Co-Infection of L. monocytogenes and Toxoplasma gondii in a Sheep Flock Causing Abortion and Lamb Deaths
Abstract
:1. Introduction
2. Results
2.1. Necropsy and Histopathological Findings
2.1.1. Description of Macroscopic Lesions
2.1.2. Description of Histologic Examination
2.2. Microbiological Testing
2.2.1. Animal Specimen
2.2.2. Feed and Water
2.3. Molecular Detection Results
Organ Tissues PCR
2.4. Serological Testing
2.5. Bacterial Strain L. monocytogenes
2.5.1. WGS
2.5.2. Clustering Results
2.5.3. Virulence, Persistence and Antimicrobial Resistance Gene Detection Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Farm Data
5.2. Necroscopy and Histological Examination
5.3. Microbiological Testing
5.4. Molecular Detection
5.5. Serological Testing
5.6. Listeria Monocytogenes Molecular Testing
5.6.1. DNA Extraction
5.6.2. Molecular Serogrouping
5.6.3. Next-Generation Sequencing (WGS) and Data Analysis
5.6.4. Cluster Analysis
5.6.5. Virulence Genes and Genetic Determinant Involved in Persistence and Antibiotic Resistance
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, S.; Zhao, Z.; Zhen, G.; Kang, J.; Yi, P. Reproductive problems in small ruminants Sheep and goats: A substantial economic loss in the world. Large Anim. Rev. 2019, 25, 215–223. [Google Scholar]
- Menzies, P.I. Control of Important Causes of Infectious Abortion in Sheep and Goats. Vet. Clin. Food Anim. Pract. 2011, 27, 81–93. Available online: https://www.sciencedirect.com/science/article/pii/S0749072010000885 (accessed on 29 May 2022). [CrossRef] [PubMed]
- Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Herman, L.; Koutsoumanis, K.; Nørrung, B.; et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018, 16, e05134. [Google Scholar]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [CrossRef]
- Shapiro, K.; Bahia-Oliveira, L.; Dixon, B.; Dumètre, A.; de Wit, L.A.; VanWormer, E.; Villena, I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol. 2019, 15, e00049. [Google Scholar] [CrossRef]
- Stelzer, S.; Basso, W.; Benavides Silván, J.; Ortega-Mora, L.M.; Maksimov, P.; Gethmann, J.; Conraths, F.J.; Schares, G. Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food Waterborne Parasitol. 2019, 15, e00037. Available online: https://www.sciencedirect.com/science/article/pii/S2405676618300441 (accessed on 29 May 2022). [CrossRef] [PubMed]
- Dos Santos, T.R.; Faria, G.D.S.M.; Guerreiro, B.M.; Dal Pietro, N.H.P.D.S.; Lopes, W.D.Z.; Da Silva, H.M.; Garcia, J.L.; Luvizotto, M.C.R.; Bresciani, K.D.S.; Da Costa, A.J. Congenital toxoplasmosis in chronically infected and subsequently challenged ewes. PLoS ONE 2016, 11, e0165124. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Beattie, C.P. Toxoplasmosis of Animals and Man; CRC Press: Boca Raton, FL, USA, 1988; p. 220. [Google Scholar]
- Dubey, J.P. Toxoplasmosis of Animals and Humans, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; 313p. [Google Scholar]
- Lopes, A.P.; Dubey, J.P.; Neto, F.; Rodrigues, A.; Martins, T.; Rodrigues, M.; Cardoso, L. Seroprevalence of Toxoplasma gondii infection in cattle, sheep, goats and pigs from the North of Portugal for human consumption. Vet. Parasitol. 2013, 193, 266–269. [Google Scholar] [CrossRef]
- Dubey, J.P.; Hotea, I.; Olariu, T.R.; Jones, J.L.; Dărăbuş, G. Epidemiological review of toxoplasmosis in humans and animals in Romania. Parasitology 2014, 141, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Martín, D.; García-Bocanegra, I.; Almería, S.; Castro-Scholten, S.; Dubey, J.P.; Amaro-López, M.A.; Cano-Terriza, D. Epidemiological surveillance of Toxoplasma gondii in small ruminants in southern Spain. Prev. Vet. Med. 2020, 183, 105137. [Google Scholar] [CrossRef] [PubMed]
