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Abstract: Human population growth, industrialization, and globalization have caused several pres-
sures on the planet’s natural resources, culminating in the severe climate and environmental crisis
which we are facing. Aiming to remedy and mitigate the impact of human activities on the environ-
ment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other
various industries, is presented as a more sustainable alternative. These enzymes are characterized as
a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer
units, making it accessible for bioconversion into various products and applications in the most
diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms
are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the
fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms
used to obtain them. In addition, different possible industrial applications for these enzymes will
be discussed, as well as information about their production modes and considerations about recent
advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses
at an industrial scale.
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1. Introduction

Biodiversity is a broad concept that covers all the forms and combinations of life
variations in all biological organization levels. All the forms of life existent on Earth,
including plants, animals, microorganisms, the genes they contain, and the ecosystems
they form, are part of the planet’s biodiversity [1].

Estimates made by researchers show that there are around 9 million species on the
planet nowadays [2]. However, for the last 200 years, population and socio-economic
activities have significantly grown, causing various pressures on the planet’s natural
resources [3,4]. Many researchers claim we face a 6ª Earth-mass extinction [5,6]. Studies
show that current extinction rates are from 1000 to 10,000 times higher than previous
ones registered by the fossil register due to natural causes. If extinction rates and species
description continue, both progressing in these opposites ways, it will take many species to
extinction even before we know them [2].

To reduce the anthropic impact on the environment, many areas have been studying
new techniques to be applied. In that regard, biotechnology emerges as a tool capable
of increasing food security and productivity by occupying less area. In addition, it re-
duces greenhouse gas emissions through more sustainable technologies for energy and
food production, biofuel production, and bioremediation, among others [7–12]. This way,
biotechnology is considered a meaningful way to revert the current environmental crisis
scenario [13,14]. This microorganism’s metabolic capacity is so great that numerous are
products, industrials process, and technologies which derive their metabolites. These fields
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are included food, agroindustry, chemical industry, biofuels, medicines, and other mate-
rials [14–16]. Among all products from microbial metabolism, enzymes have significant
importance [17].

2. Microorganisms as Enzymes Sources

Microorganisms are the oldest and most widespread living beings on the planet. About
3.8 to 3.9 billion years ago, they already inhabited the Earth, way before the appearance
of plants and animals. Despite being the smallest forms of life, they constitute the most
significant part of the biomass existent on the planet [18]. Most recent studies estimate that,
among the prokaryotes (including archaea and bacteria), there are around 0.8 to 1.6 million
species [19]. Among eukaryotes, fungi represent one of the most significant e most diverse
kingdoms, with estimates of approximately 6 million surviving species [20]. Most of these
species are found in soil and underground ocean environments, although some of them
can inhabit extreme environments such as hot and hydrothermal springs, polar ice caps, as
well as hypersaline and extreme pH environments [21–23]

Since antiquity, humankind has benefited from microorganisms’ use in the most
diverse process, such as bread fermentation, preparation of alcoholic beverages, cheese,
and fermented milk preparation, and growing crops for food [24–26]. However, despite
having many ancient applications, the biotechnology field from microorganisms is one of
the most recent but also the one with the most considerable growth among industries [27].

Currently, microorganisms are the primary source of obtaining enzymes with indus-
trial applications. The use of enzymes in most different industries has gained more and
more relevance and importance. Since the population grows at elevated levels, increasing
the demand for products and food and the concern about environmental crises, enzymes
are seen as potential allies in the search for higher yield rates and lower environmental
impacts [28]. In 2021 the global market of enzymes was availed as 6.4 billion dollars.
This number will rise to 8.7 billion dollars by 2026, with a compound annual growth rate
of 3.6% [29].

Many industries that use chemical transformation process have several disadvantages,
both from a commercial and ecological point of view: non-specific reactions that lead to
low yields, need to use conditions of elevated temperature and pressure that generate
high energy costs and by-products with negative environmental impact, among others [30].
On the other hand, enzymatic reactions can, for the most part, be carried out under mild
conditions of temperature and pressure and are highly specific, which generates a high
yield rate and reduce chemicals use, water, energy, and waste generation, the reducing
manufacturing impact on the environment [28,31,32].

Some advantages microbial enzymes show over other enzyme sources are easy han-
dling and production, rapid multiplication under controlled conditions, easy genetic ma-
nipulation, high yield, greater stability and catalytic activity, greater economic viability,
and regular supply due to the absence of seasonal fluctuations [28,33,34]. As a result, these
enzymes have a wide range of applications in the most different industries, be it food,
beverage, pharmaceutical, textile, toxic pollutants treatment and remediation, and biofuels,
among others [33,35–41].

Some enzymes can degrade lignocellulosic biomass, showing potential for use in
various sectors such as the food, textile, and biofuel industry [42–45]. So, in general, are
hydrolases like the holocellulases (cellulases and xylanases) or oxidoreductases as laccase,
manganese peroxidase, and lignin peroxidase collectively called ligninases [46].

3. Lignocellulolytic Enzymes

Lignocellulolytic enzymes constitute a group of enzymes capable of breaking lignocel-
lulosic biomass into its various monomer units, making it accessible for bioconversion into
multiple products and its applications in the most diverse industries [47–49]. Lignocellu-
losic biomass primarily consists of long cellulose and hemicellulose chains joined by lignin
units and some non-structural soluble compounds [50]. Cellulose is the main component,
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constituting around 35% to 55% of lignocellulosic biomass, while hemicellulose, the second
most abundant, makes up about 20% to 35% of the biomass. Lignin, the third principal
component, constitutes 10% to 25% of lignocellulosic biomass [51].

At the molecular level, cellulose is characterized as a polymer formed by D-glucose
units joined through β-1,4-glycosidic bonds [52–54]. According to the organizations’ degree
of the bonds between the cellulose fiber chains, its structure alternates between a crystalline
(monomers are organized, forming a more rigid structure) and a non-crystalline phase
(monomers are not arranged) [55,56]. Unlike cellulose, hemicellulose has a highly branched
and amorphous structure, with short side chains linked by β-1,4 glycosidic bonds, which
confers less stability and degree of polymerization when compared to the first [57,58].
Generally, hemicellulose structure consists of multiple monomers of different monosac-
charides, including pentose sugars (such as arabinose and xylose), hexose sugars (such as
mannose, glucose, and galactose), uronic acids (such as methyl glucuronic, D-glucuronic,
and D-galacturonic acids), in additions to other smaller groups [59,60]. According to its
structure and the main sugar unit present in it, hemicellulose can be divided into four types
of main structure: xylans, mannans, xyloglucans, and glucan [61]. Xylan, the main one,
is a linear hemicellulose, and its main chain is composed of xylose units [62,63]. Finally,
lignin consists of a complex, amorphous, and aromatic polymer, and acts as a glue, link-
ing cellulose and hemicellulose molecules through covalent and hydrogen bonds. This
structure forms a macromolecular complex that strengthens and gives greater rigidity and
robustness to plant cell walls [64]. At the molecular level, lignin is characterized as an aro-
matic polymer composed of phenolic and non-phenolic parts, formed by three monolignol
subunits: p-coumaroyl, coniferyl, and sinapyl alcohol [65–67]. Among them, a vast number
of additional components can be present in lignin structure [65].

