Comparative Study of Different Diagnostic Routine Methods for the Identification of Acinetobacter radioresistens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of A. radioresistens Reference Strains
2.2. Identification of A. radioresistens Using VITEK2
2.3. Identification of A. radioresistens Using MALDI-TOF MS
2.4. Sequencing of the 16S rRNA and rpoB Gene of A. radioresistens
2.5. Identification Using Average Nucleotide Identity and Digital DNA-DNA Hybridization
3. Results
3.1. Patient Characteristics and Samples
3.2. Identification Using the VITEK 2 System
3.3. Identification Using MALDI-TOF MS
3.4. Results from Sequencing of the 16S rRNA and rpoB Gene of A. radioresistens
3.5. Results Obtained from Average Nucleotide Identity and Digital DNA-DNA Hybridization
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Nishimura, Y.; Ino, T.; Iizuka, H. Acinetobacter radioresistens Sp. Nov. Isolated from Cotton and Soil. Int. J. Syst. Bacteriol. 1988, 38, 209–211. [Google Scholar] [CrossRef]
- Kairyama, E.; Nishimura, Y.; Iizuka, H. Radioresistance of an Acinetobacter Species. J. Gen. Appl. Microbiol. 1979, 25, 401–406. [Google Scholar] [CrossRef]
- Venkateswaran, K.; Tran, H.M.; Huynh, T.D.; Wong, T.; Derecho, I.; Mogul, R.; la Duc, M.T.; McCoy, K.B. Insights into the Extremotolerance of Acinetobacter radioresistens 50v1, a Gram-Negative Bacterium Isolated from the Mars Odyssey Spacecraft. Astrobiology 2012, 12, 854–862. [Google Scholar] [CrossRef]
- Berlau, J.; Aucken, H.; Malnick, H.; Pitt, T. Distribution of Acinetobacter Species on Skin of Healthy Humans. Eur. J. Clin. Microbiol. Infect. Dis. 1999, 18, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Visca, P.; Petrucca, A.; Mori, P.d.; Festa, A.; Boumis, E.; Antinori, A.; Petrosillo, N.; Tre, R.; Nazionale, I. Radioresistens Bacteremia in an HIV-Positive Patient. Dispatches 2001, 7, 1032–1035. [Google Scholar]
- Costa, V.; Jenkins, S.G.; Westblade, L.F.; Hartman, B.J.; Wang, T. Acinetobacter radioresistens Infection with Bacteremia and Pneumonia. IDCases 2019, 15, e00495. [Google Scholar] [CrossRef]
- Datta, P.; Gupta, M.; Kumari, P.; Gupta, V.; Narang, S.; Chander, J. Post-Traumatic Endophthalmitis Due to Acinetobacter radioresistens: Virulence Potential of Commensal Bacteria. Infect. Disorders-Drug Targets 2019, 19, 556–558. [Google Scholar] [CrossRef]
- Tan, Y.; Quah, L.; Shafi, H. Community-Acquired Pneumonia with Acinetobacter radioresistens Bacteremia in an Immunocompetent Host: A Case Report. Asian Pac. J. Trop. Med. 2019, 12, 288. [Google Scholar] [CrossRef]
- Savov, E.; Pfeifer, Y.; Wilharm, G.; Trifonova, A.; Todorova, I.; Gergova, I.; Borisova, M.; Kjoseva, E. Isolation of Acinetobacter radioresistens from a Clinical Sample in Bulgaria. J. Glob. Antimicrob. Resist. 2016, 4, 57–59. [Google Scholar] [CrossRef]
- Poirel, L.; Figueiredo, S.; Cattoir, V.; Carattoli, A.; Nordmann, P. Acinetobacter radioresistens as a Silent Source of Carbapenem Resistance for Acinetobacter Spp. Antimicrob. Agents Chemother. 2008, 52, 1252–1256. [Google Scholar] [CrossRef]
