 

HSP70 gene (RT-PCR) 

and 18S rRNA gene 

(nested PCR) 

Environmental and treated 

water samples 
Data not available [168] 

Cryptosporidium 

spp. and Giardia 

spp.  

Immunomagnetic separation, PCR, 

nested PCR and sequencing 

Cryptosporidium: 18S 

rRNA gene 

Giardia: 18S rRNA 

gene, glutamate 

dehydrogenase gene, 

triose phosphate 

isomerase gene and β-

giardin gene 

Treated water samples Data not available [169] 

Giardia 

intestinalis 

RFLP-Nested PCR, RFLP-

heminested PCR, gel electrophoresis 

and DNA sequencing 

Triose phosphate 

isomerase gene (RFLP-

Nested PCR) and 

glutamate dehydrogenase 

Human fecal samples, raw 

water samples and drinking 

water samples 

Data not available [170] 



gene (RFLP-heminested 

PCR) 

Giardia 

intestinalis 
PCR and gel electrophoresis 18S rRNA gene 

Human and bovine fecal 

samples, water samples 
Data not available [171] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: 18S 

rRNA gene and gp60 

gene 

Giardia: Triose 

phosphate isomerase 

gene and β-giardin gene 

Wastewater and sludge 

samples 
Data not available [172] 

Giardia lamblia qPCR 18S rRNA gene 
Environmental water 

samples 
Data not available [173] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

(RFLP-) nested PCR, gel 

electrophoresis and sequencing 

Cryptosporidium: 18S 

rRNA gene and gp60 

gene 

Giardia: glutamate 

dehydrogenase gene, 

triose phosphate 

isomerase gene and β-

giardin gene 

Wastewater samples Data not available [174] 

Cryptosporidium 

spp. and Giardia 

spp. 

Immunomagnetic separation, nested 

PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: 18S 

rRNA gene, gp60 gene 

and HSP70 gene 

Giardia: 18S rRNA 

gene, β-giardin gene, 

glutamate dehydrogenase 

gene and triose 

phosphate isomerase 

Mussel samples and 

wastewater samples 
Data not available [175] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Immunomagnetic separation, PCR, 

gel electrophoresis and sequencing 

Cryptosporidium: 18S 

rRNA gene, HSP70 gene 

and gp60 gene  

Environmental and treated 

water samples, animal fecal 

samples 

Data not available [176] 



Giardia: β-giardin gene, 

glutamate dehydrogenase 

gene and triose 

phosphate isomerase 

Cryptosporidium 

sp. and Giardia 

sp. 

PCR and Illumina MiSeq sequencing 18S rRNA gene  

Drinking water, reservoir 

water, groundwater, river 

water and one reclaimed 

water source samples 

Data not available [177] 

Cryptosporidium 

spp. and Giardia 

duodenalis  

qPCR 

Cryptosporidium: 18S 

rRNA gene  

Giardia: β-giardin gene 

Groundwater samples Data not available [178] 

Cryptosporidium 

sp. 
Illumina MiSeq sequencing 18S rRNA gene 

Raw, drinking and reservoir 

water samples 
Data not available [179] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Real-time PCR 

Cryptosporidium: COWP 

gene  

Giardia: 18S rRNA gene 

Drinking water Data not available [180] 

Cryptosporidium 

spp. and Giardia 

spp.  

Droplet Digital PCR 

Cryptosporidium: 18S 

rRNA gene  

Giardia: β-giardin gene 

Tap and reservoir water 

samples 
Data not available [181] 

Cryptosporidium 

spp. and Giardia 

spp.  

Nested PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: 18S 

rRNA gene  

Giardia: triose phosphate 

isomerase gene 

Surface water samples 0.4 (oo)cyst/L [182] 

Cryptosporidium 

sp. 

Nested PCR, gel electrophoresis and 

sequencing 
18S rRNA gene Surface water samples Data not available [183] 



Cryptosporidium 

spp.  

Nested PCR, gel electrophoresis and 

sequencing 

18S rRNA gene and 

gp60 gene 

Surface, raw, treated and 

abattoir effluent water 

samples  

Data not available [184] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Nested PCR, gel electrophoresis and 

sequencing 

Cryptosporidium: 18S 

rRNA gene and gp60 

gene 

Giardia: β-giardin gene, 

glutamate dehydrogenase 

gene and triose 

phosphate isomerase 

Wastewater samples Data not available [185] 

Giardia lamblia Nanoscale qPCR 18S rRNA gene  Recreative water samples Data not available [186] 

Cryptosporidium 

sp. and Giardia 

sp. 

PCR 

Cryptosporidium: 18S 

rRNA gene  

Giardia: HSP70 gene 

Raw, treated and 

backflushed water samples 

0,01 parasites per 100 L of 

water 
[187] 

Giardia sp.  Real-time PCR 18S rRNA gene 

Open drains, canals, 

floodwater, septic tanks, and 

anaerobic baffled reactors 

water samples 

4 genome copies [188] 

Cryptosporidium 

spp.  

qPCR, nested PCR, gel 

electrophoresis and Illumina MiSeq 

sequencing 

18S rRNA gene (qPCR), 

gp60 gene (nested PCR 

and sequencing) 

River water samples Data not available [189] 

Cryptosporidium 

spp. and Giardia 

duodenalis 

Nested Multiplex PCR, cloth-based 

hybridization array 

Giardia: 16S rRNA gene 

and triose phosphate 

isomerase gene  

Cryptosporidium: COWP 

gene 

Wastewater and river water 

samples artificially 

contaminated  

Data not available [190] 

Cryptosporidium 

parvum and 

Giardia lamblia 

qPCR 

Giardia: Glumate 

dehydrogenase gene and 

β-giardin gene 

Artificially contaminated 

water samples 

Cryptosporidium: 4 genome 

copies per PCR reaction  
[191] 



Cryptosporidium: COWP 

gene and Lib13 gene 

Giardia: 5 genome copies 

per PCR reaction 

Giardia 

duodenalis 

(Semi-) nested PCR, gel 

electrophoresis and sequencing 

18S rRNA gene (nested 

PCR) and glutamate 

dehydrogenase gene 

(semi-nested PCR) 

Lake water samples Data not available [192] 

Cryptosporidium 

sp.  

Immunomagnetic separation, nested 

PCR and sequencing 

18S rRNA gene and 

gp60 gene 

River and lake water 

samples 
Data not available [193] 

 

Note: For simplicity’s sake in the table, complete titles such as the small-subunit gene and 18S rRNA gene were abbreviated to 18S 

rRNA gene in the table. Also, because most studies used Sanger technology, the heading ‘’sequencing’’ used in this table refers to this 

technique. Next generation sequencing is specifically mentioned when it was used. It is important to explain that the limits of detection 

specified in this table are the ones clearly stated in the article itself. Any limit of detection present in supplementary data or mentioned 

in a previous article was not considered and classified as “Data not available” along with the other articles not presenting a limit of 

detection value. 
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