This way, these units forming lignocellulosic biomass are linked and organized in
such a way as to form a molecular complex that has a highly resistant and recalcitrant
structure [61,67–69]. Among several possible strategies for converting lignocellulosic
biomass into fermentable sugars, the one that has been considered the most efficient and
sustainable one is enzymatic hydrolysis. This process involves an intrinsic interaction of
several enzymes, which can be obtained from different microorganisms [45,70,71]. This
enzymatic system is composed of three types of main enzymes: cellulases, hemicellulases
(hydrolytic enzymes that make cellulose and hemicellulose chains hydrolysis, respectively),
and ligninases (oxidases and peroxidases which degrade lignin), besides some of the
accessory enzymes [49].

3.1. Cellulases

Cellulases are the main enzymes capable of hydrolysis of β-1,4-glycosidic bonds
present in cellulose molecules, releasing its monomeric subunits [72]. Taking into account
the mode of action and substrate specificity, cellulases can be classified into three main
types: (1) endoglucanases (EG); (2) exoglucanases (or cellobiohydrolases, CBHs); and
(3) β-glycosidases (BG) [73]. Endoglucanases (EC 3.2.1.4) catalyze the random breakage
of internal β-1,4-glycosidic bonds in amorphous regions of the cellulose chain, generating
new ends that are exposed to the action of exoglucanases. Then, exoglucanases (EC 3.2.1.91;
EC 3.2.1.176) cleave these reducing and non-reducing-ends in a processual way, releasing
cellobiose. Finally, β-glycosidases (EC 3.2.1.21) are responsible for the last step in the
hydrolysis of cellulose. These cleave and hydrolyze the previously generated cellobiose, re-
leasing two glucose molecules. [74]. Thus, in order to occur complete and efficient cellulose
hydrolysis, an elevated level of synergism between these enzymes is necessary [75].

Microorganisms, in general, have two ways of secreting cellulolytic systems [76]. Most
aerobic cellulolytic microorganisms secrete cellulases as a set of individual enzymes, which
act synergistically to break down cellulose [70]. Cellulases secreted this way contain a
carbohydrate-binding module attached to the catalytic site by a flexible linker [77]. On the
other hand, anaerobic cellulolytic microorganisms secrete cellulases in the form of multien-
zyme complexes with more than 1 million molecular weights, called cellulosomes [78,79].
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In this complex, enzymes generally do not have a cellulose-binding module but are bound
to accessory proteins which bind directly to cellulose [80]. The cellulosome complex was
first discovered from the thermophilic anaerobic bacteria Clostridium thermocellum in the
early 1980s. Since then, many cellulosome-producing anaerobic microorganisms have
been identified and isolated from different ecosystems [81–86]. However, since the cel-
lulosome complex makes it challenging to extract cellulases, aerobic microorganisms are
usually preferred over anaerobic microorganisms for the industrial production of cellu-
lases [76]. Some bacteria also have a third intermediate strategy for cellulase secretion,
in which multifunctional enzymes containing two or more catalytic domains joined by a
carbohydrate-binding module can be secreted either as free enzymes or incorporated into a
cellulosic complex [87,88].

3.2. Hemicellulases

As with cellulose, the complete hydrolysis and degradation of hemicellulose also
require the synergistic action of a set of enzymes [49]. These enzymes, called hemicellulases,
act by breaking the existing glycosidic bonds between carbohydrates and carbohydrates,
as well as supporting other glycohydrolases in removing methyl and acetyl groups on
the hemicellulose surface [89]. Hemicellulases can be divided into two major classes:
those with depolymerizing action, which hydrolyze the main chain glycosidic bonds
(xylanases, glucanases, and mannanases), and accessory enzymes, which break the ester
bonds and glycosidic bonds of hemicellulose side chains (α-L-arabinofuranosidase, acetyl
xylan esterase, β-glucuronidase, glucuronyl esterase, and ferulic acid esterase) [90,91].

Among all, xylanases constitute the main class of enzymes that act in hemicellulose
hydrolysis [49]. These, in turn, have the hydrolytic action of xylan, the principal constituent
of hemicellulose, converting it into xylose and xylooligosaccharides such as xylobiose.
Based on the mechanism of action and binding to substrate, xylanases can also be classified
into different enzymes that constitute its enzymatic system, namely: endo-β-1,4-xylanases,
β-D-xylosidases, α-glucuronidases, arabinases, acetyl xylan esterases, ferulic acid esterases
and p-coumaric acid esterase [42]. Endo-β-1,4-xylanases (EC 3.2.1.8), the main components
of xylanases, are those with endoxylanase activity, which break β-1,4-glycosidic bonds
within the xylan chain, producing xylooligosaccharides and xylose units [60,92]. β-D-
xylosidases (EC 3.2.1.37) act on these xylooligosaccharides non-reducing ends generated
from xylan, successively removing their D-xylose residues [60,93,94]. α-glucuronidases
(EC 3.2.1.139) act to cleave α-1,2-glycosidic bonds in glucuronic acid side chains of non-
reducing units of xylose. At the same time, the arabinases (EC 3.2.1.55 and EC 3.2.1.99) are
responsible for removing L-arabinose residues in xylose side chains [95,96]. Acetyl xylan
esterases (EC 3.1.1.6), in turn, remove O-acetyl groups from acetyl xylan residues, while
ferulic acid esterases (EC 3.1.1.-) and p-coumaric acid esterases (EC 3.1.1.-) cleave ester
bonds in xylan, between the arabinose and ferulic acid side groups, and between arabinose
and p-coumaric acid, respectively [42].

Several studies show that xylanases can be found in various sources, including bacteria,
fungi, yeasts, algae, seeds, snails, and crustaceans. However, fungi and bacteria are
recognized as the primary producers of these enzymes [34,42,97–100]. Based on their
structure and the amino acid sequence, xylanases are mainly classified between 10 and 11
glycohydrolases families. Family 10 comprises high molecular weight enzymes composed
of a cellulose-binding domain and another catalytic domain; these two are linked by a
peptide. Therefore, this family mainly represents bacterial xylanases.

On the other hand, family 11, mostly belonging to fungi, is characterized by low
molecular weight xylanases [101]. Furthermore, as discussed for cellulases, microorganisms
have two ways of secreting xylanases. While aerobic fungi and bacteria do it as a set of
individual enzymes, anaerobic fungi and bacteria secrete these enzymes in a cellulosome-
like complex form called xylanosomes [102].
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3.3. Ligninases

Since lignin consists of an aromatic and hydrophobic polymer composed of phenolic
and non-phenolic parts, it exhibits a structural complexity that results in high resistance to
hydrolase actions [68,103]. This way, its depolymerization, and degradation occur from
several oxidative reactions, leading to the release of by-products with less stability. The
enzymes involved in this enzymatic system of oxidative lignin degradation are called
ligninases and can be of two main groups: peroxidases and oxidases [104,105].

Peroxidases are enzymes that initiate lignin depolymerization through oxidation
reactions that result in free radicals and anions formation in the presence of hydrogen
peroxide [49]. Among the peroxidases, four classes are known to act in this process: lignin
peroxidases, manganese peroxidases, versatile peroxidases, and bleaching peroxidases [47].
Lignin peroxidases (EC 1.11.1.14) are glycoproteins containing heme groups, being central
enzymes in lignin depolymerization. They perform the oxidation and degradation of vari-
ous phenolic compounds by eliminating an electron in the presence of hydrogen peroxide as
a substrate and may present different isoforms [106]. Manganese peroxidases (EC 1.11.1.13)
are also heme-containing glycoproteins that oxidize a variety of phenolic and non-phenolic
compounds in the presence of Mn and hydrogen peroxide as oxidizing agents [39]. These
enzymes act on the oxidation of Mn2+ to Mn3+, which in turn oxidizes benzyl alcohol rings,
thus causing lignin degradation [46]. Versatile peroxidases (EC 1.11.1.16) are enzymes that
catalyze the oxidation of heterogeneous aromatic compounds using hydrogen peroxide
as an electron acceptor. These enzymes integrate the oxidative properties of both lignin
peroxidases and manganese peroxidases, oxidizing several phenolic and non-phenolic
compounds in the presence of Mn2 [107]. Finally, the bleaching peroxidases (EC 1.11.1.19)
constitute a new family of peroxidases containing a heme group. They are the main unit
of the lignin degradation system in bacteria, capable of acting in a broad specificity of
substrates and extreme pH [103].