- Yoon, E.J.; Kim, J.O.; Yang, J.W.; Kim, H.S.; Lee, K.J.; Jeong, S.H.; Lee, H.; Lee, K. The BlaOXA-23-Associated Transposons in the Genome of Acinetobacter Spp. Represent an Epidemiological Situation of the Species Encountering Carbapenems. J. Antimicrob. Chemother. 2017, 72, 2708–2714. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xu, Q.; Li, T.; Fu, Y.; Shi, Y.; Lan, P.; Zhao, D.; Chen, Q.; Zhou, Z.; Jiang, Y.; et al. Oxa-23 Is a Prevalent Mechanism Contributing to Sulbactam Resistance in Diverse Acinetobacter baumannii Clinical Strains. Antimicrob. Agents Chemother. 2018, 63, e01676-18. [Google Scholar] [CrossRef]
- Lee, M.J.; Jang, S.J.; Li, X.M.; Park, G.; Kook, J.K.; Kim, M.J.; Chang, Y.H.; Shin, J.H.; Kim, S.H.; Kim, D.M.; et al. Comparison of RpoB Gene Sequencing, 16S RRNA Gene Sequencing, GyrB Multiplex PCR, and the VITEK2 System for Identification of Acinetobacter Clinical Isolates. Diagn. Microbiol. Infect. Dis. 2014, 78, 29–34. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome Sequence-Based Species Delimitation with Confidence Intervals and Improved Distance Functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Rossello-Mora, R. Shifting the Genomic Gold Standard for the Prokaryotic Species Definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef]
- Schröttner, P.; Gunzer, F.; Schüppel, J.; Rudolph, W.W. Identification of Rare Bacterial Pathogens by 16S RRNA Gene Sequencing and MALDI-TOF MS. J. Vis. Exp. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Karah, N.; Haldorsen, B.; Hegstad, K.; Simonsen, G.S.; Sundsfjord, A.; Samuelsen, Ø. Species Identification and Molecular Characterization of Acinetobacter Spp. Blood Culture Isolates from Norway. J. Antimicrob. Chemother. 2011, 66, 738–744. [Google Scholar] [CrossRef]
- Gundi, V.A.K.B.; Dijkshoorn, L.; Burignat, S.; Raoult, D.; La Scola, B. Validation of Partial RpoB Gene Sequence Analysis for the Identification of Clinically Important and Emerging Acinetobacter Species. Microbiology 2009, 155, 2333–2341. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Ebers, J. Taxonomic Parameters Revisited: Tarnished Gold Standards. Microbiol. Today 2006, 8, 6–9. [Google Scholar]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.-H.; Whitman, W.B.; Euzéby, J.; Amann, R.; Rosselló-Móra, R. Uniting the Classification of Cultured and Uncultured Bacteria and Archaea Using 16S RRNA Gene Sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Adékambi, T.; Drancourt, M.; Raoult, D. The RpoB Gene as a Tool for Clinical Microbiologists. Trends Microbiol. 2009, 17, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS Is an Automated High-Throughput Platform for State-of-the-Art Genome-Based Taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Ha, S.; Lim, J.; Kwon, S.; Chun, J. A Large-Scale Evaluation of Algorithms to Calculate Average Nucleotide Identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Crippen, C.S.; Rothrock, M.J., Jr.; Sanchez, S.; Szymanski, C.M. Multidrug Resistant Acinetobacter Isolates Release Resistance Determinants Through Contact-Dependent Killing and Bacteriophage Lysis. Front. Microbiol. 2020, 11, 1918. [Google Scholar] [CrossRef]
- Alexandr Nemec Metabolic and Physiological Characteristics of Acinetobacter Species. Available online: https://apps.szu.cz/anemec/Phenotype.pdf (accessed on 2 July 2022).