- Anastasia, D.; Elias, P.; Nikolaos, P.; Charilaos, K.; Nektarios, G. Toxoplasma gondii and Neospora caninum seroprevalence in dairy sheep and goats mixed stock farming. Vet. Parasitol. 2013, 198, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Gazzonis, A.L.; Marino, A.M.F.; Garippa, G.; Rossi, L.; Mignone, W.; Dini, V.; Giunta, R.P.; Luini, M.; Villa, L.; Zanzani, S.A.; et al. Toxoplasma gondii seroprevalence in beef cattle raised in Italy: A multicenter study. Parasitol. Res. 2020, 119, 3893–3898. [Google Scholar] [CrossRef]
- Dhama, K.; Karthik, K.; Tiwari, R.; Shabbir, M.Z.; Barbuddhe, S.; Malik, S.V.S.; Singh, R.K. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: A comprehensive review. Vet. Q. 2015, 35, 211–235. [Google Scholar] [CrossRef]
- Donald, A.S.; Fenlon, D.R.; Seddon, B. The relationship between ecophysiology, indigenous microflora and growth of Listeria monocytogenes in grass silage. J. Appl. Bacteriol. 1995, 79, 141–148. [Google Scholar] [CrossRef]
- Driehuis, F.; Wilkinson, J.M.; Jiang, Y.; Ogunade, I.; Adesogan, A.T. Silage review: Animal and human health risks from silage. J. Dairy Sci. 2018, 101, 4093–4110. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Melzner, D.; Bagò, Z.; Winter, P.; Egerbacher, M.; Schilcher, F.; Zangana, A.; Schoder, D. Outbreak of clinical listeriosis in sheep: Evaluation from possible contamination routes from feed to raw produce and humans. J. Vet. Med. B Infect Dis. Vet. Public Health 2005, 52, 278–283. [Google Scholar] [CrossRef]
- Broadbent, D.W. Listeria as a cause of abortion and neonatal mortality in sheep. Aust. Vet. J. 1972, 48, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Dell’Armelina Rocha, P.R.; Lomonaco, S.; Bottero, M.T.; Dalmasso, A.; Dondo, A.; Grattarola, C.; Zuccon, F.; Iulini, B.; Knabel, S.J.; Capucchio, M.T.; et al. Ruminant rhombencephalitis-associated Listeria monocytogenes strains constitute a genetically homogeneous group related to human outbreak strains. Appl. Environ. Microbiol. 2013, 79, 3059–3066. [Google Scholar] [CrossRef]
- Brugère-Picoux, J. Ovine listeriosis. Small Rumin. Res. 2008, 76, 12–20. Available online: https://www.sciencedirect.com/science/article/pii/S0921448807002842 (accessed on 29 May 2022). [CrossRef]
- Movassaghi, A.R.; Rassouli, M.; Fazaeli, A.; Salimi-Bejestani, M.R. Outbreak of ovine congenital toxoplasmosis in Iran, confirmed by different diagnostic methods. J. Parasit. Dis. 2016, 40, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Gual, I.; Giannitti, F.; Hecker, Y.P.; Shivers, J.; Entrocassi, A.C.; Morrell, E.L.; Pardini, L.; Fiorentino, M.A.; Rodríguez Fermepin, M.; Unzaga, J.M.; et al. First case report of Toxoplasma gondii-induced abortions and stillbirths in sheep in Argentina. Vet. Parasitol. Reg. Stud. Rep. 2018, 12, 39–42. [Google Scholar] [CrossRef]
- Oevermann, A.; Di Palma, S.; Doherr, M.G.; Abril, C.; Zurbriggen, A.; Vandevelde, M. Neuropathogenesis of naturally occurring encephalitis caused by Listeria monocytogenes in ruminants. Brain Pathol. 2010, 20, 378–390. [Google Scholar] [CrossRef]
- Hazlett, M.J.; McDowall, R.; DeLay, J.; Stalker, M.; McEwen, B.; van Dreumel, T.; Spinato, M.; Binnington, B.; Slavic, D.; Carman, S.; et al. A prospective study of sheep and goat abortion using real-time polymerase chain reaction and cut point estimation shows Coxiella burnetii and Chlamydophila abortus infection concurrently with other major pathogens. J. Vet. Diagn Investig. 2013, 25, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Morley, E.; Hughes, J.; Duncanson, P.; Terry, R.; Smith, J.; Hide, G. High levels of congenital transmission of Toxoplasma gondii in longitudinal and cross-sectional studies on sheep farms provides evidence of vertical transmission in ovine hosts. Parasitology 2005, 130 Pt 3, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, T.; Sarvi, S.; Moosazadeh, M.; Daryani, A. Global prevalence of Toxoplasma gondii infection in the aborted fetuses and ruminants that had an abortion: A systematic review and meta-analysis. Vet. Parasitol. 2021, 290, 109370. Available online: https://www.sciencedirect.com/science/article/pii/S0304401721000303 (accessed on 29 May 2022). [CrossRef] [PubMed]