The group of oxidases is mainly represented by laccases (EC 1.10.3.2), copper-containing
enzymes that consist of monomeric, dimeric, and tetrameric glycoproteins [108]. These
enzymes have three copper atoms linked coordinately to maintain the amino acid active
sites [109]. In general, the oxidative activity of these enzymes occurs from the oxidation of
four electrons of different aromatic and non-aromatic units of their substrates, followed by
molecular oxygen reduction in the presence of water. These enzymes act on phenolic units’
oxidation, with an electron loss and consequent formation of unstable free radicals [110].
This reaction can be catalyzed by laccases either by direct or indirect substrate oxidation.
At first, the substrate is oxidized due to direct contact with the enzyme’s copper. Second,
substrate oxidation occurs through mediators in a two-step reaction: the first catalyzes the
mediator, and then the catalyzed mediator oxidizes the substrate [46].

3.4. Accessory Proteins and Enzymes

In addition to the enzyme classes discussed above, the complete breakdown and
degradation of lignocellulosic biomass also require the interaction of lignocellulolytic
enzymes with other proteins, called accessory proteins [56]. The significant importance of
this protein group is that they are directly involved in reducing biomass crystalline structure
and recalcitrance, making the lignocellulose structure more susceptible to lignocellulase
attack [111]. Therefore, accessory proteins assist in lignocellulolytic activity, either by
breaking the hydrogen bonds in cellulose fiber or by oxidative mechanisms resulting in
glycosidic bond breakdown [112]. Some accessory proteins already described include
expansins and swolenins, which act in lignocellulolytic structure loosening and swelling,
respectively, facilitating the access and activity of other enzymes [56,113,114]. In addition
to these, some enzymes are also known to support lignocellulolytic activity. Examples
of accessory enzymes are the LPMO (Lytic Polysaccharide Monooxygenases—EC 1.14.99.54).
These enzymes, in turn, cleave β-1,4-glycosidic bonds of crystalline substrates such as
cellulose and chitin, leading to the oxidation of C1 and C4 carbons [115]. This process then
causes cellulosic fibers disorganization, facilitating cellulase access [56,112]. Among the
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LPMOs, the Auxiliary Activity Enzyme (AA9) is the most added to commercial enzyme
cocktails [56]

4. Lignocellulolytic Microorganisms

Lignocellulolytic enzymes have already been reported from many microorganisms,
being aerobic or anaerobic and living in the most diverse environments. This range of
lignocellulolytic microorganisms includes fungi, bacteria, and archaea [77,116].

4.1. Archaea and Eubacteria

Some archaea have already been described as potential degraders of lignocellulosic
biomass. Examples are species of the genera Pyrococcus, Sulfolobus, Thermogladius, and
Thermofilum [116–120]. Most of these species live in extreme environments with elevated
temperatures, pH, and salinity conditions. Due to their high thermoactivity and thermosta-
bility, these archaea are potential candidates for industrial processes that require extreme
conditions, including pre-treatment and plant biomass conversion [116].

Due to their ability to adapt to pH and temperature changes, greater flexibility to
oxygen demand, and potential use in genetic engineering, bacteria are also important
sources for lignocellulase production [121–124], which have already been reported from
several species of bacteria, including aerobic and anaerobic ones. However, they show
significant differences in these enzyme production systems, yield rates, and final products
of biomass degradation reactions [123]. The vast majority of these bacteria are reported
from Bacillus, Acinetobacter, Cellulomonas, Clostridium, and Pseudomonas, although several
other genera have already described species with lignocellulolytic potential [123,124].

Among the aerobics, actinobacteria stand out, which include species such as
Cellulomonas flavigena, Cellulomonas fimi, Actinomycosis bovis, Xylanimonas cellulosilytica
and Thermobifida fusca [125,126]. The latter contains both cellulolytic and lignocellulolytic
enzymes, allowing its use for both cellulose hydrolysis and lignin modification [127].
Other bacteria studied with the potential for lignin breakdown are Bacillus, Streptomyces,
Sphingomonas, Pseudomonas, Rhodococcus, and Nocardia [128]. Among anaerobic bacteria,
those that stand out as lignocellulolytic enzyme producers belong to the Clostridium genre,
such as Clostridium thermocellum [127]. Table 1 provides examples of bacteria producing
different classes of lignocellulolytic enzymes.

Table 1. Examples of bacteria producing lignocellulolytic enzymes.

Enzymes Microorganism Optimal pH Optimal Temperature Reference

Endoglucanases

Bacillus subtilis 5 60 [129]

Neobacillus sedimentimangrovi 7 60 [130]

Arthrobacter woluwensis 8 50 [131]

Thermotoga naphtophila 6 90 [132]

Exoglucanases Clostridium thermocellum 5.7 70 [133]

Xylanases

Thermotoga marítima TmxB 5 100 [134]

Acinetobacter johnsonii 6 55 [135]

Bacillus haynesii 7 40 [136]

Caldicoprobacter algeriensis 6.5 80 [137]

Peroxidases
Pseudomonas spp. 3–8 20–80 [138]

Bacillus ayderensis SK3-4 7 75 [139]

Laccases
Lysinibacillus macroides 7 30 [140]

Pseudomonas parafulva 8 50 [141]
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4.2. Fungi

Although bacteria and archaea have some advantages in lignocellulase production,
filamentous fungi are the most extensively studied microorganisms for lignocellulosic
biomass breakdown [142–144]. This is due mainly to these organisms’ ability to secrete
large amounts of enzymes in the extracellular environment, facilitating their obtaining
process of them [70,145]. These fungi are formed by hyphae containing perforated walls
called septa, which allow the passage of proteins and their secretion through the plasma
membrane [146,147]. Among these, species of Aspergillus and Trichoderma, belonging to
the phylum Ascomycota, are the best-known and applied examples of cellulolytic fungi
in industry, accounting for more than 50% of studies related to cellulases [111,148–151].
These are known as soft rot fungi and cause cavities and erosions in plant cell walls [152].
Proteomic studies of Aspergillus niger and Trichoderma reesei showed that these fungi have
an extensive secretome involved in lignocellulase degradation, containing different families
of cellobiohydrolases, endoglucanases, β-glycosides and several hemicellulases [153]. In
addition to these, other filamentous fungi genera such as Penicillium, Fusarium, and Rhizopus
are also among the major industrial producers of these enzymes [111,154–156].

In addition to Ascomycetes, genomic analyzes of fungi belonging to Basidiomycota
phylum showed that they have both enzymatic systems: a hydrolytic one for cellulose
and hemicellulose degradation, and an oxidative one for lignin oxidation and degradation,
the latter containing laccases and several peroxidases [157]. These basidiomycetes include
white rot fungi and brown rot fungi, so called because they attack the plant cell wall leaving
it with a fibrous texture in a bleached and brown color, respectively [157,158]. Among
these, stand out species of some genera such as Phlebia, Pleurotus, Phanerochaete, Trametes,
Polyporus, and Lentinus, among others [159,160]. Table 2 provides examples of distinct
species of fungi capable of producing lignocellulolytic enzymes, described according to the
class of enzyme produced.