- Krizova, L.; McGinnis, J.; Maixnerova, M.; Nemec, M.; Poirel, L.; Mingle, L.; Sedo, O.; Wolfgang, W.; Nemec, A. Acinetobacter variabilis Sp. Nov. (Formerly DNA Group 15 Sensu Tjernberg & Ursing), Isolated from Humans and Animals. Int. J. Syst. Evol. Microbiol. 2015, 65, 857–863. [Google Scholar] [CrossRef]
- Gerner-Smidt, P.; Tjernberg, I.; Ursing, J. Reliability of Phenotypic Tests for Identification of Acinetobacter Species. J. Clin. Microbiol. 1991, 29, 277–282. [Google Scholar] [CrossRef]
- Dunlap, C.A.; Rooney, A.P. Acinetobacter dijkshoorniae Is a Later Heterotypic Synonym of Acinetobacter lactucae. Int. J. Syst. Evol. Microbiol. 2018, 68, 131–132. [Google Scholar] [CrossRef]
- Kostrzewa, M.; Nagy, E. How MALDI-TOF Mass Spectrometry Can Aid Diagnosis of Hard-to-Identify Pathogenic Bacteria. Expert Rev. Mol. Diagn. 2016, 16, 509–511. [Google Scholar] [CrossRef]
- Kostrzewa, M.; Nagy, E.; Schröttner, P.; Pranada, A.B. How MALDI-TOF Mass Spectrometry Can Aid the Diagnosis of Hard-to-Identify Pathogenic Bacteria—The Rare and the Unknown. Expert Rev. Mol. Diagn. 2019, 19, 667–682. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, S.; Biswas, I.; Veeraraghavan, B. Accurate Identification of Clinically Important Acinetobacter spp.: An Update. Future Sci. OA 2019, 5, FSO395. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.; Hong, S.K.; Han, G.H.; Kim, M.; Yong, D.; Lee, K. Same-Day Identification and Antimicrobial Susceptibility Testing of Bacteria in Positive Blood Culture Broths Using Short-Term Incubation on Solid Medium with the MicroFlex LT, Vitek-MS, and Vitek2 Systems. Ann. Lab. Med. 2018, 38, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, P.-R.; Kuo, L.-C.; Chang, T.-C.; Lee, T.-F.; Teng, S.-H.; Chuang, Y.-C.; Teng, L.-J.; Sheng, W.-H. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Blood Isolates of Acinetobacter Species. J. Clin. Microbiol. 2014, 52, 3095–3100. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, Y.; Lu, X. Insight into Identification of Acinetobacter Species by Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) in the Clinical Laboratory. J. Am. Soc. Mass Spectrom. 2018, 29, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Martín, S.; Pérez, A.; Aldecoa, C. Sepsis and Immunosenescence in the Elderly Patient: A Review. Front. Med. 2017, 4, 20. [Google Scholar] [CrossRef] [PubMed]
Strain | Sex | Age (Years) | Source of Isolation | Microbial Spectrum Detected | Underlying Disease | Year of Isolation |
---|---|---|---|---|---|---|
DSM 108289 | m | 55 | Swab (foot) | Skin flora, Staphylococcus aureus | Diabetic foot syndrome | 2013 |
DSM 108290 | m | 74 | Swab (foot) | Skin flora, coagulase-negative Staphylococcus spp. (nfdp) | Diabetic foot syndrome | 2014 |
DSM 108291 | m | 58 | Urine (midstream) | Flora of anterior urethra, Candida palmioleophila | Urologic (n.g.) | 2013 |
DSM 108292 | m | 89 | Blood culture (peripheral venous) | Staphylococcus saprophyticus | Fever of unknown origin (n.g.) | 2013 |
DSM 108293 | f | 23 | Swab (vaginal) | Vaginal normal flora | Gynecological, control in pregnancy | 2013 |
DSM 108294 | m | 46 | Swab (foot) | Gram-positive anaerobic rods (nfdp), Gram-negative anaerobic rods (nfdp), Citrobacter freundii, Staphylococcus aureus, Pseudomonas aeruginosa | Neurological, diabetic foot syndrome | 2013 |
DSM 108295 | m | 87 | Urine (midstream) | Flora of anterior urethra | Urological (n.g.) | 2013 |
DSM 108296 | f | 99 | Swab (heel) | Skin flora, Staphylococcus aureus, Gleimia europaea | General surgery (n.g.) | 2013 |
DSM 108297 | m | 47 | Swab (ulcer lower leg) | Skin flora, anaerobic skin flora, Enterobacter cloacae cplx., Pantoea spp., Bacillus cereus | Neurological (n.g.) | 2013 |
