Significant Changes in Cytoplasmic Amino Acid Composition Occur in the Transition between Mid-Exponential and Stationary Phases of Growth of Staphylococcus aureus: An Example of Adaptive Homeostasis in Response to Nutrient Limitations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain
2.2. Media and Growth Conditions
2.3. Analyses of Amino Acid Compositions
2.4. Processing and Statistical Analysis of Amino Acid Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeden, M.S.; Burke, O.; Vallely, M.; Fingleton, C.; O’Gara, J.P. Exploring amino acid and peptide transporters as therapeutic targets to attenuate virulence and antibiotic resistance in Staphylococcus aureus. PLoS Pathog. 2021, 17, e1009093. [Google Scholar] [CrossRef] [PubMed]
- Rantasalo, I.; Ahvenainen, E.K.; Tuuteri, L.; Sippola, R.; Kunnas, K. Hospital-strains of Staphylococcus aureus with special reference to their differences in the hospitals and wards, persistence and virulence. Ann. Paediatr. Fenn. 1960, 6, 275–288. [Google Scholar] [PubMed]
- Onyango, L.A.; Alreshidi, M.M. Adaptive Metabolism in Staphylococci: Survival and Persistence in Environmental and Clinical Settings. J. Pathog. 2018, 2018, 1092632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alreshidi, M.M.; Dunstan, R.H.; Macdonald, M.M.; Smith, N.D.; Gottfries, J.; Roberts, T.K. Amino acids and proteomic acclimation of Staphylococcus aureus when incubated in a defined minimal medium supplemented with 5% sodium chloride. Microbiol. Open 2019, 8, e00772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alreshidi, M.M.; Dunstan, R.H.; Gottfries, J.; Macdonald, M.M.; Crompton, M.J.; Ang, C.S.; Williamson, N.A.; Roberts, T.K. Changes in the Cytoplasmic Composition of Amino Acids and Proteins Observed in Staphylococcus aureus during Growth under Variable Growth Conditions Representative of the Human Wound Site. PloS ONE 2016, 11, e0159662. [Google Scholar] [CrossRef] [Green Version]
- Gefen, O.; Fridman, O.; Ronin, I.; Balaban, N.Q. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc. Natl. Acad. Sci. USA 2014, 111, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, J.; Srivastava, P. Molecular Basis of Stationary Phase Survival and Applications. Front. Microbiol. 2017, 8, 2000. [Google Scholar] [CrossRef] [Green Version]
- Link, H.; Fuhrer, T.; Gerosa, L.; Zamboni, N.; Sauer, U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 2015, 12, 1091–1097. [Google Scholar] [CrossRef]
- Chaffin, D.O.; Taylor, D.; Skerrett, S.J.; Rubens, C.E. Changes in the Staphylococcus aureus transcriptome during early adaptation to the lung. PloS One 2012, 7, e41329. [Google Scholar] [CrossRef] [Green Version]
- Abbamondi, G.R.; Tommonaro, G. Research Progress and Hopeful Strategies of Application of Quorum Sensing in Food, Agriculture and Nanomedicine. Microorganisms 2022, 10, 1192. [Google Scholar] [CrossRef]
- Carter, M.Q.; Louie, J.W.; Feng, D.; Zhong, W.; Brandl, M.T. Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation. Food Microbiol. 2016, 57, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Navarro Llorens, J.M.; Tormo, A.; Martinez-Garcia, E. Stationary phase in gram-negative bacteria. FEMS Microbiol. Rev. 2010, 34, 476–495. [Google Scholar] [CrossRef] [Green Version]