Table 2. Examples of fungi producing lignocellulolytic enzymes.

Enzyme Microorganism Optimal pH Optimal Temperature (◦C) Reference

Endoglucanases

Trichoderma viride 5 40 [161]

Cladosporium cladosporioides 4 30 [162]

Fusarium spp. 5.5 30 [163]

Aspergillus niger 5.5 30 [164]

Exoglucanases

Trichoderma viride 5 40 [161]

Fusarium spp. 5.5 30 [163]

Aspergillus niger 5.5 30 [164]

Phaeolus spadiceus 4.5 25–30 [165]

β-glycosidases

Trichoderma viride 5 40 [161]

Cladosporium cladosporioides 4 30 [162]

Aspergillus niger 5–9 25–45 [166]

Fusarium spp. 5.5 30 [163]

Xylanases

Trichoderma spp. 5 28 [167]

Trichoderma harzianum 6 70 [168]

Aspergillus tubingensis 3–8 30–60 [169]

Talaromyces amestolkiae 7 30 [170]
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Table 2. Cont.

Enzyme Microorganism Optimal pH Optimal Temperature (◦C) Reference

Peroxidases

Pleurotus ostreatus 3.3 25 [171]

Hypsizygus ulmarius 7 28 [172]

Pleurostuus florida 7 28 [172]

Phlebia radiata 3 80 [173]

Laccases

Trametes polyzona 4.5 55 [174]

Trametes versicolor 4–5 40–50 [175]

Coriolopsis gallica 6–8 40–60 [176]

Pycnoporus spp. 6 0 [177]

4.3. Natural Habitat from Lignocellulolytic Microorganisms

Since microorganisms can exist in diverse habitats, the versatility of the lignocellulases
they produce is also enormous [71]. Since the soil has immense microbial diversity, it
is considered the most exploited environment for obtaining such enzymes [122,178]. In
these environments, aerobic fungi primarily carry out lignocellulose decomposition [179].
However, in deeper soil layers, where the oxygen supply is limited, bacteria are the main
degraders of lignocellulose [180]. In this same study by Wilhelm et al. was shown that, in
forest environments, fungi are the ones with the most cellulolytic activity. At the same time,
gram-negative bacteria are the microorganisms most involved in lignin decomposition. Soil
microbial communities have been isolated and characterized with potential lignocellulolytic
use [181,182].

Among the soil fungi known for plant biomass degradation are the genera
Trichoderma, Penicillium, Aspergillus, Humicola, and Fusarium [45,71,143]. In a recent study
by Shinde et al. [183], among different microorganisms isolated from soil (including fungi
and bacteria), the fungal species belonging to Trichoderma and Aspergillus were those that
demonstrated the highest enzymatic activity of lignocellulases, based on quantitative and
enzymatic analysis. Several bacteria with lignocellulolytic capacity have also been isolated
from the soil. The vast majority of studies have been carried out on species of Bacillus,
Pseudomonas, Serratia, Clostridium, Cellulomonas, and Streptomyces [45,71,122].

Lignocellulolytic microorganisms from aquatic environments also have significant
importance. Those from marine environments are the most sought-after due to the high
industrial demand for stable enzymes under different conditions [71]. In addition, these
microorganisms live in extremes of pressure, temperature, salinity, and diverse geochemical
conditions. Thus, compared to terrestrial sources, enzymes derived from marine microbial
sources are considered more potent for lignocellulosic biomass conversion [184]. Among
these, Bacillus is one of the most reported as such, although several others have already
been described ([45,71,184–186]. A study performed with different marine microorganisms
and various lignocellulosic biomass sources showed that those with the highest ligno-
cellulolytic activity were Bacillus pumilus, Mesorhizzobium spp., and Aspergillus niger and
Trichoderma viride [187]. In addition, other endophytic fungi and bacteria are also seen as
essential biomass degraders and lignocellulolytic enzyme producers [188–191].

Some microorganisms can also live in extreme temperatures, pressure, pH, saline,
acidic or alkaline environments, among other conditions [192,193]. Because they also con-
tain such properties and have excellent stability under extreme conditions, enzymes derived
from these microorganisms are considered important biocatalysts for numerous biotechno-
logical processes. Hence, they have gained significant interest recently [194–197]. These
extremophilic microorganisms are also classified into several sub-groups [193]. Lignocellu-
lases derived from psychrophilic microorganisms (able to adapt to very low temperatures,
ranging from 15 ◦C to −40 ◦C) have antifreeze capacity and can maintain their catalytic ac-
tivity even at temperatures below 0 ◦C [192,197]. Several psychrophilic fungi and actinobac-
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teria already isolated showed lignocellulolytic enzyme production [45,198–200]. However,
among the other psychrophilic bacteria, those capable of producing tolerant lignocellulases
at low temperatures are restricted to a few species, such as Pseudoalteromonas haloplanktis
and Flavobacterium spp., for example [201,202].

In addition to these, several thermophilic fungi (able to grow and develop at elevated
temperatures, between 50 ◦C to over 100 ◦C) have been documented as efficient cellulase
producers, such as Aspergillus spp., Myceliophthora thermophila, Chaetomium thermophile,
Humicola insolens, and Humicola grisea, with activities ranging from 60–65 ◦C [203–206]. Bac-
teria also have a wide variety of thermophilic species described as lignocellulase producers,
such as Caldicellulosiruptor spp., Bacillus licheniformis, and Acidothermus cellulolyticus [207–209].
Among them, someone’s stand out for being hyperthermophilic, growing around 100 ◦C
and producing lignocellulases that maintain maximum activity up to temperatures around
80–106 ◦C, such as Thermotoga spp, for example [210,211].

Some microorganisms living in environments with extreme pH can also produce
lignocellulases. In addition to maintaining their activity in extreme pH, many of these
microorganisms (and their enzymes) also have other attributes, such as tolerance to saline
environments, and thermophilic or psychrophilic capacity, among others. Distinct species
of Bacillus, for example, have been reported to produce lignocellulases at pH ranging from
4 to 6.5 and optimal temperatures around 55–70 ◦C [212,213]. Furthermore, Bacillus spp. are
also considered excellent producers of these enzymes at alkaline pH [214]. Paenibacillus spp.
has also been described with lignocellulolytic activity at pH 4.0–5.5 and both low (20 ◦C)
and high (50–70 ◦C) temperatures [215]. Several fungi can produce lignocellulases at acidic
pH and elevated temperatures [45]. Aspergillus spp. isolated from various sources, for
example, showed reasonable lignocellulases production rates at pH 2–4 and temperature
at 50–80 ◦C [216–219]. On the other hand, few fungal species are known to produce such
enzymes at alkaline pH, with most being restricted to Paenibacillus and Aspergillus [220].

The considerable advantage of pH and thermostable lignocellulase-producing mi-
croorganisms is that they make it possible to reduce or even eliminate heat and/or chemical
pre-treatment steps, often necessary for lignocellulosic biomass conversion [71]. In addition,
they present other additional advantages, such as ease of mixing, better substrate solubility,
low risk of contamination, excellent storage stability, resistance to chemical denaturants
and organic solvents, and increased reaction rates and catalytic activity, which makes them
the most sought after in lignocellulosic industry [196,221,222].