- Esposito, C.; Cardillo, L.; Borriello, G.; Ascione, G.; Valvini, O.; Galiero, G.; Fusco, G. First Detection of Listeria monocytogenes in a Buffalo Aborted Foetus in Campania Region (Southern Italy). Front. Vet. Sci. 2021, 7, 571654. [Google Scholar] [CrossRef] [PubMed]
- Whitman, K.J.; Bono, J.L.; Clawson, M.L.; Loy, J.D.; Bosilevac, J.M.; Arthur, T.M.; Ondrak, J.D. Genomic-based identification of environmental and clinical Listeria monocytogenes strains associated with an abortion outbreak in beef heifers. BMC Vet. Res. 2020, 16, 70. [Google Scholar] [CrossRef] [PubMed]
- Bergis, H.; Bonanno, L.; Asséré, A.; Lombard, B. EURL Lm technical guidance document on challenge tests and durability studies for assessing shelf-life of ready-to-eat foods related to Listeria monocytogenes. EURL Lm-Eur. Comm. 2021, 60. [Google Scholar]
- Fenlon, D.R. Rapid quantitative assessment of the distribution of Listeria in silage implicated in a suspected outbreak of listeriosis in calves. Vet. Rec. 1986, 118, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Nucera, D.M.; Grassi, M.A.; Morra, P.; Piano, S.; Tabacco, E.; Borreani, G. Detection, identification, and typing of Listeria species from baled silages fed to dairy cows. J. Dairy Sci. 2016, 99, 6121–6133. [Google Scholar] [CrossRef]
- Dreyer, M.; Thomann, A.; Böttcher, S.; Frey, J.; Oevermann, A. Outbreak investigation identifies a single Listeria monocytogenes strain in sheep with different clinical manifestations, soil and water. Vet. Microbiol. 2015, 179, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Papić, B.; Pate, M.; Félix, B.; Kušar, D. Genetic diversity of Listeria monocytogenes strains in ruminant abortion and rhombencephalitis cases in comparison with the natural environment. BMC Microbiol. 2019, 19, 299. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.; Criscuolo, A.; Pouseele, H.; Maury, M.M.; Leclercq, A.; Tarr, C.; Björkman, J.T.; Dallman, T.; Reimer, A.; Enouf, V.; et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2016, 2, 16185. [Google Scholar] [CrossRef] [PubMed]
- Disson, O.; Moura, A.; Lecuit, M. Making Sense of the Biodiversity and Virulence of Listeria monocytogenes. Trends Microbiol. 2021, 29, 811–822. [Google Scholar] [CrossRef]
- Cotter, P.D.; Draper, L.A.; Lawton, E.M.; Daly, K.M.; Groeger, D.S.; Casey, P.G.; Ross, R.P.; Hill, C. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog. 2008, 4, e1000144. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Haendiges, J.; Keller, E.N.; Myers, R.; Kim, A.; Lombard, J.E.; Karns, J.S.; Van Kessel, J.A.S.; Haley, B.J. Genetic diversity and virulence profiles of Listeria monocytogenes recovered from bulk tank milk, milk filters, and milking equipment from dairies in the United States (2002 to 2014). PLoS ONE 2018, 13, e0197053. [Google Scholar] [CrossRef]
- Arcari, T.; Feger, M.; Guerreiro, D.N.; Wu, J.; O’byrne, C.P. Comparative review of the responses of Listeria monocytogenes and escherichia coli to low ph stress. Genes 2020, 11, 1330. [Google Scholar] [CrossRef] [PubMed]