- Alreshidi, M.M.; Dunstan, R.H.; Macdonald, M.M.; Singh, K.V.; Roberts, K.T. Analysis of Cytoplasmic and Secreted Proteins of Staphylococcus aureus Revealed Adaptive Metabolic Homeostasis in Response to Changes in the Environmental Conditions Representative of the Human Wound Site. Microorganisms 2020, 8, 1082. [Google Scholar] [CrossRef]
- Onyango, L.A.; Hugh Dunstan, R.; Roberts, T.K.; Macdonald, M.M.; Gottfries, J. Phenotypic variants of staphylococci and their underlying population distributions following exposure to stress. PloS One 2013, 8, e77614. [Google Scholar] [CrossRef] [Green Version]
- Mah, R.A.; Fung, D.Y.; Morse, S.A. Nutritional requirements of Staphylococcus aureus S-6. Appl. Microbiol. 1967, 15, 866–870. [Google Scholar] [CrossRef]
- Alreshidi, M.; Dunstan, H.; Roberts, T.; Bardakci, F.; Badraoui, R.; Adnan, M.; Saeed, M.; Alreshidi, F.; Albulaihed, Y.; Snoussi, M. Changes in Amino Acid Metabolism of Staphylococcus aureus following Growth to the Stationary Phase under Adjusted Growth Conditions. Microorganisms 2022, 10, 1503. [Google Scholar] [CrossRef]
- Butt, H.L.; Dunstan, R.H.; McGregor, N.R.; Roberts, T.K.; Zerbes, M.; Klineberg, I.J. An association of membrane-damaging toxins from coagulase-negative staphylococci and chronic orofacial muscle pain. J. Med. Microbiol. 1998, 47, 577–584. [Google Scholar] [CrossRef]
- Alreshidi, M.M.; Dunstan, R.H.; Macdonald, M.M.; Smith, N.D.; Gottfries, J.; Roberts, T.K. Metabolomic and proteomic responses of Staphylococcus aureus to prolonged cold stress. J. Proteom. 2015, 121, 44–55. [Google Scholar] [CrossRef]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Alreshidi, M.M.; Dunstan, R.H.; Macdonald, M.M.; Gottfries, J.; Roberts, T.K. The Uptake and Release of Amino Acids by Staphylococcus aureus at Mid-Exponential and Stationary Phases and Their Corresponding Responses to Changes in Temperature, pH and Osmolality. Front. Microbiol. 2019, 10, 3059. [Google Scholar] [CrossRef]
- Ou, J.; Wang, L.; Ding, X.; Du, J.; Zhang, Y.; Chen, H.; Xu, A. Stationary phase protein overproduction is a fundamental capability of Escherichia coli. Biochem. Biophys. Res. Commun. 2004, 314, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.P.; Clements, M.O.; Foster, S.J. Characterization of the starvation-survival response of Staphylococcus aureus. J. Bacteriol. 1998, 180, 1750–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebeke, M.; Dorries, K.; Zuhlke, D.; Bernhardt, J.; Fuchs, S.; Pane-Farre, J.; Engelmann, S.; Volker, U.; Bode, R.; Dandekar, T.; et al. A metabolomics and proteomics study of the adaptation of Staphylococcus aureus to glucose starvation. Mol. Biosyst. 2011, 7, 1241–1253. [Google Scholar] [CrossRef] [PubMed]
- Hirata, H.; Altendorf, K.; Harold, F.M. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli. Proc. Natl. Acad. Sci. USA 1973, 70, 1804–1808. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, Y.; Wu, Y.; Cui, Y.; Liu, Y.; Shi, X.; Zhang, Q.; Chen, Q.; Sun, Q.; Hu, Q. Phenotypic and genetic changes in the life cycle of small colony variants of Salmonella enterica serotype Typhimurium induced by streptomycin. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 37. [Google Scholar] [CrossRef] [Green Version]
- Mirani, Z.A.; Aziz, M.; Khan, S.I. Small colony variants have a major role in stability and persistence of Staphylococcus aureus biofilms. J. Antibiot. 2015, 68, 98–105. [Google Scholar] [CrossRef]