5. Lignocellulolytic Enzymes Production
5.1. Methods for Enzymatic Production

The development of an enzymatic system for efficient lignocellulosic biomass hydroly-
sis on an industrial scale has been studied since the 1950s. Currently, two techniques are
used for lignocellulase production, both on a laboratory and industrial scale: submerged
fermentation (SmF) and solid-state fermentation (SSF). The first one can be defined as
fermentation in the presence of excess water and consists of submerging the substrate in
liquid, which requires the presence of free-floating liquid. On the other hand, solid-state
fermentation is carried out on a solid and insoluble substrate without free liquid. In this
type of fermentation, in addition to physical support, the substrate also provides the source
of nutrients for the microorganism’s growth [223,224].

Since it allows greater control of parameters such as pH, temperature and agitation,
easy recovery, and reproducibility, submerged fermentation is more used compared to
solid-state fermentation for industrial production [224]. However, this technique also has
disadvantages, such as high energy demand, the need for greater investment, and lower
rates of productivity and yield in a longer fermentation time [225]. On the other hand,
despite requiring a medium that maintains the necessary moisture for microbial growth, the
solid-state fermentation technique presents a more accessible microorganism adaptation to
the substrate, less contamination risk, and less water and energy needed, in addition to
higher yield compared to submerged fermentation [226]. Thus, solid-state fermentation has
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been seen as an essential alternative for lignocellulosic biomass hydrolysis and subsequent
production of by-products [223,227].

Different types of bioreactors can be used in both cases. In this way, bioreactors act
as mechanical devices that provide in vitro conditions for microorganisms’ cultivation to
obtain the desired products from the substrate [228]. For submerged fermentation, there are
three types of bioreactors. The most used of them is the stirred tank bioreactor, which allows
greater temperature control and oxygen transfer during the reaction. In addition, there
is also the air transport bioreactor, which allows efficient mixing employing continuous
fluid circulation through channels in a closed circuit, and the bubble column bioreactor,
the most suitable for microorganisms sensitive to the carrier. For solid-state fermentation,
the bioreactors used can be divided into four categories [224]. The bed is almost static in
tray bioreactors, and air circulates freely around it. The bed remains static in a packed bed
bioreactor, but the air is heavily left inside it. The bed is continuously stirred in a fluidized
bed bioreactor, with air being strongly blown into it. Finally, in a swing drum bioreactor,
the bed is constantly agitated in a drum so that air circulates freely above it without being
forced to flow around [229].

Choosing an appropriate method for each case depends on numerous factors, in-
cluding the microorganism and the substrate used. Overall, the main criteria for such a
choice include: adequate mass transfer, low shear stress, sterility, aeration, pH and tem-
perature control, low energy consumption, adequate material size, and an efficient mixing
system [230]. For example, Pinheiro et al. [231] evaluated the laccase production from
Trametes versicolor in three diverse types of bioreactors: stirred tank bioreactor, aluminum
tray, and Erlenmeyer flasks. In this study, the authors found that the highest enzyme
production rate occurred using stirred tank bioreactor, which may be related to the fact that
it allows a greater oxygen supply to the microorganism.

5.2. Types of Biomasses Used for Enzymatic Production

Regarding the substrate, diverse types can be used as carbon sources for lignocellulolytic
enzyme production, including seeds, fruits, and agro-industrial residues [229,231–237]. Since
it has low cost and wide availability, the use of agro-industrial residues contributes to
reducing the production cost of these enzymes, in addition to not competing with the
production of food for human and animal consumption [238]. In addition, it promotes a
circular economy and more sustainable production, helping to reduce the impact on the
environment of waste that would previously be largely disposed of incorrectly [239]. Some
examples of agro-industrial waste used are: straw and rice bran, corn straw, coffee husks,
sawdust, sugarcane bagasse, and waste from the paper industry, among others [240–245]
(Figure 1).

Since complete biomass degradation requires a complex synergism between the several
enzymes presented above, and their efficiency depends directly on the substrate and
conditions used for this, there is a growing recognition that the use of a single type of
enzyme produced from a single microorganism, is not the ideal approach for efficient
biomass processing [246]. Thus, using a consortium of enzymes in the form of enzymatic
cocktails seems to be the best strategy for a complete and more economical lignocellulosic
biomass degradation. Furthermore, to allow the combined action of a pool of enzymes
with different specificities, allowing one enzyme to act on the other product, in an enzyme
cocktail, it is also possible to replace an individual enzyme in order to optimize each cocktail
to a specific substrate and conditions [247].

In order to obtain an efficient cocktail, some parameters must be taken into account,
such as microorganisms’ behavior when cultivated on different substrates, identifying the
types of enzymes they produce in each case, and which enzymes are necessary for every
kind of substrate degradation [60]. Various approaches can be used for enzymatic cocktails
production, such as combinations of distinct species of fungi [248–251], bacteria [252–254],
or even fungi and bacteria [255–257]. Furthermore, strategies for optimizing an enzymatic
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cocktail may include supplementation with a specific enzyme, be it hydrolytic or not, or
supplementation with surfactants or other chemicals [247].

Figure 1. Microorganisms from the most diverse habitats are able, through the production of ligno-
cellulolytic enzymes, to degrade various types of biomasses such as rice straw, corn straw, sugarcane
bagasse, and soybean straw. From this, fermentable sugars are formed, exemplified here by glucose,
which has a wide range of industrial applications.

6. Application of Lignocellulolytic Enzymes

Lignocellulolytic enzymes have applications in the broadest sectors and industries,
including: the food and beverage industry, pulp and paper industry, textile industry, biofuel
production, and bioremediation (Figure 2). These enzymes can be applied in different
processes and for various purposes.

Figure 2. Different applications of lignocellulolytic enzymes.
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6.1. Food and Beverage Industry

Lignocellulolytic enzymes have broad applications in the food and beverage indus-
try. Along with pectinases, cellulases and xylanases are known as food-macerating en-
zymes [224]. These are applied in numerous processes, including extraction and clarification
of fruit and vegetable juices, increasing yield, volatile characteristics, aroma, decreasing vis-
cosity, and improving its property and the performance of the process as a whole [258,259].
Applying these enzymes for such a process is preferable to other conventional methods
as they allow higher yields in less processing time and reduce thermal damage to the
product [36]. In addition, lignocellulolytic enzymes can also be used to improve stability
and texture, decrease the viscosity of fruit nectars and purees, and be important in the olive
oil extraction process [260]. Among these enzymes, xylanases have the practical potential
for use in the bakery industry. By hydrolyzing the hemicellulose of wheat flour, xylanases
make the dough softer and delay crumb formation, allowing the dough to increase in
volume and improve its quality [98]. Laccases also have considerable application in bread
making, increasing stability and strength, enhancing softness, and decreasing read dough
viscosity [261].

In addition, the animal feed also plays an essential role in the food industry as a
whole, as it enables the production and distribution of animal protein [262]. However, the
feed used in monogastric animals (swine and poultry) and ruminant rearing is usually
composed of ingredients rich in lignocellulose, indigestible by these animals’ endoge-
nous enzymes [263]. Thus, adding exogenous enzymes to this diet has been seen as an
alternative to improve fiber degradability, increasing absorption efficiency, energy intake,
and nutritional quality [264]. The most widely used lignocellulolytic enzymes for this
purpose are cellulases, such as β-glucanases, and hemicellulases, such as mannanases and
xylanases [264].