DSM 108349 | f | 52 | Swab (abdomen) | Skin flora, Staphylococcus aureus, Pseudomonas spp. | Dermatological, Psoriasis vulgaris | 2018 |
DSM 108719 | m | 73 | Swab (lower leg) | Skin flora | Dialysis (n.g.) | 2018 |
DSM 108820 | f | 61 | Swab (gluteal) | - | Brain injury, hemiparesis, bronchitis | 2020 |
DSM 109007 | f | 61 | Bronchial secretion | Oral and pharygeal flora, Candida albicans | Brain injury, hemiparesis, bronchitis | 2020 |
DSM 109999 | f | 59 | Swab (inguinal) | Skin flora, Staphylococcus aureus, Escherichia coli | Tinea | 2019 |
DSM 112285 | m | 67 | Swab (lower lower leg) | Staphylococcus aureus, Enterococcus faecalis, anaerobic skin flora | Endocrinology, diabetic foot syndrome | 2020 |
DSM 112286 | m | 67 | Swab (inguinal) | Pseudomonas stutzeri, Gram-negative rods (nfdp) | Traumatic brain injury, brain oedema, pneumonia, dysphagia | 2020 |
Strain | Isolation Source | Reference |
---|---|---|
K60-62 | Human blood culture, nfi | Karah et al., 2011, Provided by Ørjan Samuelsen [17] |
K51-37 | Human blood culture, nfi | Karah et al., 2011, Provided by Ørjan Samuelsen [17] |
LH 5 | Poultry feces | Crippen et al., 2020, Provided by Christine Szymanski [26] |
LH 6 | Poultry feces | Crippen et al., 2020, Provided by Christine Szymanski [26] |
R 866 BER | Human skin or urinary tract, nfi | Poirel et al., 2008, Provided by Patrice Nordmann [10] |
Strain | GenBank Acc. No. | Genome Size (Mbp) | No. Contigs | No. CDS | GC% | Seq. Method/Quality |
---|---|---|---|---|---|---|
DSM 108289 | JAATOZ01 | 3.32882 | 78 | 3083 | 41.4 | WGS/Contig |
DSM 108290 | JAATPA01 | 3.18361 | 65 | 2897 | 41.5 | WGS/Contig |
DSM 108291 | JAATPB01 | 3.33435 | 83 | 3100 | 41.5 | WGS/Contig |
DSM 108292 | JAATPC01 | 3.26389 | 77 | 3008 | 41.6 | WGS/Contig |
DSM 108293 | JAATPD01 | 3.35282 | 95 | 3080 | 41.5 | WGS/Contig |
DSM 108294 | JAATPE01 | 3.25912 | 59 | 3034 | 41.6 | WGS/Contig |
DSM 108295 | JAATPF01 | 3.23626 | 86 | 2977 | 41.6 | WGS/Contig |
DSM 108296 | JAATPG01 | 3.03875 | 42 | 2754 | 41.6 | WGS/Contig |
DSM 108297 | JAATPH01 | 3.17131 | 71 | 2938 | 41.6 | WGS/Contig |
DSM 108349 | JAATPI01 | 3.21774 | 91 | 2974 | 41.5 | WGS/Contig |
DSM 108719 | JAATPJ01 | 3.21258 | 109 | 2979 | 41.8 | WGS/Contig |
DSM 108820 | JAATPK01 | 3.21113 | 54 | 2955 | 41.6 | WGS/Contig |
DSM 109007 | JAATPL01 | 3.46228 | 65 | 3211 | 41.2 | WGS/Contig |
DSM 109999 | JANRFV00 | 3.18874 | 67 | 2942 | 41.6 | WGS/Contig |
DSM 112285 | JANRFU00 | 3.26273 | 47 | 3012 | 41.5 | WGS/Contig |
DSM 112286 | JANRFT00 | 3.32056 | 56 | 3114 | 41.5 | WGS/Contig |
K60-62 | JANRFS00 | 3.23746 | 82 | 3026 | 41.5 | WGS/Contig |
K51-37 | JANRFR00 | 3.30427 | 77 | 3080 | 41.5 | WGS/Contig |
LH 6 | JANRFP00 | 3.03215 | 59 | 2776 | 41.7 | WGS/Contig |
LH 5 | JANRFQ00 | 3.04738 | 51 | 2780 | 41.5 | WGS/Contig |
R 866 BER | JANRFO00 | 3.08218 | 65 | 2844 | 41.6 | WGS/Contig |
Identification | Results Obtained by VITEK 2 1 | Results Obtained by MALDI-TOF MS 2 | Results Obtained by Sequencing of the 16S rRNA Gene 3 | Results Obtained by Sequencing of the rpoB Gene 4 | Results Obtained by Calculating ANI 5 | Results Obtained by Calculating dDDH 6 |
---|---|---|---|---|---|---|
DSM 108289 | A. radioresistens (99%) | A. radioresistens 2.29 | A. radioresistens 98.00% | A. radioresistens 99.71% | 98.46% | 85.9% |
DSM 108290 | A. radioresistens (99%) | A. radioresistens 2.49 | A. radioresistens 99.21% | A. radioresistens 99.11% | 98.36% | 85.8% |
DSM 108291 | A. radioresistens (99%) | A. radioresistens 2.44 | A. radioresistens 99.33% | A. radioresistens 99.12% | 98.34% | 86.0% |