- Kastner, R.; Dussurget, O.; Archambaud, C.; Kernbauer, E.; Soulat, D.; Cossart, P.; Decker, T. LipA, a tyrosine and lipid phosphatase involved in the virulence of Listeria monocytogenes. Infect. Immun. 2011, 79, 2489–2498. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, L.; Zhu, M.; Yang, Z.; Pilar, G.; Bao, H.; Zhou, Y.; Wang, R.; Zhang, H. Non-coding RNA regulates phage sensitivity in Listeria monocytogenes. PLoS ONE 2021, 16, e0260768. [Google Scholar] [CrossRef]
- Prokop, A.; Gouin, E.; Villiers, V.; Nahori, M.-A.; Vincentelli, R.; Duval, M.; Cossart, P.; Dussurget, O. Orfx, a nucleomodulin required for Listeria monocytogenes virulence. mBio 2017, 8, e01550-17. [Google Scholar] [CrossRef]
- Lee, S.; Ward, T.; Jima, D.; Parsons, C.; Kathariou, S. The Arsenic Resistance-Associated Listeria Genomic Island LGI2 Exhibits Sequence and Integration Site Diversity and a Propensity for Three Listeria monocytogenes Clones with Enhanced Virulence. Appl. Environ. Microbiol. 2017, 83, e01189-17. [Google Scholar] [CrossRef] [PubMed]
- Palma, F.; Brauge, T.; Radomski, N.; Mallet, L.; Felten, A.; Mistou, M.-Y.; Brisabois, A.; Guillier, L.; Midelet-Bourdin, G. Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France. BMC Genom. 2020, 21, 130. [Google Scholar] [CrossRef] [PubMed]
- Zuber, I.; Lakicevic, B.; Pietzka, A.; Milanov, D.; Djordjevic, V.; Karabasil, N.; Teodorovic, V.; Ruppitsch, W.; Dimitrijevic, M. Molecular characterization of Listeria monocytogenes isolates from a small-scale meat processor in Montenegro, 2011–2014. Food Microbiol. 2019, 79, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Kurpas, M.; Osek, J.; Moura, A.; Leclercq, A.; Lecuit, M.; Wieczorek, K. Genomic Characterization of Listeria monocytogenes Isolated From Ready-to-Eat Meat and Meat Processing Environments in Poland. Front. Microbiol. 2020, 11, 1412. [Google Scholar] [CrossRef]
- ISO 21807:2004; Microbiology of Food and Animal Feeding Stuffs—Determination of Water Activity. 2004. Available online: https://www.iso.org/standard/34728.html (accessed on 29 May 2022).
- Procop, G.W.; Church, D.L.; Hall, G.S.; Janda, W.M.; Koneman, E.W.; Schreckenberger, P.; Woods, G.L. Koneman’s Color Atlas of Diagnostic Microbiology; Wolters Kluwer Health: Philadelphia, PA, USA, 2017. [Google Scholar]
- Pelczar, M.J., Jr.; Chan, E.C.S.; Krieg, N.R. Microbiology; Saujanya Books: Delhi, India, 2017; ISBN 10-0-07-462320-6. [Google Scholar]
- Quinn, P.J.; Markey, B.K.; Leonard, F.C.; Hartigan, P.; Fanning, S.; Fitzpatrick, E. Veterinary Microbiology and Microbial Disease, 2nd ed.; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-1-405-15823-7. [Google Scholar]
- Jouseimies-Somer, H.; Sutter, V.L. Wadsworth-ktl Anaerobic Bacteriology Manual, 6th ed.; Star Pub: Belmont, CA, USA, 2002. [Google Scholar]
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. ISO: Geneva, Switzerland, 2017.
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [PubMed]
- Kérouanton, A.; Marault, M.; Petit, L.; Grout, J.; Dao, T.T.; Brisabois, A. Evaluation of a multiplex PCR assay as an alternative method for Listeria monocytogenes serotyping. J. Microbiol. Methods 2010, 80, 134–137. [Google Scholar] [CrossRef]
- Cito, F.; Di Pasquale, A.; Cammà, C.; Cito, P. The Italian Information System for the Collection and Analysis of Complete Genome Sequence of Pathogens Isolated from Animal, Food and Environment. Int. J. Infect. Dis. 2018, 73, 296–297. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Timme, R.; Wolfgang, W.; Balkey, M.; Venkata, S.; Randolph, R.; Allard, M.; Strain, E. Optimizing open data to support one health: Best practices to ensure interoperability of genomic data from bacterial pathogens. One Health Outlook 2020, 2, 20. [Google Scholar] [CrossRef]