In the beverage industry, these enzymes are used to improve malt extraction efficiency
for beer production, increasing fermentation rate and yield, as well as improving malt
quality [224,259]. In this process, the use of xylanases also reduces beer’s muddy appear-
ance and viscosity [36]. Laccases, in turn, have been used to remove unwanted phenolic
compounds which cause browning and cloudiness and, in this way, improve the beers and
other foods and beverages color [265]. Moreover, they can be used for the oxidation of
polyphenols present in beer, contributing to the increased shelf life of both beers and wines.
In wine production, the set of lignocellulolytic enzymes improves its coloring, clarification,
and filtration, as well as quality and stability [266–268].

6.2. Textile Industry

In many textile industries, desizing, washing, and bleaching processes have used
chemicals such as caustic soda, urea, acids, bases, and bleaches over the years. However,
such products are toxic and cause environmental pollution when incorrectly disposed
of [269]. Thus, enzymes are seen as a cleaner and more sustainable alternative for such
processes [270]. In this scenario, the main lignocellulolytic enzymes’ application in the
textile industry is through cellulase use in the biostoning process of cotton products.
Furthermore, these enzymes can also be used in the washing process in order to selectively
remove pectins, waxes, fats, minerals, natural dyes, and other impurities from cotton
fabric [271].

The textile industry also uses cotton fiber bleaching processes to discolor its natural
pigmentation so that it can later be dyed according to demand [272]. In addition to causing
less damage to the fibers, the use of enzymes in this process also considerably saves the
amount of water needed to do so. Moreover, laccases have a significant advantage since
they act specifically on indigo dyes [273]. Laccases applied in the bleaching process have
already been produced from different microorganisms, such as the fungi Cerrena unicolor
and Madurella mycetomatis, and the bacterium Brevibacillus agri, which presented optimal
temperatures ranging from 30 to 60 ◦C, and pH range from 3 to 6 [274–276]. Moreover,
lignocellulolytic enzymes are also used in the polishing process, the last finishing step to
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improve fabric quality, in which fibers are hydrolyzed, providing a smoother surface with
a clean, soft, and shiny touch. For example, Bussler et al. [277] applied cellulases produced
from Caulobacter crescentus to jeans fibers, which, when analyzed by scanning electron
micrographs, have shown a clean and smooth surface, indicating this enzyme potential for
application in biopolishing of jeans.

Finally, waste generated in the textile industry can also be treated using lignocellulolytic
enzymes, mainly laccases, lignin peroxidases, and manganese peroxidases [278,279]. Un-
uofin [280] reported these dye’s discoloration using laccases produced from
Achromobacter xylosoxidans and Citrobacter freundii, these having greater thermostability,
with an optimal temperature ranging from 50 to 90 ◦C. This same author also has demon-
strated the successful bleaching of synthetic dyes and jeans using laccases produced from
Pseudomonas spp. These, in turn, had 80% of their residual activity recovered after the
process’ extreme conditions, demonstrating significant tolerance to temperature, pH, salts,
cations, and surfactants [280].

6.3. Pulp and Paper Industry

Aiming a more sustainable industrial production, the supply of virgin pulp for paper
production has dropped significantly over the last few years. Because of this, paper indus-
tries have started to rely more on agricultural waste and paper waste [281]. To turn this
waste into paper, mills incorporate many different processes, which include preparation,
pulping, recovery, and bleaching [282]. Since the 1980s, the use of lignocellulolytic enzymes
in this industry has increased significantly. These, in turn, have applications in numerous
processes, such as pulp biobleaching and deinking, improved drainage, and effluent treat-
ment. In addition, the enzymatic treatment also enhances the bleached pulp’s physical
appearance, quality, and brightness. At the same time, ligninolytic enzymes can be used
to treat toxic agents and other chemicals used in these processes [282–286]. Furthermore,
enzymatic hydrolysis in the pulp and paper industry allows for less energy use and high
selectivity, producing fewer harmful effects [287].

In the deinking process, these enzymes act to hydrolyze the bond between paper fibrils
and ink particles, which are then removed using a flotation technique [288]. Biobleaching
is a process in which lignin is separated from pulp to produce glossy white paper [285]. In
this latter, xylanases are widely used as they attack hemicellulose, facilitating lignin release
from cellulose [289,290]. In addition, cellulases are also especially important in reducing
bleaching energy costs, increasing drainage efficiency, and improving paper gloss [283].
Furthermore, lignin oxidation by the action of laccases also significantly increases the
final product brightness [291]. Several enzyme cocktails have been studied and produced
for industrial pulp and paper processes [285]. Different cocktails of xylanases, laccases,
and other enzymes produced from Bacillus firmus, Bacillus pumilus, Bacillus nealsonii, and
Bacillus halodurans have demonstrated reasonable rates of kappa number reduction and
chemical treatment, as well as increased pulp brightness [287,292–294]. Enzyme cocktails
produced from Aspergillus spp. also proved to be very efficient in bioblanching, reducing
considerably harmful agent use [295].

6.4. Biofuels Production

Biofuel production has grown significantly worldwide and is seen as one of the main
alternatives to convert the planet’s climate crisis and greenhouse gas emissions [12]. As
they do not compete with food crops, second-generation biofuels are seen as a more sus-
tainable and efficient alternative when compared to first-generation ones [296]. These
are produced from inedible lignocellulosic biomass, including agricultural and food pro-
cessing residues [297,298]. Due to the lignocellulosic biomass recalcitrant structure, the
sugars present in it are not fermented by first-generation bioethanol-producing microorgan-
isms [299]. Thus, the production of second-generation biofuels is a process that involves
pre-treatment processes (physical-chemical or biological), hydrolysis (acidic or enzymatic),
and fermentation [300]. The recalcitrant lignocellulosic structure is disrupted in the pre-
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treatment stage, making it accessible to enzymatic activity [301]. Then, xylose and lignin
are separated from cellulose, and cellulosic biomass undergoes enzymatic hydrolysis, trans-
forming it into fermentable sugars. After hydrolysis, the sugars formed are fermented to
produce biofuels, which can be biogas, bioethanol, or biohydrogen [302].

As they reduce the negative impacts on the environment, the use of lignocellulolytic
enzymes in pre-treatment and hydrolysis stages has increased significantly [303]. Efficient
enzyme cocktails for biofuel production include cellulases, hemicellulases, and ligninases,
as well as pectinases and accessory proteins such as AA9 and swolenins [56]. In order
to increase the feasibility of using microorganisms in biofuel production, recent research
has sought to develop high-yield microorganisms for plant biomass degradation. In this
scenario, genetic engineering of lignocellulosic biomass is one of the main strategies to
increase biofuels [300,304,305]. On the other hand, genetic engineering and metabolic
modulation of lignocellulolytic microorganisms is also an important strategy to improve
both their enzymatic production and microorganism’s tolerance to inhibitors produced dur-
ing the pretreatment step and to elevated temperature required conditions [300,306–310].
In addition, the high cost of commercial enzymes is still a limiting factor for large-scale
biomass bioconversion. Estimates show that the production cost of these enzymes can
reach $10.14/kg [311]. Thus, enzyme immobilization is an alternative that results in enzy-
matic hyperactivation and allows their various reuses [56,312,313]. Damásio et al. [312], for
example, reported greater hydrolytic efficiency of arabinoxylan from co-immobilization of
endo-xylanase and α-L-arabinofuranosidase from Aspergillus nidulans on glyoxyl agarose.