- Kriegeskorte, A.; Konig, S.; Sander, G.; Pirkl, A.; Mahabir, E.; Proctor, R.A.; von Eiff, C.; Peters, G.; Becker, K. Small colony variants of Staphylococcus aureus reveal distinct protein profiles. Proteomics 2011, 11, 2476–2490. [Google Scholar] [CrossRef]
- Clements, M.O.; Watson, S.P.; Foster, S.J. Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J. Bacteriol. 1999, 181, 3898–3903. [Google Scholar] [CrossRef]
Amino Acid | Mid-Exponential Phase | Stationary Phase |
---|---|---|
Alanine | 14.03 ± 5.09 | 3.38 ± 0.40 * |
Glycine | 0.97 ± 0.38 | 4.55 ± 2.12 * |
α-Aminobutyric acid | 2.13 ± 0.56 | 0 ± 0 * |
Valine | 2.30 ± 1.21 | 6.46 ± 3.29 |
ß-Aminoisobutyric acid | 7.23 ± 1.47 | 1.62 ± 0.22 * |
Leucine | 2.36 ± 2.57 | 2.23 ± 1.31 |
Allo-isoleucine | 0 ± 0 | 0.25 ± 0.20 |
Isoleucine | 0.25 ± 0.26 | 1.76 ± 1.13 * |
Serine | 0 ± 0 | 1.23 ± 0.33 |
Proline | 16.92 ± 3.98 | 10.83 ± 7.42 * |
Asparagine | 1.20 ± 0.71 | 4.84 ± 1.07 * |
Aspartic acid | 68.38 ± 15.71 | 180.45 ± 35.67 |
Methionine | 2.68 ± 0.68 | 6.14 ± 2.00 |
4-Hydroxyproline | 0.30 ± 0.25 | 0.47 ± 0.31 |
Glutamic acid | 110.95 ± 34.9 | 51.94 ± 15.20 * |
Phenylalanine | 1.15 ± 0.45 | 3.26 ± 1.31 |
α-Aminoadipic acid | 0 ± 0 | 3.31 ± 1.90 * |
Glutamine | 0.66 ± 0.38 | 2.11 ± 2.99 |
Ornithine | 0.60 ± 0.11 | 5.53 ± 1.25 * |
Glycine-proline | 0.58 ± 0.32 | 0.26 ± 0.29 |
Lysine | 2.98 ± 1.00 | 67.22 ± 14.29 * |
Histidine | 7.14 ± 2.82 | 37.54 ± 11.09 * |
Hydroxylysine | 0 ± 0 | 2.87 ± 2.96 * |
Tyrosine | 0.41 ± 0.10 | 5.47 ± 0.78 * |
Proline-hydroxyproline (dipeptide) | 0.02 ± 0.05 | 1.85 ± 0.44 * |
Tryptophan | 0.01 ± 0.02 | 0.99 ± 0.33 * |
Cystathionine | 0.30 ± 0.23 | 0.00 ± 0.00 |
Cystine | 0 ± 0 | 0.42 ± 0.22 * |
Total amino acids | 243.57 ± 62.1 | 407.01 ± 47.9 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alreshidi, M.; Dunstan, H.; MacDonald, M.; Saeed, M.; Elkahoui, S.; Roberts, T. Significant Changes in Cytoplasmic Amino Acid Composition Occur in the Transition between Mid-Exponential and Stationary Phases of Growth of Staphylococcus aureus: An Example of Adaptive Homeostasis in Response to Nutrient Limitations. Microorganisms 2023, 11, 147. https://doi.org/10.3390/microorganisms11010147
Alreshidi M, Dunstan H, MacDonald M, Saeed M, Elkahoui S, Roberts T. Significant Changes in Cytoplasmic Amino Acid Composition Occur in the Transition between Mid-Exponential and Stationary Phases of Growth of Staphylococcus aureus: An Example of Adaptive Homeostasis in Response to Nutrient Limitations. Microorganisms. 2023; 11(1):147. https://doi.org/10.3390/microorganisms11010147
Chicago/Turabian StyleAlreshidi, Mousa, Hugh Dunstan, Margaret MacDonald, Mohd Saeed, Salem Elkahoui, and Tim Roberts. 2023. "Significant Changes in Cytoplasmic Amino Acid Composition Occur in the Transition between Mid-Exponential and Stationary Phases of Growth of Staphylococcus aureus: An Example of Adaptive Homeostasis in Response to Nutrient Limitations" Microorganisms 11, no. 1: 147. https://doi.org/10.3390/microorganisms11010147
APA StyleAlreshidi, M., Dunstan, H., MacDonald, M., Saeed, M., Elkahoui, S., & Roberts, T. (2023). Significant Changes in Cytoplasmic Amino Acid Composition Occur in the Transition between Mid-Exponential and Stationary Phases of Growth of Staphylococcus aureus: An Example of Adaptive Homeostasis in Response to Nutrient Limitations. Microorganisms, 11(1), 147. https://doi.org/10.3390/microorganisms11010147