DSM 108292 | A. radioresistens (99%) | A. radioresistens 2.33 | A. radioresistens 99.46% | A. radioresistens 98.77% | 98.41% | 86.2% |
DSM 108293 | A. radioresistens (99%) | A. radioresistens 2.31 | A. radioresistens 99.13% | A. radioresistens 99.70% | 98.44% | 86.1% |
DSM 108294 | A. radioresistens (99%) | A. radioresistens 2.34 | A. radioresistens 99.41% | A. radioresistens 99.71% | 98.53% | 86.8% |
DSM 108295 | A. radioresistens (99%) | A. radioresistens 2.44 | A. radioresistens 99.02% | A. radioresistens 98.8% | 98.33% | 86.1% |
DSM 108296 | A. radioresistens (99%) | A. radioresistens 2.23 | A. radioresistens 99.55% | A. radioresistens 98.47% | 98.40% | 86.1% |
DSM 108297 | A. radioresistens (99%) | A. radioresistens 2.24 | A. radioresistens 97.82% | A. radioresistens 99.71 % | 98.45% | 86.4% |
DSM 108349 | A. radioresistens (99%) | A. radioresistens 2.49 | A. radioresistens 99.76% | A. radioresistens 99.40% | 98.31% | 85.8% |
DSM 108719 | A. radioresistens (99%) | A. radioresistens 2.32 | A. radioresistens 99.46% | A. radioresistens 99.12% | 98.32% | 84.7% |
DSM 108820 | A. lwoffii (99%) | A. radioresistens 2.49 | A. radioresistens 98.03% | A. radioresistens 99.41% | 98.39% | 86% |
DSM 109007 | Low discrimination (A. lwoffi, Moraxella spp.) | A. radioresistens 2.14 | A. radioresistens 99.34% | A. radioresistens 99.70% | 98.38% | 86.7% |
DSM 109999 | A. lwoffii (99%) | A. radioresistens 2.41 | A. radioresistens 98.82% | A. radioresistens 99.70% | 98.45% | 86.1% |
DSM 112285 | A. radioresistens (99%) | A. radioresistens 2.45 | A. radioresistens 99.29% | A. radioresistens 100.00% | 98.35% | 85.7% |
DSM 112286 | A. radioresistens (99%) | A. radioresistens 2.29 | A. radioresistens 99.79% | A. radioresistens 99.14% | 98.46% | 85.7% |
K 50-62 | A. radioresistens (99%) | A. radioresistens 2.39 | A. radioresistens 99.51% | A. radioresistens 100.00% | 98.39% | 84.5% |
K 51-37 | Low discrimination (A. lwoffii, A. radioresistens) | A. radioresistens 2.45 | A. radioresistens 99.65% | A. radioresistens 100.00% | 98.36% | 85.4% |
LH 5 | A. radioresistens (99%) | A. radioresistens 2.09 | A. radioresistens 99.51% | A. radioresistens 98.54% | 98.33% | 84.9% |
LH 6 | A. radioresistens (99%) | A. radioresistens 2.33 | A. radioresistens 99.54% | A. radioresistens 99.12% | 98.34% | 86.2% |
R 866 BER | A. radioresistens (99%) | A. radioresistens 2.30 | A. radioresistens 99.89% | A. radioresistens 98.82% | 98.46% | 85.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigge, R.; Bunk, B.; Rudolph, W.W.; Gunzer, F.; Coldewey, S.M.; Riedel, T.; Schröttner, P. Comparative Study of Different Diagnostic Routine Methods for the Identification of Acinetobacter radioresistens. Microorganisms 2022, 10, 1767. https://doi.org/10.3390/microorganisms10091767
Bigge R, Bunk B, Rudolph WW, Gunzer F, Coldewey SM, Riedel T, Schröttner P. Comparative Study of Different Diagnostic Routine Methods for the Identification of Acinetobacter radioresistens. Microorganisms. 2022; 10(9):1767. https://doi.org/10.3390/microorganisms10091767
Chicago/Turabian StyleBigge, Richard, Boyke Bunk, Wolfram W. Rudolph, Florian Gunzer, Sina M. Coldewey, Thomas Riedel, and Percy Schröttner. 2022. "Comparative Study of Different Diagnostic Routine Methods for the Identification of Acinetobacter radioresistens" Microorganisms 10, no. 9: 1767. https://doi.org/10.3390/microorganisms10091767
APA StyleBigge, R., Bunk, B., Rudolph, W. W., Gunzer, F., Coldewey, S. M., Riedel, T., & Schröttner, P. (2022). Comparative Study of Different Diagnostic Routine Methods for the Identification of Acinetobacter radioresistens. Microorganisms, 10(9), 1767. https://doi.org/10.3390/microorganisms10091767