6.5. Bioremediation

The industrialization and massive use of pesticides in agriculture are responsible for
substantial amounts of residues and pollutants, contaminating soil, water, and air. In this
sense, decontamination of these environments is one of the current major environmental
challenges [314]. Bioremediation is a process that uses plants, microorganisms, or their
enzymes to detoxify contaminants in soil, water, and other environments. This process may
also include these contaminants’ partial or total transformation [314,315]. Several studies
have revealed that oxidoreductase enzymes, such as the ligninases lignin peroxidase, man-
ganese peroxidase, versatile peroxidase, and laccase, have biocatalytic activity with poten-
tial application for environmental pollutants degradation and mitigation [46,110,261,316].
Laccases, for example, catalyze oxidation-reduction reactions responsible for the biodegra-
dation of several toxic substances, such as: phenolic compounds, pesticides, herbicides and
fungicides, and pharmaceutical compounds, among others [265,317–319].

In this aspect, manganese peroxidases, lignin peroxidases, versatile peroxidases, and
laccases produced by basidiomycete fungi are the most used to remove organic pollu-
tants [320]. Among these, Trametes species are probably the most investigated and have
already been commercialized by several companies [316,319]. Enzymes produced from
Trametes versicolor, for example, showed enormous potential in the degradation of several
types of pesticides [317,321,322], hospital waste [323], and pharmaceutical compounds [324],
among others [320]. In addition to this, species such as Pleurotus ostreatus,
Phanerochaete chrysosporium, and Ganoderma lucidum also demonstrate excellent enzymatic
activities for different pollutants bioremediation [325–330]. However, current commer-
cial prices of such enzymes are still too high for mass environmental applications [319].
Thus, developing novel approaches for genetic engineering, such as microorganisms and
enzymes, may allow greater applications for degrading toxic compounds [331].

7. Recent Advances
7.1. Mixed Cultures

Mixed cultures consist of the growth of two or more microorganisms together under
the same conditions [332]. This technique provides several benefits, such as better substrate
utilization, greater adaptability to environmental changes, higher yield and productivity,
and reduced contamination chances [333]. This can also be applied to the production of
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lignocellulolytic enzymes in order to have better conditions for obtaining enzyme cocktails.
In addition to enabling the production of the complete set of cellulases, hemicellulases, and
ligninases, mixed cultures also increase microorganisms’ growth rate and these enzyme
levels of production compared to monoculture. Furthermore, the mixed cultures technique
can be applied both under submerged and solid-state fermentation conditions [334].

In order to obtain an efficient mixed culture, the synergy between microorganisms
is a crucial parameter. These must have similar optimal growth temperature, pH, and
nutritional requirements [335]. Mixed cultures can be obtained from bacteria, fungi, and
even from bacteria and fungi together [333,336,337]. Singh et al. [337], for example, have
obtained higher bioethanol concentration and production from rice straw using a mixed
culture of thermophilic anaerobic bacteria. However, the mixed cultivation from fungi often
proves to be more accessible when compared to that from bacteria since, in their natural
habitat, fungi grow symbiotically more easily on different substrates [334]. The optimization
of lignocellulolytic enzyme production has already been obtained from different mixed
cultures of T. reesei and A. niger using different substrates and conditions [335,338–340], in
addition to T. reesei with other fungi, such as with A. fumigatus in sugarcane bagasse [341],
with Monascus purpureus in wheat straw [342], and with Penicillium citrinum in wheat
bran [334]. Silva et al. [343] also obtained greater hydrolysis efficiency of sugarcane bagasse
with an enzymatic cocktail produced from the mixed culture of T. reesei, A. brasiliensis,
A. fumigatus, and Talaromyces spp., with temperature and optimum pH of 50 ◦C and
4, respectively.

Furthermore, mixed culture between fungi and bacteria also presents an exciting strat-
egy. Karuppiah et al. [344], for example, have obtained better conversion rates of several
lignocellulolytic substrates from mixed cultures of T. asperellum and B. amyloliquefaciens.
Furthermore, Preda et al. [336] have tested mixed cultivation of Ganoderma lucidum with
9 strains of bacteria for different ligninase production, of which lignin peroxidase was
the one with the highest production increase rate. Finally, using a mixed culture of
B. licheniformis and S. cerevisiae, Sharma et al. [345] obtained simultaneous saccharification
and fermentation of wheat straw for bioethanol production, in addition to its significant
increase. In this case, cellulases produced by the bacteria hydrolyzed wheat straw, while
the yeast converted the sugar produced into ethanol.

7.2. Genetic Engineering

In addition to improving microorganisms’ cultivation in their natural form, another
strategy that has been widely used to increase and enable the production and industrial-
scale application of lignocellulolytic enzymes is the genetic engineering [346]. In this sense,
several techniques can be used, such as directed evolution, gene editing, and heterologous
expression. Furthermore, there are many possible aspects to be improved, including
the catalytic activity, stability, and resistance to inhibitors, as well as microorganisms’
regulatory networks, metabolism, and morphology and increasing the synergism and
efficiency of enzyme cocktails [346]. For example, to improve the catalytic efficiency of
cellulases produced by T. reesei, Jiang and collaborators [347] replaced the native gene cbh I
of this microorganism with its counterpart from Chaetomium thermophilum, which led to an
increase in cellulase activity in 2.2-fold.

It is also possible to build chimeric complexes with enzymes from different microor-
ganisms through gene editing. Brunecky et al. [348], for example, have produced a chimeric
cellulase containing an endoglucanase and cellulose-binding domains from bacteria and a
cellobiohydrolases domain from fungi. This, in turn, showed high enzyme activity when
compared to uncomplexed cellulases. Improving lignocellulolytic enzyme stability under
adverse environmental conditions is also highly sought, as it allows hydrolysis at elevated
temperatures, which is often necessary for industrial biomass conversion processes [349].
Using targeted evolution, a recent study has demonstrated 820-fold increased thermosta-
bility in the GH11 family [350]. Furthermore, by introducing disulfide bonds into the
xylanase structure of T. reesei, Tang et al. [351] have demonstrated their greater acid and



Microorganisms 2023, 11, 162 16 of 33

alkaline resistance. In addition to these aspects, genetic engineering also makes it possible
to increase enzyme resistance and tolerance to different inhibitors [352].

However, these enzymes will only have industrial applications when they can be
produced at high productivity rates at a low cost. Therefore, another preference that has
been studied is the engineering of lignocellulolytic microorganisms. Sequence mutations
in transcription factors, heterologous expression, and the development of CRISPR/Cas-
9-based genome editing methods are some techniques that have driven advances in this
area [352]. The transcription of lignocellulolytic enzymes is induced by specific inducers
and repressed by repressor molecules. Thus, this enzyme expression is controlled by a net-
work of regulatory mechanisms mediated by multiple transcription factors [353–357]. This
way, modifying the regulatory network of these microorganisms’ transcription factors for
expressing the lignocellulolytic enzyme is a vital strategy [358]. In T. reesei, for example,
the transcription factor CRE1 is the main repressor of lignocellulolytic enzyme expression,
while XYR1 is its main transcriptional activator. Mutations that caused the first silencing
and the second’s overexpression demonstrated elevated levels of extracellular cellulase se-
cretion, producing hypersecretory T. reesei strains [359,360]. The combinatorial engineering
of three transcriptional activators in P. oxalicum (ClrB, XlnR, and AraR) also demonstrated
the generation of a strain with an increase in lignocellulolytic enzymes production from 3.1
to 51.0-fold, in addition to a more significant release of fermentable sugars from corn fiber,
when compared with the original strain enzymes [361].