- Silva, M.; Machado, M.P.; Silva, D.N.; Rossi, M.; Moran-Gilad, J.; Santos, S.; Ramirez, M.; Carriço, J.A. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb. Genom. 2018, 4, e000166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. Grapetree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
Brain | Liver | Lungs | Cotyledons | |
---|---|---|---|---|
Brucella spp. | Negative | Negative | Negative | Negative |
Listeria spp. | Positive | Positive | Ø | Ø |
L. monocytogenes | Positive | Positive | Ø | Ø |
Salmonella spp. | Ø | Negative | Ø | Ø |
Campylobacter spp. | Ø | Negative | Ø | Ø |
MCDT Aerobically | MCDT Anaerobically | L. monocytogenes Detection | Salmonella spp. Detection | |
---|---|---|---|---|
Brain Lamb 1 | Negative | Negative | Negative | Ø |
Lung Lamb 1 | Negative | Negative | Ø | Ø |
Liver Lamb 1 | Negative | Negative | Negative | Negative |
Small Intestine Lamb 1 | Negative | Negative | Ø | Ø |
Cecal Lamb 1 | Negative | Negative | Ø | Ø |
Kidney Lamb 1 | Negative | Negative | Negative | Ø |
Brain Lamb 2 | Negative | Negative | Negative | Ø |
Lung Lamb 2 | Negative | Negative | Ø | Ø |
Liver Lamb 2 | Negative | Negative | Negative | Negative |
Small Intestine Lamb 2 | Negative | Negative | Ø | Ø |
Cecal Lamb 2 | Negative | Negative | Ø | Ø |
Kidney Lamb 2 | Negative | Negative | Negative | Ø |
Material Tested | Samples Tested (N.) | Analytical Portions Tested (N.) | L. innocua Detected | L. monocytogenes Detected | pH | aw |
---|---|---|---|---|---|---|
Silage grass (25 g) | 12 | 24 | 3 | 1 | 3.957 (3.7–4.4) | 0.983 (0.976–0.995) |
Drinking water (500 mL) | 2 | 2 | 0 | 0 | Ø | Ø |
Brain | Liver | Lungs | Spleen | Cotyledons | |
---|---|---|---|---|---|
Brucella spp. | Negative | Negative | Negative | Ø | Negative |
T. gondii | Positive | Ø | Ø | Ø | Ø |
N. caninum | Negative | Ø | Ø | Ø | Ø |
Schmallenberg Virus | Negative | Ø | Ø | Ø | Ø |
Leptospira spp. | Ø | Ø | Negative | Ø | Ø |
Chlamydiaceae | Ø | Ø | Negative | Ø | Ø |
Border Disease Virus | Ø | Ø | Ø | Negative | Ø |
Bluetongue Virus | Ø | Ø | Ø | Negative | Ø |
Brain | Kidney | Spleen | |
---|---|---|---|
T. gondii | Negative | Ø | Ø |
N. caninum | Negative | Negative | Ø |
Bluetongue Virus | Ø | Ø | Negative |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Angelis, M.E.; Martino, C.; Chiaverini, A.; Di Pancrazio, C.; Di Marzio, V.; Bosica, S.; Malatesta, D.; Salucci, S.; Sulli, N.; Acciari, V.A.; et al. Co-Infection of L. monocytogenes and Toxoplasma gondii in a Sheep Flock Causing Abortion and Lamb Deaths. Microorganisms 2022, 10, 1647. https://doi.org/10.3390/microorganisms10081647
De Angelis ME, Martino C, Chiaverini A, Di Pancrazio C, Di Marzio V, Bosica S, Malatesta D, Salucci S, Sulli N, Acciari VA, et al. Co-Infection of L. monocytogenes and Toxoplasma gondii in a Sheep Flock Causing Abortion and Lamb Deaths. Microorganisms. 2022; 10(8):1647. https://doi.org/10.3390/microorganisms10081647
Chicago/Turabian StyleDe Angelis, Maria Elisabetta, Camillo Martino, Alexandra Chiaverini, Chiara Di Pancrazio, Violeta Di Marzio, Serena Bosica, Daniela Malatesta, Stefania Salucci, Nadia Sulli, Vicdalia Aniela Acciari, and et al. 2022. "Co-Infection of L. monocytogenes and Toxoplasma gondii in a Sheep Flock Causing Abortion and Lamb Deaths" Microorganisms 10, no. 8: 1647. https://doi.org/10.3390/microorganisms10081647
APA StyleDe Angelis, M. E., Martino, C., Chiaverini, A., Di Pancrazio, C., Di Marzio, V., Bosica, S., Malatesta, D., Salucci, S., Sulli, N., Acciari, V. A., & Pomilio, F. (2022). Co-Infection of L. monocytogenes and Toxoplasma gondii in a Sheep Flock Causing Abortion and Lamb Deaths. Microorganisms, 10(8), 1647. https://doi.org/10.3390/microorganisms10081647