Another focus of lignocellulolytic microorganism genetic engineering is to modify
their metabolic network [352]. Some examples of what has been done in this regard
include eliminating specific proteases to decrease the degradation of the lignocellulolytic
enzyme [362], improving strain growth and protein production rate [363], and metabolic
control in order to balance other enzymes synthesis that compete for precursors and
energy [364,365], and the alteration of fungal mycelia morphology in order to decrease the
medium viscosity, allowing greater mass transfer and oxygen supply [366,367]. Concerning
the heterologous expression of lignocellulolytic enzymes, it is sought to express a functional
lignocellulolytic system in order to allow non-lignocellulolytic microorganisms to hydrolyze
and transform lignocellulosic biomass. The most commonly used non-lignocellulolytic
microorganisms for this purpose are Zymomonas mobilis, Escherichia coli, Pichia pastoris,
and Saccharomyces cerevisiae [277,368–371]. The production of recombinant lignocellulases
may be the solution to limitations of high substrate cost and maintenance of the necessary
conditions for these enzymes production, as well as more resistant and stable strains
production and higher rates of enzyme production [372–375]. However, these modified
enzymes and microorganisms still lack broad industrial application, so efforts must be
made to optimize these aspects [352].

7.3. Bioprospecting

Native microorganisms can be found in the most diverse environments and produce
several enzymes with industrial importance activities. Therefore, bioprospecting for new
microorganisms and lignocellulolytic enzymes is a valuable tool that has been increasingly
researched and used [376]. Bioprospecting involves screening native strains and enzymes
from various sources (soil, water, air) for specific traits based on high yields of desired
end products [376,377]. One approach that has been widely used is to look for specific
genomic content in environmental samples through metagenomics [378,379]. To isolate
new genes and pathways encoding enzymes or biosynthesis of biomolecules, functional
metagenomics has been widely successful in isolating and identifying new families of
proteins, especially lignocellulolytic enzymes [380]. Using metagenomics, therefore, allows
the prospection of potential lignocellulolytic microorganisms very quickly, in addition to
allowing the identification of both cultured and non-cultured microorganisms [381].

Several studies have already shown the efficiency of bioprospecting in searching
for lignocellulolytic microorganisms aiming at producing enzymatic cocktails. To date,
metagenomic analyses have also resulted in the identification of numerous potential
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lignocellulolytic enzymes [233,249,380,382–386]. Shotgun analysis of a bacterial consor-
tium enriched with carboxymethylcellulose, for example, resulted in the reconstruction
of six complete genomes, four of which were new, including Bacillus thermozeamaize,
Geobacillus thermoglucosidasiu, and Caldibacillus debillis. CAZy analysis of these genomes
revealed the presence of several genes associated with lignocellulosic material degradation
and an abundance of GHs [387]. The search for and isolation of microorganisms in extreme
environments that produce enzymes with such properties also concentrates a large part of
bioprospecting efforts [388,389]. Bioprospecting of cellulolytic microorganisms from the
Red Sea (an environment with elevated temperature, salinity, and low nutrients levels),
for example, resulted in bacterial strains with high cellulase production, demonstrating
that this environment can be an important source of these microorganisms [390]. Different
bacteria isolated from mangrove soil also have shown potential hemicellulolytic capacity,
indicating that these environments represent a promising source for enzyme bioprospecting
due to their characteristics, such as fluctuations in oxic/anoxic and salinity conditions [391].
The search for lignocellulolytic microorganisms in cold environments also presents relevant
results. Brück et al. [200] have shown that the search for filamentous fungi in Ecuadorian
soil resulted in strains with high cellulase and xylanase activity at a temperature of 8 ◦C,
demonstrating potential application in bioremediation processes and effluent treatment
under cold weather conditions. Thus, bioprospecting allows the identification of new and
potential microorganisms and lignocellulolytic enzymes in the most diverse environments.

8. Future Perspectives

The lignocellulolytic enzyme market is expanding and is projected to grow even more
in the coming years. Despite being produced by numerous microorganisms and having
a wide variety of applications, lignocellulolytic enzymes still have some barriers to wide
industrial use. Among these barriers is mainly the production cost of these enzymes. In this
sense, developing enzymatic cocktails is essential for cost reduction. Therefore, in-depth
studies on the physiology and metabolism of these fungi are of significant importance to
optimize their cultivation conditions, in addition to further studies to optimize appropriate
proportions of each enzyme in the construction of a cocktail. Lignocellulolytic enzyme
stability is also one factor that affects their applicability in several processes. Although
several research are carried out to improve and change enzyme stability, efforts are still
needed in the search for strategies and production conditions that favor enzyme stability, in
addition to the search for new lignocellulolytic enzymes in extreme environments in which
these enzymes have greater stability. The development and modification of lignocellulolytic
microorganisms’ strains by different genetic engineering techniques have already brought
many advances to optimization and increase of lignocellulolytic enzymes production rates,
as well as to the reduction of this process cost. However, the techniques for GMOs (Genet-
ically Modified Organisms) production and the vectors currently used for heterologous
expression still have difficulties to be faced. Some examples are the need for methanol (a
toxic agent) to induce expression in P. pastoris, the hyperglycosylation of proteins expressed
in S. cerevisiae, and the formation of inclusion bodies of proteins expressed in E. coli. Thus,
it is necessary to search for new microorganisms and vectors that increase and facilitate
the heterologous expression of lignocellulolytic enzymes without requiring additional
steps. More research is also needed in bioprospecting novel microorganisms and undiscov-
ered enzymes with lignocellulolytic potential. After the discovery, technological advances
will be required to help replicate the ideal environmental conditions for its growth in the
laboratory and, later, on an industrial scale.

9. Conclusions

Lignocellulolytic enzymes are a vital alternative to change of chemical agents in the
most diverse industries, such as the textile, pulp, paper, food and beverage, biofuels, and
bioremediation, among others, contributing to making them more sustainable processes
and mitigate the current environmental crisis effects. Enzymes’ global market is expanding,
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within which microorganisms, the most outstanding representatives of the planet’s biodi-
versity, are considered the main sources of these enzymes. Among these, filamentous fungi
are the most researched and used, as they allow the production of substantial amounts
of enzymes extracellularly, facilitating their obtainment. Because they inhabit the most
diverse environments on the planet, lignocellulolytic microorganisms can also be found in
extreme temperature, pH, and oxygen concentration conditions, producing lignocellulolytic
enzymes that are more resistant and stable to industrial requirements. However, enzyme
production on an industrial scale still presents many obstacles. In order to circumvent
this situation, several research have been carried out in search of new strategies, includ-
ing mixed cultivation, genetic engineering, and bioprospecting techniques. Thus, with
the expansion of studies in search of greater viability of these techniques, new sources
of lignocellulolytic enzymes, cost reduction, optimization of production conditions, and
lignocellulolytic enzymes application, this market may prove to be increasingly promising.
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20. Baldrian, P.; Větrovský, T.; Lepinay, C.; Kohout, P. High-Throughput Sequencing View on the Magnitude of Global Fungal
Diversity. Fungal Divers 2022, 114, 539–547. [CrossRef]

21. Joergensen, R.G.; Wichern, F. Alive and Kicking: Why Dormant Soil Microorganisms Matter. Soil Biol. Biochem. 2018, 116, 419–430.
[CrossRef]

22. Margesin, R.; Collins, T. Microbial Ecology of the Cryosphere (Glacial and Permafrost Habitats): Current Knowledge. Appl.
Microbiol. Biotechnol. 2019, 103, 2537–2549. [CrossRef]
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